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Abstract

Let M be an oriented three-dimensional manifold of constant sec-
tional curvature −1 and with positive injectivity radius, and T 1M
its tangent sphere bundle endowed with the canonical (Sasaki) met-
ric. We describe explicitly the periodic geodesics of T 1M in terms of
the periodic geodesics of M : For a generic periodic geodesic (h, v) in
T 1M, h is a periodic helix in M , whose axis is a periodic geodesic in
M ; the closing condition on (h, v) is given in terms of the horospher-
ical radius of h and the complex length (length and holonomy) of its
axis. As a corollary, we obtain that if two compact oriented hyperbolic
three-manifolds have the same complex length spectrum (lengths and
holonomies of periodic geodesics, with multiplicities), then their tan-
gent sphere bundles are length isospectral, even if the manifolds are
not isometric.

1 Introduction

Let M be an oriented hyperbolic (i.e., with constant sectional curvature −1)
three-manifold and T 1M its tangent sphere bundle endowed with the canon-
ical (Sasaki) metric. A helix in M is a smooth curve with constant speed
λ, constant positive curvature κ and constant torsion τ. Given a helix h in
M , there is a distinguished unit vector field U along h, called the infinites-
imal axis, which is parallel and appears constant with respect to the Frenet
frames along h. Though the Euclidean analogue has the direction of the axis,
in the hyperbolic case there are some peculiarities due to the nonvanishing
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holonomy of M, which will be explained later, after the precise definition.
The writhe of h is defined by ρ =

√
κ2 + τ 2.

Let V be an oriented vector space of dimension three with an inner prod-
uct, and × the associated vector product on V. Given a unit vector u ∈ V
and θ ∈ R, let Rot(u, θ) denote the rotation on V fixing u and satisfying

Rot (u, θ) v = (cos θ) v + sin θ (u× v)

for all v orthogonal to u. The Riemannian metric together with the orienta-
tion induces on M the smooth tensor field × of type (1, 2) . This notation
is useful to describe the geodesics in T 1M , as in the following Proposition,
which is essentially the characterization given by Konno and Tanno in Theo-
rems C and D of [5], specialized to dimension three and curvature −1, with
the approach of Gluck [2], who studied the case of curvature 1.

Proposition 1 A curve (p, v) in T 1M is a geodesic if and only if it satisfies
any of the following conditions :

(a) p (t) = p0 is a constant curve and v (t) describes a great circle in T 1
p0

M
with constant speed.

(b) p (t) is a geodesic and either v (t) is parallel along p (t) or v (t) rotates
with constant angular speed in the plane orthogonal to ṗ (t).

(c) p (t) is a helix and v (t) rotates with constant speed ρλ in the plane
orthogonal to the infinitesimal axis of p. More precisely, v (t) is given by

v (t) = Rot (U (t) , ρλt) v0 (t) ,

where λ = ‖ṗ‖ and v0 is the parallel transport of v (0) along p and v (0) is
orthogonal to U (0) .

Next we show that the requirement of dimension three in Proposition
1 is not very restrictive (cf. [2, p 237]). Fix n ≥ 3, and let Hn be the
n-dimensional hyperbolic space, and T 1Hn the unit sphere bundle of Hn,
endowed with the Sasaki metric.

Proposition 2 For any geodesic γ in T 1Hn, there exist a geodesic σ in
T 1H3 and a totally geodesic isometric immersion φ : H3 → Hn, such that
γ = dφ ◦ σ.
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Let N be a Riemannian manifold and γ : R → N a periodic curve with
period t0. By the length of γ we understand the length of γ restricted to
the interval [0, t0]. Suppose additionally that N is three-dimensional and
oriented and γ is a geodesic. Let T denote the parallel transport from 0 to
t0 along γ. The complex length of γ is the complex number ` + iθ, where ` is
the length and θ is the holonomy of γ, that is, a unique θ ∈ [0, 2π) such that
T = Rot(γ̇ (0) , θ) .

Now, let M be an oriented hyperbolic three-manifold with positive in-
jectivity radius, and H the universal covering of M, that is, the three-
dimensional hyperbolic space of constant curvature −1. From now on in this
section, we will consider only helices which are neither circles nor horocy-
cles, or, equivalently, with τ 6= 0 or κ < 1. Given such a helix h̃ in H, we
will see later that h̃ has an axis, that is, a geodesic E in H such that the

distance d
(
E (t) , h̃ (t)

)
is constant, which is unique in the following sense:

Given an axis E, any other axis is a geodesic at bounded distance from E,
hence, by standard facts in hyperbolic geometry, it must be a speed preserv-
ing reparametrization of E. The horospherical radius of a helix in H is the
distance from the helix to its axis, measured on the horosphere perpendicular
to the latter.

