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GLOBAL SMOOTH FIBRATIONS OF R3 BY ORIENTED LINES

MARCOS SALVAI

Abstract

A smooth fibration of R3 by oriented lines is given by a smooth unit vector field V on R3 all of whose integral
curves are straight lines. Such a fibration is said to be nondegenerate if dV vanishes only in the direction of V .
Let L be the space of oriented lines of R3 endowed with its canonical pseudo-Riemannian neutral metric. We
characterize the nondegenerate smooth fibrations of R3 by oriented lines as the closed (in the relative topology)
definite connected surfaces in L. In particular, local conditions on L imply the existence of a global fibration.
Besides, for any such fibration the base space is diffeomorphic to the open disc and the directions of the fibers
form an open convex set of the two-sphere. We characterize as well, in a similar way, the smooth (possibly
degenerate) fibrations.

1. Introduction

1.1. Smooth fibrations by oriented geodesics

The smooth (and also the continuous) great circle fibrations of S3 have been characterized
by H. Gluck and F. Warner in [1]. A generalization to the higher odd dimensional case has
been obtained by B. McKay in [3]. A partial generalization to compact Lie groups can be found
in [5]. The natural question of what fibrations of R3 by oriented lines look like seems to have
not been addressed yet, perhaps due to the lack of an appropriate setting for the answer or the
difficulty arising from the fact that the ambient space is not compact.

Let Mκ be a three dimensional simply connected Riemannian manifold of constant sectional
curvature κ. A smooth fibration of Mκ by oriented geodesics is given by a smooth unit vector
field V on Mκ all of whose integral curves, the fibers, are geodesics. The set F of all the fibers
admits a unique differentiable structure such that the canonical projection P : Mκ → F is a
smooth submersion (see e.g. [4, Corollary 4 in p 21], the regularity condition can be checked
easily). Such a fibration is said to be nondegenerate if ∇V vanishes only in the direction of V .
For instance, in the Euclidean case, the trivial fibrations by parallel lines provide the extreme
opposite situation.

The space Gκ of all the oriented complete geodesics of Mκ (up to orientation preserving
reparametrizations) admits a unique differentiable structure such that the canonical projection
T 1Mκ → Gκ is a differentiable submersion (by [4], as above, with the spray as the vector field
giving the fibration). We may think of c ∈ Gκ as the equivalence class of unit speed geodesics
γ : R → Mκ with image c such that {γ̇ (t)} is a positive basis of Tγ(t)c for all t. We denote
by L the space of all the oriented lines of R3, and by C the space of all the oriented great
circles of S3. If ` ∈ L, by abuse of notation we sometimes write z ∈ `, meaning that z is in the
underlying line.

There is a canonical diffeomorphism TS2 → L, (u, v) 7→ (Ru+ v, u), where the unit vector
u is the direction of the oriented line and v (orthogonal to u) is the closest point to the origin.
We identify L with TS2 in this way.
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We recall the characterization of the smooth oriented great circle fibrations of S3 referred to
above. Clearly, C may be thought of as the Grassmann manifold of oriented planes of R4 and
hence identified with S2 × S2.

Theorem A. [1] A smooth surface F included in C ∼= S2 × S2 is the space of fibers of
a smooth fibration of S3 by oriented great circles, if and only if it is the graph of a smooth
strictly distance decreasing function f from one factor S2 of C to the other, with |df | < 1.

Now, if one considers on C = S2 × S2 the pseudo-Riemannian neutral metric whose square
norm at T(u,v)

(
S2 × S2

)
is given by

‖(x, y)‖ = |x|2 − |y|2 (1)

for x ∈ u⊥, y ∈ v⊥ (we denote ‖X‖ = 〈X,X〉), then Theorem A can be restated as follows.

Theorem A′. A smooth surface F included in C ∼= S2 × S2 is the space of fibers of a
smooth fibration of S3 by oriented great circles, if and only if F is a closed definite connected
submanifold of C.

