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Abstract

We give another motivation for the two dimensional hyperbolic ge-
ometry, presented through a concrete example of a surface which is not
included in a canonical manner in the Euclidean space: The set of all
nontrivial bounded and closed intervals in the real line, endowed with
a metric which does not discriminate size.

1. Introduction.

An interval on the real line is said to be nontrivial if it has more than one
point. Let us denote

I = {nontrivial bounded and closed intervals of the real line} .

Notice that I is not a subset on a Euclidean space (although its elements, the
intervals, are so). We ask ourselves about how to define a notion of distance
and of best path joining two elements of I. The first answer which comes into
our mind is the following: For x < y and x′ < y′ we can take

dist ([x, y], [x′, y′]) =

√
(x′ − x)2 + (y′ − y)2,

that is, copying the Euclidean distance from the open set {(x, y) ∈ R2 | x < y}
by means of the obvious bijection. The best path joining these two intervals
is then the curve γ : [0, 1] → I given by γ (t) = [(1− t) x + tx′, (1− t) y + ty′].

∗Partially supported by Conicet, Secyt-UNC, Foncyt and Antorchas.
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Now, this notion of distance may be not the most convenient one if we
consider the nature of the elements of I. In a certain sense, this notion of
distance discriminates the size of the segments. For instance,

dist
([

0, 103
]
,
[
1, 1 + 103

])
=
√

2 = dist
([

0, 10−3
]
,
[
1, 1 + 10−3

])
.

Nevertheless, considering the relative size of the intervals, the first two of
them seem to be much closer from each other than the last two of them are
(let us imagine that we ask the interval [0, 10−3] to move to the position of
[1, 1 + 10−3]; it will seem to it very far away). In other words, they deserve a
notion of distance different from the given above, accounting for this fact. We
will deal with that subject below, after recalling briefly some basic facts about
the hyperbolic plane. For this subject we refer the reader to [1].

2. The hyperbolic plane.

Let H = {(u, v) ∈ R2 | v > 0}. The hyperbolic length of a differentiable curve

γ : [a, b] → H, γ (t) = (u (t) , v (t)), is defined by
∫ b

a
‖γ′ (t)‖ dt, where

‖γ′ (t)‖ = |(u′ (t) , v′ (t))| /v (t) (1)

is the hyperbolic speed of γ at the instant t (here |(x, y)| =
√

x2 + y2 denotes
the Euclidean norm). This is a model for the upper half plane of Lobachevsky-
Poincaré, the classical example of a space where the fifth axiom of Euclid does
not hold: Given a line and a point outside it there exists exactly one line
which does not intersect the first one. By a line in H we understand the image
of a maximal geodesic, that is, a constant speed curve in H defined on the
whole real line which minimizes the (hyperbolic) length between any two of
its points. They are well-known to be the curves obtained by intersecting H
with vertical (Euclidean) straight lines and with circles centered at points on
the horizontal axis.

The importance of the hyperbolic plane stems also from the fact, among
many other things, that it is essentially the unique complete simply connected
surface with constant negative curvature.

3. A metric on I which does not discriminate size.

Recall from the introduction that we look for a notion of distance travelled by
a segment moving (and changing its size as well) in the real line, and in doing
that we want to be fair with the shorter intervals.
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We identify a segment in I by its middle point a and its length `, that is,
we parametrize I via

φ : A =
{
(a, `) ∈ R2 | ` > 0

} → I, φ (a, `) = [a− `/2, a + `/2]. (2)

Let γ (t) = [at− `t/2, at + `t/2] be a curve in I and let α (t) = φ−1 (γ (t)) =
(at, `t) be the corresponding curve in A. Now we see that the hyperbolic speed
(1) of α (or equivalently of γ) at the instant t, that is,

‖α′ (t)‖ = |(a′t, `′t)| /`t,

is appropriate if we do not want to discriminate size, since it relativizes the
Euclidean speed to the size of the interval at the instant t.

In the following examples we observe that, at the infinitesimal level, each
segment of I takes itself as the yardstick to measure the size of the
neighboring segments and the distance from them.

Example 1. If an interval moves to the right s times its own length without
changing size, then its motion will be of s units if we consider the hyperbolic
metric. In fact, for the curve γ (t) = [a − `/2, a + `/2] + t`, with 0 ≤ t ≤ s,
we have that the speed of the associated curve α (t) = (a + t`, `) in H, with
respect to the hyperbolic metric, is

∥∥∥∥
d

dt
(a + t`, `)

∥∥∥∥ = ‖(`, 0)‖(a+t`,`) = |(`, 0)| /` = 1.

Hence the length of γ is
∫ s

0
dt = s. More concretely, a segment of length 1000

which moves 3000 units to the right travels the same distance as a segment
which measures one thousandth and moves three thousandths in the same di-
rection. (By the travelled distance we understand the length of the trajectory,
which may be larger than the distance between the end points.)

Example 2. Let γ be the curve in I defined by γ (t) = [−et, et] and let
α (t) = (0, 2et) be the associated curve in H. We have that the Euclidean
speed at the instant t, |α′ (t)| = |(0, 2et)| = 2et, coincides with the size of the
interval at t. Since the segment perceives itself as being the yardstick at any
time, we are not surprised that γ has constant (hyperbolic) speed equal to
one: ‖α′ (t)‖ = |(0, 2et)| /2et = 1.

Geodesics in I.

Since the metric we are considering on I is copied through the function φ from
that of the hyperbolic plane, for which the vertical straight lines are trajectories
of geodesics, it turns out that the curve γ of Example 2 is a geodesic in I.
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We also observe, considering the other geodesics of the hyperbolic plane,
that in particular the trajectory of the best path in I joining two segments
of the same length, say `, consists of segments of length larger that `. This
can be explained by noticing that since each segment takes its own length as
the standard to measure travelled distances or changes in its size, a bigger
segment will cover great distances more easily. That is why it is not
convenient for it simply moving to its final position conserving the size con-
stant, as it would be the case for the Euclidean metric on I, but making an
extra effort at the beginning and increase its size as it moves, so it will perceive
distances as shorter compared with its size, and finally, making the effort of
reducing its length as it is approaching its destination.

Isometries of I.

It is well-known that the orientation preserving isometries of the hyperbolic
plane H are the Möbius transformations of the complex plane which preserve
H. Some of them are the mappings fb (z) = z+b and gc (z) = cz, with b, c ∈ R,
c > 0. The corresponding isometries of I, induced by the identification φ,
which we denote with capital letters, are the following. The mapping Fb takes
each segment of I to the segment of equal length with initial point moved in b
units. As we could have expected, after that transformation the segments do
not notice any change when observing around them the neighboring segments.
The same happens for Gc: The sizes of the segments and their relative positions
all change in the same proportion c.

Higher dimensions.

If one considers balls or spheres in Rn, one obtains in the same way models
for the hyperbolic space of dimension n + 1, by identifying the ball or sphere
of center a ∈ Rn and diameter d with the point (a, d) in the upper half space
of Rn+1.
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