An axis of a helix h in M is defined to be the projection to M of an axis of
any lift of h to H. By definition, a helix in M has the horospherical radius of
any of its lifts to H, and the axis of a periodic geodesic is the geodesic itself.
We will see that the axis of a periodic helix in M is periodic. A periodic helix
in M is said to be of type (` + iθ, p/q) ∈ C ×Q with (p, q) = 1 and q > 0
if, roughly, the axis has complex length ` + iθ, and the helix turns p times
around the axis while this runs q times its period (see the precise definition
after Lemma 8). Notice that because of the holonomy of γ, if p = 0 and
q = 1, then the torsion of γ is not necessarily zero.

Theorem 3 below describes explicitly a broad class of periodic geodesics in
T 1M, which will turn out to be exactly those which are not free homotopic to
a constant. In particular, given a periodic helix h in M with τ 6= 0 or κ < 1,
the closing condition on a geodesic (h, v) in T 1M is given in terms of the
horospherical radius of h and the complex length of its axis. Given θ ∈ [0, 2π)
and coprime integers p, q, with q > 0, we denote ξ = ξ (p, q, θ) = 2πp/q − θ,
which may be interpreted as the angle rotated by a helix of type (` + iθ, p/q)
around its axis in one turn of the latter.

Theorem 3 Let (h, v) be a geodesic in T 1M.
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(a) If h is a unit speed geodesic γ and v = ±γ̇, then (γ, v) is periodic if
and only if γ is periodic. In this case, the length of (h, v) coincides with the
length of γ.

(b) If h is a unit speed geodesic γ and v is not a multiple of γ̇, then (h, v)
is periodic if and only if γ is periodic, say of complex length `+ iθ, and there
exist coprime integers p and q, with q > 0, such that

v (t) = Rot (γ̇ (t) , ξt/`) v0 (t) ,

where v0 is the parallel transport of v (0) along γ and ξ 〈v (0) , γ̇ (0)〉 = 0. In
this case, the length of (γ, v) is q

√
`2 + ξ2.

(c) If h is a helix with τ 6= 0 or κ < 1, then (h, v) is periodic if and only if
h is periodic, say of type (` + iθ, p/q), and the horospherical radius r satisfies

r2
(
`2 + ξ2

)
= (m/n)2 π2 − ξ2 (1)

for some positive coprime integers m,n with πm/n > |ξ|. In this case, the
length of (h, v) is given by

lcm (q, n)

√
2 (πm/n)2 + `2 − ξ2. (2)

Let N be a Riemannian manifold. The primitive length spectrum of N is
a function mN : R → N ∪ {0,∞} defined as follows: mN (`) is the number
of free homotopy classes containing a periodic geodesic of length `. If N
is a compact manifold of negative sectional curvature, then the support of
mN consists of a discrete sequence 0 < `1 < `2 < . . . (the lengths) and
mN (`) < ∞ is the multiplicity of `.

Suppose now that N is oriented and has dimension three. The primitive
complex length spectrum of N is a function cmN : C → N ∪ {0,∞} defined
as follows: cmN (` + iθ) is the number of free homotopy classes containing a
periodic geodesic of complex length ` + iθ. This definition is due to Reid [7]
(see also [6]). Notice that cmN (` + iθ) = 0 if θ /∈ [0, 2π). Let M be a compact
oriented hyperbolic three-manifold. In Theorem 4 below we compute explic-
itly the primitive length spectrum of T 1M in terms of the primitive complex
length spectrum of M. The two-dimensional situation has been studied in
[8], where the primitive complex length spectrum was denoted by pcm, as
well as in [9].
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Theorem 3 provides an explicit description of the set of all lengths of
periodic geodesics in T 1M whose projection to M is a periodic helix or a
periodic geodesic with axis of complex length ` + iθ. We denote this set by
L (` + iθ) (⊂ R).

Theorem 4 If M is a compact oriented hyperbolic manifold of dimension
three, then

mT 1M = mT 1H +
∑

`+iθ∈C

cmM (` + iθ)XL(`+iθ), (3)

where H is the hyperbolic space and XL(`+iθ) is the characteristic function of
the set L (` + iθ) .

Moreover, mT 1H is the characteristic function of its support, which co-
incides with the primitive weak length spectrum of T 1H (H denoting the
hyperbolic plane).

Corollary 5 If two compact oriented three-dimensional hyperbolic manifolds
are complex length isospectral, then their tangent sphere bundles are length
isospectral, even if the manifolds are not isometric.

Remarks. (a) The primitive weak length spectrum of T 1H has been com-
puted in Theorem 1.3 of [8].