1.2. Fibrations of R3 induced by fibrations of S3

The problem of characterizing the smooth fibrations of R3 by oriented lines is more com-
plicated than the corresponding one for S3. One difference is that, unlike the spherical case,
not every smooth fibration of R3 by oriented lines is nondegenerate. The other difficulty in the
Euclidean case is that the base space is no longer compact. This is perhaps better illustrated
with Proposition 1 below, which asserts that any smooth oriented great circle fibration of S3

induces a smooth fibration of R3 by oriented lines, but the converse does not work, essentially
by two reasons (see also Example 2).

Let S3 be the unit sphere in the quaternions H and let S3
± be the open hemisphere of unit

quaternions with positive (negative) real part. Let

φ : S3
+ → Im H ∼= R3, φ (q) = (q/Re q)− 1,

be the central projection of S3
+ onto the affine hyperplane Re q = 1, followed by the orthogonal

projection onto R3. It is easy to see that φ takes half great circles to lines.
Let S2

0 = S3∩ Im H and let C0 be the subset of C consisting of the oriented great circles
contained in S2

0 . Then φ induces an obvious diffeomorphism Φ : C −C0 → L. One can compute
that Φ−1 (Ru+ v, u) = [σ], where σ (t) = (cos t)u − (sin t) (1 + v) / |1 + v|, if 〈u, v〉 = 0. In
particular, if ` = (u, v) ∈ TS2 = L and Φ−1 (`) = (c,W ) (here W is the orientation of c), then

c ∩ S2
0 = {u,−u} and W (u) = − (1 + v) / |1 + v| ∈ S3

−. (2)

Example 1. Let W± be the unit Hopf vector fields on S3 defined by W+ (q) = iq and
W− (q) = qi, q ∈ S3. Each of the corresponding fibrations F± of S3 contains exactly one
great circle c± in C0: the intersection of S3 with span {j, k} with a suitable orientation. Let
M± = Φ (F± − {c±}) and let V± denote the associated unit vector field on R3 = Im H. Then

M± =
{

(u,± (u× i) / 〈i, u〉) | u ∈ S2, 〈u, i〉 > 0
}
⊂ TS2 = L

and V± restricted to span {j, k} may be expressed as

V±
(
reiθj

)
= i
(
1± reiθj

)
/
√

1 + r2.

Let π : TS2 = L → S2, π (u, v) = u, be the canonical projection. If M⊂ L we call π|M the
Gauss map of M.
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Proposition 1. Let F be the space of fibers of a smooth fibration of S3 by oriented great
circles. Then there exists exactly one c ∈ F ∩C0 andM = Φ (F − {c}) is the space of fibers of
a nondegenerate smooth fibration of R3 by oriented lines with no distinct parallel lines, such
that π (M) is an open hemisphere of S2.

We give the proof of the proposition at the beginning of Section 3.

Example 2. Let α : [0,∞) → R be a smooth function vanishing on [0, 1] and such that
α|(1,∞) is a diffeomorphism onto (0, π/6). Then the imageM of the function F : R2 → TS2 =
L,

F
(
reiθ

)
=
((

sinα (r) ieiθ, cosα (r)
)
,
(
reiθ, 0

))
,

is the base space of a smooth fibration of R3 ∼= C×R which is degenerate, contains distinct paral-
lel lines and π (M) is a cap of S2 smaller than a hemisphere, namely

{
u ∈ S2 | 〈u, (0, 1)〉 > 1/2

}
.

Although in this simple example the details can be worked out directly, Theorem 2 below may
be helpful to verify more easily some of the assertions.

I have learned of the map φ from Vladimir Matveev and Carlos Olmos. I would like to thank
them for that.

1.3. The canonical metric of the space of geodesics of Mκ

Let Mκ and Gκ be as in 1.1. Let γ be a complete unit speed geodesic of Mκ and let Jγ be
the space of the Jacobi fields along γ which are orthogonal to γ. There exists a well-defined
canonical isomorphism

Tγ : Jγ → T[γ]Gκ, Tγ (J) = (d/ds)|0 [γs] , (3)

where γs is any variation of γ by unit speed lines associated with J .
A pseudo-Riemannian metric of signature (2, 2) can be defined on Gκ as follows: For X ∈

T[γ]Gκ, the square norm ‖X‖ = 〈X,X〉 is given by

‖X‖ = 〈γ′ × J, J ′〉 , (4)

where X = Tγ (J), the cross product × is induced by any fixed orientation of Mκ and J ′ denotes
the covariant derivative of J along γ. Notice that ‖X‖ is well defined since 〈γ′ × J, J ′〉′ =
〈γ′ × J ′, J ′〉+ 〈γ′ × J, J ′′〉, which vanishes identically, because J ′′ = Rκ (J, γ′) γ′ is a multiple
of J (here Rκ is the curvature tensor of Mκ). The independence from orientation preserving
reparametrizations of γ is clear.

This gives in fact a smooth metric on Gκ: For κ = 1, under the identification G1 = C ∼= S2×S2,
we have a constant multiple of the metric (1). For κ = 0,−1, it is homothetic to metrics defined
in [2] (see also [6]) and [7], respectively. The metric is invariant by the natural action of the
group of orientation preserving isometries of Mκ.

Another presentation of the metric in the Euclidean case is the following: Under the identi-
fication of L with TS2, for ξ ∈ T(u,v)TS

2 define

‖ξ‖ = ωu (x, y) = 〈x× u, y〉 , (5)

where x, y ∈ u⊥ are the horizontal and vertical components of ξ and ω is one of the volume
forms of S2.

Let V = Ker dπ denote the vertical distribution on TS2 = L. Equivalently, under the
isomorphism (3), V [γ] consists of the constant Jacobi fields in Jγ . A submanifold M of L
is said to be definite (respectively, almost definite) if ‖X‖ = 0 for X ∈ TM only if X = 0
(respectively, X ∈ V).
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2. Smooth fibrations of R3 by oriented lines

Theorem 2. Let M be a surface contained in L ∼= TS2 (the inclusion is a priori not even
smooth). Then the following statements are equivalent:

a) M is the space of fibers of a smooth fibration of R3 by oriented lines, with the induced
differentiable structure.

b) M is a closed (in the relative topology) almost definite connected submanifold of L.

Next we consider the particular and more interesting case of nondegenerate fibrations.

Theorem 3. Let M be a surface contained in L ∼= TS2. Then the following statements
are equivalent.

a)M is the space of fibers of a nondegenerate smooth fibration of R3 by oriented lines, with
the induced differentiable structure.

b) M is a closed (in the relative topology) definite connected submanifold of L.

c)M is the graph of a smooth vector field v defined on an open convex subset U of S2 such
that (∇v)u has no real eigenvalues for all u ∈ U and |v (un)| → ∞ if un → u ∈ ∂U as n→∞.

Remark 1. The equivalence of (a) and (b) is an analogue of Theorem A′ above.

Corollary 4. The Gauss map of a nondegenerate smooth fibration of R3 by oriented
lines is a diffeomorphism onto it image, which is a convex open subset of S2.

The following remark illustrates the interplay between local and global.

Remark 2. If the condition that M is closed is dropped in (b), then M does not give
necessarily a fibration of an open set of R3 by oriented lines. For example, let ε > 0 and let

f : (ε, 1)× (−ε, 2π)→ TS2 = L, f (r, θ) =
(
V+

(
reiθj

)
, reiθj

)
,

where V+ was defined in Example 1 (notice that if v ∈ span {j, k}, then V+ (v) ⊥ v). One
can perturb f on (ε, 1) × (−ε, 0) in such a way that the perturbed map is a definite injective
immersion. Then its imageM is a definite connected surface of L which does not give a global
fibration of the open set of R3 defined as the union of all the lines in M, since some of these
will intersect.

Remark 3. A smoothly embedded surface in L consisting of disjoint oriented lines covering
the whole R3 is not necessarily the base space of a smooth fibration of R3 by oriented lines.
Such a phenomenon is known to happen in the spherical case [1] and it can be passed to the
Euclidean one via Φ.