(b) By [11] there exist strongly Laplace isospectral compact hyperbolic
three-manifolds which are not isometric. They can be shown to be complex
length isospectral, basically by the proof of Theorem A in [4] (see also [9]).

(c) Corollary 5 follows essentially also from Proposition 1.3 in [4], via the
relationship studied in [9] between cmM and the number of π1 (M)-conjugacy
classes contained in a given conjugacy class of orientation preserving isome-
tries of H.

We would like to thank the referee for making us aware of Proposition 2.

2 Geodesics in the tangent sphere bundle of

the hyperbolic space

For the three-dimensional hyperbolic space we will use the model of the upper
half space H = {(x1, x2, x3) ∈ R3 | x3 > 0} with the metric gij (x1, x2, x3) =
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δij/x
2
3. The boundary ∂H at infinity of H consists of the plane x3 = 0 and

of ∞. As usual we identify ∂H with the Riemann sphere C∪{∞}. The
identity component of the isometry group of H, which coincides with the
group of orientation preserving isometries of H, can be identified with the
group G = PSL (2,C), acting on H by extending continuously the canonical
action of G on ∂H as Möbius transformations (see [1]). The extensions to H
of the Möbius transformations z 7→ z + 1 and z 7→ kz (1 6= k ∈ C) are given
by p (z, t) = (z + 1, t) and gk (z, t) = (kz, |k| t) , respectively. Each isometry
g 6= e in G is either parabolic, elliptic or loxodromic (g is conjugate to p,
to gk with |k| = 1, k 6= 1, or to gk with |k| 6= 1, respectively). Only elliptic
isometries or the identity fix a point in H. Each loxodromic g translates a
unique (up to parametrization) geodesic γ (i.e., gγ (t) = γ (t + t0) for all t
and some t0 ∈ R). G acts simply transitively on the positive orthonormal
frame bundle of H.

Let N be a Riemannian manifold and π : T 1N → N the tangent sphere
bundle of N. Consider on T 1N the canonical (Sasaki) Riemannian metric,
defined as follows: Given v ∈ T 1N and η ∈ TvT

1N ,

‖η‖2 = ‖dπv (η)‖2
p + ‖Kv (η)‖2

p ,

where p = π (v) and Kv : TvT
1N → TpN is the connection operator. Recall

that Kv (η) = DV/dt (0), where V is any curve in T 1N such that V (0) = v
and V ′ (0) = η. A vector v ∈ T 1N with π (v) = p will be often denoted by
(p, v).

Helices in three-dimesional hyperbolic manifolds.

We recall the definition of curvature and torsion of a curve in a three-
dimensional manifold M. Let β be a unit speed curve in M. Given a vector
field v along β, let v′ denote the covariant derivative of v along β. We denote
T (t) = β̇ (t) and κ (t) = ‖T ′ (t)‖, the curvature of β at t. If κ (t) > 0 for all
t, we have vector fields N = T ′/κ and B = T ×N . The orthonormal positive
frame {T, N, B} along β satisfies the following Frenet-Serret formula

T ′ = κN, N ′ = −κT − τB, B′ = τN , (4)

where τ (t) = 〈B′ (t) , N (t)〉 is the torsion of β at t. A helix in M is a
smooth curve with constant speed, constant positive curvature κ and con-
stant torsion τ. Recall that in the introduction we define the writhe of h by
ρ =

√
κ2 + τ 2.
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Given a helix h, the vector field U = (τ/ρ) T − (κ/ρ) B is called the
infinitesimal axis of h and satisfies U ′ = 0. U spans the unique direction
which is parallel and appears constant with respect to the Frenet frames
{T, N,B} along h. The Euclidean analogue has the direction of the axis.
However, due to the nonvanishing holonomy of the ambient space, we have,
for example, for a helix with τ = 0 and κ < 1, that the parallel transport
of U along a shortest geodesic segment joining the helix with its axis, is
perpendicular to the latter.

Proof of Proposition 1.
The proposition is essentially a special case of Theorems C and D of [5] and
we refer to their proofs. Note that we may assume that (p, v) has unit speed.
Only two remarks are necessary:

a) (referring to (2.2) of [5]) Let p be a curve in H with constant speed λ
and constant curvature κ > 0. Suppose that {T,N, B} is the Frenet frame
along p, and let τ denote the torsion of p. Then clearly ∇ṗṗ = λ2κN , and
moreover, setting c =

√
1− λ2, one has

N ′′ = −c2N if and only if τ is constant and c2 = ρ2λ2.