3. Proofs of the theorems

We call ψ : R3 → S3
+ and Ψ : L → C − C0 the inverse functions of φ,Φ defined in 1.2,

respectively.

Proof of Proposition 1. Let W be the unit vector field on S3 giving the fibration whose
base space is F . The function ReW |S2

0
: S2

0 → R is odd and hence it vanishes on some uo ∈ S2
0 .

Now, the great circle c containing uo with direction W (uo) is initially tangent to S2
0 , and hence

contained in it, since S2
0 is totally geodesic in S3. Thus, ReW vanishes on c. If it vanishes at
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u1 outside c, then a great circle through u1 in S2
0 belongs to F and intersects c (any two

great circles in a two-sphere have nonempty intersection), which is a contradiction, since F is
a fibration. Consequently, c is the only great circle of F contained in C0.

Let V be the normalization of the vector field on R3 which is φ-related with W . Clearly, V is
a smooth unit vector field defined on R3 all of whose integral curves are straight lines, namely,
the ones in M.

On the other hand, by (2), under the natural identification of S2 with S2
0 ,

π (M) =
{
u ∈ S2

0 | u ∈ (c, W |c) ∈ F and W (u) ∈ S3
−
}

. (6)

Therefore, since through each pair of antipodal points in S2
0 passes at most one great circle

of F , M contains no parallel lines. Besides, the arguments above concerning ReW show also
that this function is negative on one connected component of S2

0 − c, say the hemisphere H
(and positive on the other hemisphere). Therefore, by (6), one has that π (M) = H.

Next we show that the fibration with base spaceM is nondegenerate. Suppose that dVz (w) =
0 with w⊥V (z) and let ` be the oriented line in M through z. Let γs (t) = tu+ v + sw, with
v⊥u and let J ≡ w be a constant Jacobi field along γ0. Then ` = [γ0] and X := Tγ0J ∈ T`M.
By (2) we may parametrize σs with [σs] = Ψ [γs] in such a way that σs (0) = u ∈ S2

0
∼= S2 for

all s. Hence, if I is the Jacobi field along σ0 associated with the variation σs and Y = Tσ0I,
then I (0) = (d/ds)|0 σs (0) = 0 and so ‖Y ‖ = 0 by (4). Now, Y = 0 by Theorem A′ and hence
X = dΦ[σ0]Y = 0, which implies that w = 0, as desired.

Notice that if x, y denote the horizontal and vertical components of ξ ∈ T(u,v)TS
2 and (ut, vt)

is a smooth curve in TS2 ⊂ R3×R3 with initial velocity ξ, then x = u′0 and y = v′0−〈v′0, u〉u.
By abuse of notation we write ξ = (x, y).

If M⊂ L = TS2, let D :M→ R be the square distance from the origin, that is, D (u, v) =
|v|2.

Lemma 5. Let M be an almost definite closed connected two dimensional submanifold of
L.

a) For any ` = (u, v) ∈M, the map T`M→ u⊥, (x, y) 7→ y, is surjective.
b) Any critical point ` of D is a strict local minimum of D with D (`) = 0. Moreover,

D (`n)→∞ as n→∞ for any sequence `n in M without cluster points.

Proof. a) If ξ = (x, 0) ∈ T`M, then by (5), ‖ξ‖ = 0 and so ξ ∈ V (u, v), since M is almost
definite. Hence, x = 0 and so ξ = 0. This implies that the linear map T`M→ u⊥, (x, y) 7→ y
is injective and so onto u⊥, since u⊥ and M have the same dimension.

b) Given a critical point ` = (u, v) of D, by (a) there exists x ∈ u⊥ such that ξ = (x, v) ∈
T`M. Let `t = (ut, vt) be a curve in M with initial velocity ξ (in particular, its vertical
component v = v0 equals v′0 − 〈v′0, u〉u). We compute

0 = ξ` (D) = (d/dt)|0 |vt|
2 = 2 〈v0, v

′
0 − 〈v′0, u〉u〉 (7)

= 2 |v|2 = 2D (`) ,

as desired. Next we see that ` is a strict local minimum. Let `t = (ut, vt) be a curve with
nonzero initial velocity (x, y) ∈ T`M. We compute(

d2/dt2
)∣∣

0
D (`t) = 2

(
|v′0|

2 + 〈v0, v
′′
0 〉
)

= 2 |y|2 > 0,

since y 6= 0 as in (a) and v0 = 0 by (7).
Let now `n be a sequence in M. If D (`n) does not diverge to infinity, it has a convergent

subsequence D
(
`nj

)
. Hence, `nj = (uj , vj) is in a compact subset of TS2 = L and so, sinceM
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is closed in L, it has a subsequence converging to some ` ∈ M, which is a cluster point of the
sequence `n.

Proof of Theorem 2. a) ⇒ b) Clearly M is connected. Next we show that the inclusion
i :M→ L is a submanifold. Suppose that the fibration is given by a smooth unit vector field
V on R3. We consider the following diagram

T 1R3 Π−→ L
(id, V ) ↑↓ p ↑ i

R3 P−→ M,

where Π and p are the canonical projections and P is the smooth projection induced by V ,
which makes the diagram commutative. Let ` ∈ M, let z ∈ ` and let A ⊂ R3 be a smooth
surface containing z which is transverse to the fibers and intersects each fiber at most once.
Then, P (A) is an open set inM and s := (P |A)−1 : P (A)→ R3 is a smooth local section, by
definition of the differentiable structure on M. We have that

i|P (A) = i ◦ P ◦ s = Π ◦ (id, V ) ◦ s. (8)

Hence, i is smooth. Let now 0 6= X = dPz (x) ∈ T`M, where x ∈ TzA. We differentiate (8) and
observe that d(i)` (X) 6= 0, since (x, dVz (x)) is transversal to Ker dΠ(z,V (z)) = RV (z)×{0} ⊂
R3 × V (z)⊥ = T(z,V (z))T

1R3. Therefore, d(i)` is one to one.
Here we make a digression and take the opportunity to observe that if the fibration is

additionally nondegenerate, then the Gauss map is a local diffeomorphism (it will be useful in
the proof of Theorem 3). Indeed, locally, π = V ◦s. If X is as above, then dπ (X) = dV (x) 6= 0,
since x is tangent to A, which is transversal to the fibers.

Let us see that M is almost definite. Let X ∈ T[γ]M with ‖X‖ = 0 and let X = Tγ (J). By
(4), J and J ′ are linearly dependent. Hence, either J is constant and so X ∈ V, or there exists
to with J (to) = 0. In this last case, let γs be a variation by oriented lines ofM associated with
J and c (s) = γs (to). We have that c′ (0) = J (to) = 0 and we compute 0 = dVc(0) (c′ (0)) =
(d/ds)|0 V (c (s)) = J ′ (0). Hence J , and so also X, vanishes.

Next we show that M is closed. Let `n = (un, vn) be a sequence in M ⊂ L = TS2 with
limn→∞ `n = ` = (u, v) ∈ TS2. Then un = V (vn) → V (v), by continuity of V . Hence
u = V (v) and ` ∈M.

b) ⇒ a) First we show that the union of all lines in M covers the whole space. By Lemma
5 (b), D attains a minimum, say `o, which is of course a critical point of D. Hence D (`o) = 0
by the same Lemma and so 0 ∈ `o. Now, given z ∈ R3, M− z = {`− z | ` ∈M} has the
same properties ofM given in (b), since translation by −z, which is an orientation preserving
isometry of R3, induces an isometry of L with the canonical metric. Hence a line of M− z
contains 0, or equivalently, z belongs to some line of M.

Next we prove that two distinct lines in M do not intersect. By considering a translation
of M as above, it suffices to show that they do not intersect at 0, or equivalently, that D has
exactly one zero on M.