Indeed,

N ′′ = (N ′)′ = −λ (κT + τB)′ =

= −λ2 (κT ′ + τ̇B + τB′) = −λ2
((

κ2 + τ 2
)
N + τ̇B

)
,

where the prime denotes covariant differentiation along p and we have used
Frenet-Serret formula (4) adapted to the case when the curve has speed λ.

b) Similar arguments show that e1, e2 defined in (ii*-3) of [5] satisfy e1 ×
e2 = U . ¤

Proof of Proposition 2.
Let G be the identity component of the isometry group of Hn, which acts
transitively on T 1Hn, with isotropy group L isomorphic to SO (n− 1), con-
tained in some maximal compact subgroup K of G. We identify as usual
Hn = G/K and T 1Hn = G/L. Let g and k be the Lie algebras of G and K,
respectively. Let g = k ⊕ p be a Cartan decomposition and B the Killing
form of g. One can show that there exist positive constants αh and αv such
that the canonical projection

π̃ : G → T 1Hn (5)
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is a Riemannian submersion, provided that G is endowed with the left-
invariant metric 〈, 〉 such that 〈X + Z, X + Z〉 = αhB (X,X) − αvB (Z,Z)
for any X ∈ p and Z ∈ k. Now, G ×K acts on G on the left by isometries
via (g0, k0) g = g0gk−1

0 . By [3], the metric given on G is naturally reductive
with respect to G×K and the decomposition g× k = ∆ (k)⊕ s, where ∆ (k)
is the diagonal in k ⊕ k and s = {(X + βhZ, βvZ) | X ∈ p, Z ∈ k} for some
βh, βv ∈ R. It is well-known that the geodesics in G = (G×K) /∆ (K)
through the identity have then the form t 7→ (exp tU) ∆ (K), with U ∈ s.

Let γ be a geodesic in T 1Hn. We may assume without loss of generality
that γ is the projection of a horizontal (with respect to the submersion (5))
geodesic in G through the identity. Hence,

γ (t) = exp (t (X + βhZ)) exp (−tβvZ) L

for some X ∈ p, Z ∈ t, where t is the orthogonal complement in k of the Lie
algebra of L.

If one considers for Hn the model {x ∈ Rn+1 | (x, x) = −1}, where (x, x)
= −x2

0 +
∑n

i=1 x2
i , then G = SOo (n, 1) . Take

K =

{(
1 0
0 A

)
| A ∈ SO (n)

}
, L =

{(
I2 0
0 A

)
| A ∈ SO (n− 1)

}
,

where I2 is the (2× 2)-identity matrix. Let Ḡ = SOo (3, 1) and K̄ ∼= SO (3)
as above, and consider the canonical immersion ι : Ḡ → G given by

ι (A) =

(
A 0
0 In−3

)
.

Now, given X ∈ p and Z ∈ t, there exists g ∈ L such that Ad (g) X ∈
p ∩ u and Ad (g) Z ∈ t ∩ u, where u = dι (soo (3, 1)). Finally, one can check
that φ : Ḡ/K̄ → G/K defined by φ

(
hK̄

)
= g−1ι (h) K has the required

properties. ¤

Lemma 6 (a) Let r > 0, c ≥ 0 and b be real numbers. The curve

p(t) = ect(r cos(bt), r sin(bt), 1) (6)

in H is the orbit of a one-parameter group of isometries of H. It has unit
speed if and only if (c2+b2)r2+c2 = 1. In this case, p is a helix with curvature
and torsion satisfying κ2 = (1− c2) (1 + b2) and |τ | = |b| c. In particular,

ρ2 = 1 + b2 − c2. (7)
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If additionally τ 6= 0 or κ < 1, then E (t) = (0, 0, ect) is an axis of p and the
horospherical radius of p is r.

(b) Any helix in H with (κ, τ) 6= (1, 0) is congruent to p for suitable
constants r > 0, c ≥ 0 and b.

(c) Let h be a helix in H with τ 6= 0 or κ < 1. Then there exists a unique
one-parameter subgroup φt of the isometries of H, such that h is the orbit
of φt through h (0). Moreover, any axis of h is the orbit of φt through some
point of H.

bf Proof.(a) p (t) may be written as gk(t) (r, 0, 1), with k (t) = e(c+ib)t. Hence,
it has constant speed, curvature and torsion. Assuming that p has unit speed,
one obtains easily that

(c2 + b2)r2 + c2 = 1. (8)

The vector fields Zi = x3 (∂/∂xi) (i = 1, 2, 3) define at each point an or-
thonormal basis and satisfy ∇Zi

Zi = Z3 and ∇Zi
Z3 = −Zi for i = 1, 2

(otherwise ∇Zj
Zk = 0). Now, straightforward computations yield

ṗ′ (t) = r
(
b2 + c2

)
(− cos (bt) Z1 − sin (bt) Z2 + rZ3)

and
N ′ (0) = − (

cr2Z1 + b
(
1 + r2

)
Z2 + crZ3

)
/
√

1 + r2.

After substitution with the value of r obtained from (8), one has that κ2 is as
stated and ρ2 = ‖N ′ (0)‖2 = 1 + b2− c2 by Frenet-Serret formula (4). Hence,
τ 2 = ρ2−κ2 = b2c2. The assertion referring to the axis can be easily checked.

(b) One verifies that for any (κ, τ) 6= (1, 0) there exists a helix as in (6)
with those curvature and torsion (notice that if one replaces b by −b in (6),
one obtains a curve with the same curvature and opposite torsion). The
assertion follows now from the Fundamental Theorem of Curves.

(c) By the preceding argument, given h with τ 6= 0 or κ < 1, there exist
a helix p of the form (6) and g ∈ G such that gp = h. Hence, h (t) = φth (0)
with φt = ggk(t)g

−1. Now, κ > 0 and (dφt)0 maps the Frenet frame of h at
0 to the corresponding frame at t, for all t in a neighborhood of 0. Thus,
the subgroup φt is uniquely determined, since G acts simply on the positive
orthonormal frame bundle of H. Clearly, φt (g (0, 0, 1)) is an axis of h. ¤
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3 Periodic geodesics in T 1 (Γ\H)

Let M be an oriented hyperbolic manifold of dimension three. The Rieman-
nian universal covering of M is isometric to H. The fundamental group Γ
of M acts freely and properly discontinuously on H, and we may identify
M with Γ\H. The notion of the axis of a helix h in Γ\H given in the in-
troduction is well-defined, since if h1 and h2 are two lifts of h with axes
E1 and E2, respectively, then there exists an isometry g ∈ Γ such that
g ◦ h1 = h2. Hence, g ◦ E1 (t) = E2 (t + t0) for some t0 ∈ R. Therefore,
π ◦ E2 (t + t0) = π ◦ g ◦ E1 (t) = π ◦ E1 (t).

Clearly, the projection to M of a periodic geodesic in T 1M is periodic.
We first study conditions for a helix in M to be periodic.

Lemma 7 If M has positive injectivity radius and h is a periodic helix in
M, then (κ, τ) 6= (1, 0).

bf Proof. Let h be a helix in M with (κ, τ) = (1, 0) . By conjugation of Γ
in G, we may suppose without loss of generality that h lifts to the horocycle
h̃ (t) = (t, 0, 1) in H. If h is periodic, there exists g ∈ Γ translating h̃ by a
certain positive number a. In particular, dg takes the Frenet frame at t = 0
to the corresponding frame at t = a. Now, the parabolic isometry g1 (z, t) =
(z + a, t) acts in this manner. Hence, g = g1. This is a contradiction, since the
fundamental group of a hyperbolic manifold with positive injectivity radius
is known to have no parabolic isometries. ¤

The following Lemma characterizes those periodic helices in M which will
turn out to be not free homotopic to a constant, if M has positive injectivity
radius, and leads to the precise definition of a helix of type (` + iθ, p/q) .

Lemma 8 Let h̃ be a helix in H with τ 6= 0 or κ < 1. Fix an axis E of h̃,
and let φt be the one-parameter subgroup of isometries referred to in Lemma
6 (c).

(a) If T0,t denotes the parallel transport along E between 0 and t, then

(T0,t)
−1 ◦ (dφt)E(0)

defines a one-parameter group of rotations of the plane normal to Ė (0). Con-

sequently, it may be written as Rot
(
Ė (0) , αt

)
for some α ∈ R (independent

of the parametrization of E).
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(b) If the projection h of h̃ to M is periodic, then the projection γ of E
is periodic. Let T0 be the period of h and suppose that γ has period T and
holonomy θ. Then there exist unique q ∈ N and p ∈ Z such that

qT = T0 and αT0 + qθ = 2πp. (9)

Moreover, p and q are coprime.
(c) Suppose additionally that h has unit speed and that a lift of h to H is

congruent to the helix in standard position given in (6). Let ` be the length
of the axis of h and denote as before ξ = 2πp/q − θ. Then we have

b2`2 = c2ξ2. (10)

Definition. A periodic helix h in M is said to be of type (` + iθ, p/q) if its
axis has complex length ` + iθ, and p, q are as in (9).