Let M1 = D−1 [0, 1]. By Lemma 5 (b), M1 is a compact surface with boundary D−1 {1},
which is a one dimensional embedded submanifold, a finite disjoint union of, say, k circles.
Since M is connected, so is M1, by a standard cobordism argument (D has no critical points
on the complement ofM1). Now, consider onM any Riemannian metric. Then, ξ = grad (D)
is a vector field on M1 pointing outwards on ∂M1. Again by Lemma 5 (b), the critical points
of D, which are the zeroes of ξ, are isolated and contained inM1. Since this is compact, there
are finitely many of them, say `i, i = 1, . . . ,m. Since these points are strict local minima for D,
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the index of ξ at any of them is one. If N is the surface obtained by attaching one cap to any
circle of the boundary of M1 and X (N) denotes its Euler characteristic, then, by considering
a vector field on N extending ξ with one zero of index one in each cap, we obtain that

X (N) = k +
m∑
i=1

index (`i) = k +m.

Now, the facts that X (N) ≤ 2 and m, k ≥ 1 imply that X (N) = 0 and m = k = 1. Therefore
N is a sphere, M1 is a closed disc and D has exactly one zero, as desired. Moreover, M is
diffeomorphic to the open disc, since D has no critical points on the complement of M1.

Given z ∈ R3, let V (z) = u, where u is the direction of the unique ` ∈ M such that z ∈ `.
The graph of V coincides with Π−1 (i (M)) and hence it is a a smooth submanifold of T 1R3,
since Π is a fiber bundle. To see that V is smooth we have to verify that zero is the only
vertical (with respect to p) tangent vector η of the graph of V . Suppose that dp(z,V (z)) (η) = 0
and let V ◦ c be a smooth curve in S2 with c′ (0) = 0. Let ` be the curve in M defined by
` (t) = Π (c (t) , V (c (t))) and set `′ (0) = X. Let ` (0) = [γ] with γ (0) = c (0) and X = Tγ (J).
Then J (0) = c′ (0) = 0. Hence ‖X‖ = 0 by (4) and therefore J = constant = J (0) = 0, since
M is almost definite. Hence (V ◦ c)′ (0) = J ′ (0) = 0, which implies together with c′ (0) = 0
that η = 0, as desired.

Lemma 6. LetM be the base space of a nondegenerate smooth fibration of R3 by oriented
lines. Then M contains no distinct parallel lines.

Proof. Suppose that two distinct parallel lines `o and ` belong toM. We identify as above
R3 with Im H. We may assume without loss of generality that `o = [γ], with γ (t) = ti. Let
co = Ψ (`o) = [σ], where σ (t) = cos t+ i sin t.

Let A be an open neighborhood of the origin in span {j, k} not intersecting `. Notice that A
and ψ (A) are open neighborhoods of 0 and 1 in the corresponding totally geodesic submanifolds
orthogonal to γ and σ in R3 and S3, respectively. Suppose that M is given by a smooth
vector field V and let W be the vector field defined on ψ (A) as the normalization of the one
which is ψ-related with V . Let S1 = R/2πZ and let F : ψ (A) × S1 → S3 be defined by
F (z, t) = σW (z) (t), where σX is the geodesic in S3 with initial velocity X. Next we show that
the image of F contains an open solid tube around co. Since co is compact, it suffices to verify
that dF(1,t) (y) 6= 0 for all 0 6= y ∈ T1ψ (A) = T0A and all t ∈ S1.