Proof of the Lemma. The validity of (a) is easy to check.
(b) By Lemma 6 (c), h̃ (t) = φth̃ (0) for some one-parameter group of

isometries of H. If h is periodic with period T0, there exists g ∈ Γ such that
gh̃ (t) = h̃ (t + T0) for all t. Hence (dg)h̃(0) maps the Frenet frame of h̃ at 0
to the corresponding frame at T0, as (dφT0)h̃(0) does. Thus, φT0 = g ∈ Γ and

γ (t + T0) = Γφt+T0E (0) = ΓφT0φtE (0) = γ (t)

for all t. Suppose γ has period T and holonomy θ. Existence and uniqueness
of q as required are clear. There is g1 ∈ Γ such that g1E (t) = E (t + T )
for all t. Hence, gq

1E (t) = E (t + qT ) = E (t + T0) = gE (t) and g−1gq
1 fixes

E (0). Consequently, g = gq
1, since Γ has no elliptic elements. Let T and T̃

denote the parallel transport along γ and E, respectively. Let ũ ∈ TE(0)H
and u = (dπ) ũ. We then have

(dπ) Rot
(
Ė (0) , θ

)
ũ = Rot (γ̇ (0) , θ) u =

= T0,T (u) = (dπ) T̃0,T ũ = (dπ)
(
dg−1

1

) T̃0,T ũ.

Hence, (dg1)E(0) =
(
T̃0,T

)
Rot

(
Ė (0) ,−θ

)
. Taking the qth-power and using

(a), we obtain

Rot
(
Ė (0) ,−qθ

)
= T̃qT,0 (dg1)

q
E(0) = T̃T0,0 (dφT0)E(0) = Rot

(
Ė (0) , αT0

)
.
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Therefore, αT0 + qθ = 2πp for some p ∈ Z.
Next, we show that p and q are coprime. Denote q′ = q/(p, q) ∈ N and

T ′
0 = q′T ≤ T0. Now, divide the second equation of (9) by (p, q) and obtain

that αT ′
0 + q′θ is an integral multiple of 2π. Hence,

(
dφT ′0

)
E(0)

= T̃0,T ′0 Rot
(
Ė (0) , αT ′

0

)
= T̃0,T ′0 Rot

(
Ė (0) ,−q′θ

)
= (dg1)

q′
E(0) .

Thus, φT ′0 = gq′
1 ∈ Γ and h (t + T ′

0) = h (t) for all t. Therefore, T ′
0 ≥ T0 and

(p, q) = 1.
The last assertion (c) follows from the fact that for the helix p in standard

position clearly α = b and ` = cT hold, since
∥∥∥Ė

∥∥∥ = c. ¤

Lemma 9 Let h be a periodic unit speed helix in M with τ 6= 0 or κ < 1 and
with axis of period T . Then h is the projection to M of a periodic geodesic
in T 1M if and only if ρT ∈ πQ.

bf Proof. Let (h, v) be a periodic geodesic in T 1M. By Proposition 1 (c),
v (t) = Rot(U (t) , ρt) v0 (t) . Now, the Frenet-Serret formula implies that
N ′ = −ρU × N . Hence, N (t) = Rot(U (t) ,−ρt) N0 (t) , where N0 (t) is the
parallel transport of N (0) along h. If t0 satisfies N (0) = Rot(U (0) , t0) v (0) ,
then

v (t) = Rot (U (t) , 2ρt− t0) N (t) . (11)

Since (h, v) is periodic, there exists k ∈ N such that v (t + kT ) = v (t)
for all t, where k is a multiple of q (qT being the period of h). Hence,
N (kT ) = N (0) . Therefore, by (11), 2kρT = 2k′π for some k′ ∈ Z, which
implies that ρT ∈ πQ.

Conversely, let k and k′ be positive integers such that kρT = k′π. Suppose
that the period of h is qT and define v (t) = Rot(U (t) , ρt) v0 (t) for some v (0)
orthogonal to U (0) . By Proposition 1, (h, v) is a geodesic in T 1M . Setting
T1 = 2kqT and using the same arguments as in the previous paragraph, one
has that h (t + T1) = h (t) and v (t + T1) = v (t) for all t. This implies that
(h, v) is periodic. ¤

Proof of Theorem 3.
The first assertion (a) is immediate.
(b) Let us suppose that (γ, v) is periodic and that v is not a multiple of

γ̇. It is clear that γ is also periodic, say of complex length ` + iθ. Let q ∈ N
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be the smallest positive integer such that v (t) = v (t + q`) for all t. If v
is parallel along γ, we have by definition of holonomy that v (`) = v0 (`) =
Rot(γ̇ (0) , θ) v (0) . Hence, v (0) = v (q`) = Rot(γ̇ (0) , qθ) v (0) . Since v is not
a multiple of γ̇, we have that qθ = 2πp for some p ∈ Z and, therefore, ξ = 0.
The length of (γ, v) is in this case q` = q

√
`2 + ξ2, as stated.

If v is not parallel along γ, we have by Proposition 1 that 〈v (0) , γ̇ (0)〉 = 0
and v (t) = Rot(γ̇ (t) , ct) v0 (t) for all t and some constant c 6= 0. By definition
of holonomy, taking the qth-power, we obtain v0 (q`) = Rot(γ̇ (q`) , qθ) v (0) .
Since γ̇ (q`) = γ̇ (0) , it follows that

v (0) = v (q`) = Rot (γ̇ (0) , cq`) Rot (γ̇ (0) , qθ) v (0) =

= Rot (γ̇ (0) , cq` + qθ) v (0) .

Consequently, c = ξ/` for some p ∈ Z (in particular ξ 6= 0). In this case,
the length of (γ, v) is as stated, since by definition of the Sasaki metric,
‖γ̇ (t)‖2 + ‖v′ (t)‖2 = 1 + ξ2/`2 for all t.

The converses follow from the same arguments.

(c) Let (h, v) be a geodesic in T 1M . We may suppose that h has unit
speed and lifts to a helix congruent to the one given in (6).

Let us suppose that (h, v) is periodic. Clearly, h is periodic, say of type
(` + iθ, p/q), and let T be the period of its axis. By Lemma 9, there exist
coprime positive integers m,n such that nρT = mπ. As before, we write
ξ = 2πp/q − θ. Straightforward computations using (7), (8) and (10) then
yield

T 2 = (`/c)2 = (`2 + ξ2) r2 + `2,

(ρT )2 = (ρ`/c)2 = (`2 + ξ2) r2 + ξ2.

(12)

Now, (1) follows from mπ/n = ρT and, clearly, mπ/n > |ξ| holds.
Conversely, let h be a helix of type (` + iθ, p/q) and horospherical radius

r given by (1), with mπ/n > |ξ| . We have

ρT =
√

(`2 + ξ2) r2 + ξ2 = mπ/n ∈ πQ.

By Lemma 9, h is the projection to M of a periodic geodesic in T 1M .
Next, we compute the length L of the geodesic (h, v). By definition of the

Sasaki metric, we have ||d/dt (h, v) ||2 = ||ḣ (t) ||2 + ||v′ (t) ||2 = 1+ρ2. By the
proof of Lemma 9, the period of (h, v) is lcm (q, n) T , where lcm (q, n) is the
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least common multiple of q and n. Hence, L = lcm (q, n) T
√

1 + ρ2. Sum-
ming the expressions in (12), one obtains T 2 (1 + ρ2) = (2r2 + 1) (`2 + ξ2) .
Finally, substitution with the value of r yields (2). ¤

4 Free homotopy

Let N be a smooth manifold. A smooth closed (or briefly a closed) curve
γ in N is a smooth function γ : [0, a] → N such that γ (0) = γ (a) and
γ̇ (a) = γ̇ (0). If γ is not constant, it extends uniquely to a periodic curve
in N defined on the whole real line, with period t0 satisfying that a is an
integral multiple of t0. γ is said to be primitive if a = t0. Notice that the
concepts of being closed and periodic are not equivalent; they differ in the
domain of the curve.

Two closed curves γi : [0, ai] → N (i = 0, 1) are said to be free homotopic
if there is a continuous map h : [0, 1] × [0, 1] → N such that h (t, i) is an
increasing reparametrization of γi for i = 0, 1, and h (0, s) = h (1, s) for all s.
Free homotopy is an equivalence relation. By convention, the free homotopy
class of a periodic curve γ : R → N with period a > 0 is understood to be
the class of γ|[0,a] . If N is Riemannian, clearly the length of a closed curve
is an integral multiple of the length of its periodic extension.

Let Ñ denote the universal covering of N, let Γ = π1 (N) be the group
of deck transformations of N , and let conj denote conjugation in Γ. The
following proposition is well-known.

Proposition 10 The map F : {free homotopy classes in N} → Γ/conj given
by F [γ] = [g] if γ̃ (a) = gγ̃ (0) with g ∈ Γ, where γ̃ is a lift of γ to Ñ of the
closed curve γ defined on the interval [0, a], is a well-defined bijection.