Let us consider the geodesic variations α (s, t) = γV (sy) (t) and β (s, t) = σW (ψ(sy)) (t) in R3

and S3, orthogonal to γ and σ, respectively. Let I and J be the corresponding Jacobi fields
along γ and σ, which are orthogonal to the curves. Since dψ0 = id and ψ is an affine map at
zero (that is, dψ0 (∇xy)0 = (∇XY )1 for any pair x,X, y, Y of ψ-related vector fields), we have
that J (0) = I (0) = y 6= 0 and J ′ (0) = I ′ (0). Now, if Y = Tγ (I) ∈ T[γ]M were a null vector,
then by Theorem 2 (M is almost definite), we would have 0 = I ′ (0) = dV0 (y), which is a
contradiction, since M is nondegenerate. Therefore, ‖Y ‖ 6= 0 and hence by (4) we have that

0 6= 〈γ′ (0)× I (0) , I ′ (0)〉 = 〈σ′ (0)× J (0) , J ′ (0)〉 = 〈σ′ × J, J ′〉 .

Consequently dF(1,t) (y) = J (t) 6= 0 for all t ∈ S1, as desired. Although we do not need it, it
is worth to mention that the image by φ of a tube around σ is a hyperboloid of revolution of
one sheet with axis γ.

Since `0 and ` have both the same direction i, then Ψ (`) ∩ co = {i,−i}. Therefore ψ (`)
intersects the solid tube around co contained in F

(
ψ (A)× S1

)
at some point of S3

+. This
implies, using φ, that ` intersects some line close to `o in M passing through a point of A,
which is contradiction since M is a fibration.
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Proof of Theorem 3. a) ⇒ c) As a digression in the proof of Theorem 2 we have shown
that the Gauss map π : M → S2 is a local diffeomorphism. Now, by Lemma 6, it is one to
one, hence it is a diffeomorphism onto an open set U of S2 and consequently M ⊂ L = TS2

is given by a smooth vector field v on U .
Next we see that (∇v)u has no real eigenvalues for all u ∈ U . Suppose that ∇xv = λx for

some x ∈ TuS2. Then ξ = (x, λx) ∈ T(u,v(u))M = {(y,∇yv) | y ⊥ u}. Now ‖ξ‖ = 0 by (5) and
so x = 0, since we know from Theorem 2 that M is almost definite.

Let un be a sequence in U converging to u ∈ ∂U . In particular, `n = (un, v (un)) has no
cluster points inM. SinceM is almost definite by Theorem 2, we may apply Lemma 5 (b) and
obtain that D (`n) = |v (un)| → ∞ as n→∞.

Finally, we prove that U is a convex set in S2. For this, we show that any u ∈ ∂U is contained
in a great circle which does not intersect U . Since the Gauss map is injective, if u ∈ U , then
there exists a unique ` ∈ M with π (`) = u and so W (u) is well-defined as the direction of
Φ−1 (`) at u.

Let un = π (`n) be a sequence in U converging to u ∈ ∂U , and let wj be a convergent
subsequence of W (un), with limj→∞ wj = w. Let σw be the parametrized great circle in S3

passing through u with initial velocity w and let cw = [σw]. Now, cw is contained in S2
0 ,

because otherwise Φ (cw) = lim `n ∈M, but this would imply that u ∈ U , since u ∈ cw, which
is a contradiction. On the other hand, if x ∈ cw ∩ U , suppose that x = σw (t) = limσwn

(t).
Also, σ′wn

(t) → σ′w (t). If x ∈ U , then σ′wn
(t) → W (x), which points towards S3

−, which is a
contradiction since σ′w (t) is tangent to S2

0 .

c)⇒ b) ClearlyM is a closed connected submanifold. We show now that it is definite. Given
` ∈ M with direction u, we have that T`M = {(x,∇xv) | x ⊥ u}. By (5), ‖(x,∇xv)‖ vanishes
for x 6= 0 if and only if ∇xv is a multiple of x.

b) ⇒ a) By Theorem 2 we only have to show that the fibration whose base space is M is
nondegenerate. Suppose that dVz (y) = 0, with 〈y, V 〉 = 0, and let c be a curve in R3 with
initial velocity y and let γ (t) = z+ tV (z). Then ` = P ◦ c is a curve inM with `′ (0) = Tγ (J)
where J (0) = y and J ′ (0) = dVz (y) = 0, hence ‖`′ (0)‖ = 0 by (4) and so `′ (0) = 0, since M
is definite. This implies that y = 0.
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