Suppose now that M is a compact oriented hyperbolic manifold of dimen-
sion three. In this case, each free homotopy class of M is known to contain
a unique (up to reparametrization) closed geodesic. Let π : T 1M → M be
the canonical projection, and let π∗ denote the induced map from the free
homotopy classes of T 1M to those of M, defined by π∗ ([γ]) = [π ◦ γ]. Since
H and T 1H are the universal coverings of M and T 1M, respectively, and
these manifolds have the same group Γ of deck transformations, commuting
with the canonical projections, we have that π∗ is a bijection.
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Proposition 11 Let (c, v) be a closed geodesic in T 1M .
(a) (c, v) is free homotopic to a constant ⇐⇒ c is a point or a circle

⇐⇒ (c, v) is the projection of a closed geodesic in T 1H.
(b) If (c, v) is not free homotopic to a constant, then c is a helix or a

geodesic with axis E, which is a closed geodesic defined on the same interval
as c satisfying π∗ [(c, v)] = [E] .

bf Proof. Suppose that (c, v) is defined on the interval [0, L], and let (C, V )
be a lift to T 1H of the periodic extension of (c, v). There exists e 6= g ∈ Γ
such that gV (t) = V (t + L) (in particular, gC (t) = C (t + L)) for all t ∈ R.

If c is not a helix with axis, then either c is constant (hence (C, V )|[0,L]

is clearly closed and free homotopic to a constant) or c has torsion τ = 0
and constant curvature κ > 1 (the case (κ, τ) = (1, 0) is excluded by Lemma
7). Now, C has also constant τ = 0 and κ > 1. Hence its image is a circle,
with certain center p, in a totally geodesic hypersurface of H. Clearly (dg)C(0)

maps the Frenet frame of C at t = 0 to the corresponding frame at t = L. On
the other hand, there exists an isometry h of H which fixes p and acts as g on
those frames. Hence, g = h = e (Γ has no elliptic elements). Consequently,
V (t) = V (t + L) for all t and (C, V )|[0,L] is closed in T 1H. Thus, (c, v) is

free homotopic to a constant, since T 1H is simply connected.
If C is a helix with axis Ẽ, by Lemma 8 (b), gẼ (t) = Ẽ (t + L) for all t.

Hence,
FT 1M [(c, v)] = [g] = FM [E] ,

where FN denotes the bijection referred to in Proposition 10. Since π∗ is a
bijection, we have that π∗ [(c, v)] = [E] and (c, v) is not free homotopic to a
constant. ¤

Proof of Theorem 4.
Let L ∈ R and suppose mT 1M (L) = k. Let γ1, ...., γk be periodic geodesics
in T 1M of length L such that [γ1] , . . . , [γk] are the distinct free homotopy
classes in T 1M , each of which contains a periodic geodesic of length L. By
Proposition 11 we may assume that the trivial class is not one of the k
preceding classes. By the same proposition, for j = 1, . . . , k, one has that
π ◦ γj is a helix with certain axis Ej, which is a periodic geodesic in M , say
of complex length `j + iθj.

Suppose now that XL(`+iθ) (L) 6= 0. There exists a periodic geodesic γ in
T 1M of length L such that the axis E of π◦γ has complex length `+iθ. Then
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γ belongs to the class [γj] for some j. By Proposition 11, π∗ [γj] =
[
Ej|[0,tj ]

]
,

where tj is the period of γj. Hence, [E] = [Ej] and ` + iθ = `j + iθj. Notice
that since M has negative curvature, there exists basically only one closed
geodesic in each free homotopy class of M ; moreover, given σn ∈ π1 (M) with
m ∈ N and σ ∈ π1 (M) primitive, σ is uniquely determined. Consequently,
the sum over C in the right hand side of equation (3) is actually the (finite)
sum, allowing repeated terms, of the numbers cmM (`j, θj), with j = 1, . . . , k.
It remains only to check that this sum equals k. It is enough to show that if
` + iθ appears n times in {(`j + iθj) | j = 1, ...., k}, then cmM (` + iθ) = n.
Reordering if necessary, we may suppose that E1, ....., En are the geodesics
of complex length ` + iθ. Since these are not free homotopic to each other,
we have that cmM (` + iθ) ≥ n. Indeed, equality holds, since if there existed
another periodic geodesic E in M , distinct from E1, ..., En, of complex length
` + iθ, then by Theorem 3 (c) there would be a periodic geodesic γ in T 1M
of length L projecting to a helix with axis E. As before, γ would belong to
one of the classes [γ1] , ..., [γk], and hence E would be in one of the classes
[E1] , .., [Ek], which is a contradiction.

Next, we prove the last assertion. Since T 1H is simply connected, mT 1H

takes only the values 0 and 1. By Proposition 11 and Proposition 1 (c), if
(c, v) is a closed geodesic in T 1H free homotopic to a constant, then c is a
point or a circle, which is contained in some totally geodesic hyperbolic plane
H in H. One can easily show that if c is a circle, the infinitesimal axis of c is
normal to H. Finally, observe that the induced immersion T 1H ↪→ T 1H is
isometric and totally geodesic. ¤
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