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Abstract

Let E be the Fréchet space of all positively oriented embeddings
of the circle in R2 and let E/∼ be the quotient of E modulo orienta-
tion preserving diffeomorphisms of the circle. Let π : E → E/∼ be the
canonical projection and let C denote the space of all constant speed
circles. We study geodesics in C and π (C) endowed with the Rieman-
nian metrics induced from the canonical weak Riemannian metrics on
E and E/∼, respectively. We also study the holonomy of closed paths
in π (C).
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1. The manifold of embeddings of the circle in the plane

LetM ,N be connected differentiable manifolds. IfM is compact and oriented
and N is Riemannian, then the set E (M,N) of all embeddings of M into N
is a Fréchet manifold [2] which has a canonical weak Riemannian metric,
defined by E. Binz in [1] (see also [4] and the more recent article [3], where
the theory has been significantly enriched), up to a positive constant, as
follows: If f ∈ E (M,N) and u, v ∈ TfE (M,N) (that is, u, v are smooth
vector fields along f), then

〈u, v〉 =
1

2π

∫
M

〈u (x) , v (x)〉 ωf (x) ,

where ωf is the volume element of the Riemannian metric on M induced
by f . Let ∼ be the equivalence relation on E (M,N) defined by γ ∼ σ if
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and only if γ = σ ◦ φ for some orientation preserving diffeomorphism φ of
M. The set E (M,N) /∼ of equivalence classes is a Fréchet manifold with
a weak Riemannian metric in such a way that the associated projection
π : E (M,N) → E (M,N) /∼ is a principal bundle with structure group
Diff+ (M) , and a Riemannian submersion.

In the following we consider M = S1 = Z/ (2πZ) and N = R2. We
denote by E the open subset of E (S1,R2) consisting of positively oriented
embeddings (that is, which have index one with respect to any interior point).
By abuse of notation we will often write x instead of x+ 2πZ.

2. Constant speed circles

A constant speed circle is an element of E of the form γz,w (t) = z + weti

for some z, w ∈ C, w 6= 0. Clearly
∣∣γ′z,w∣∣ ≡ |w| . We denote by C the set of

all constant speed circles. Next we study the geometry of C with the metric
induced from E . We denote C∗ = C− {0} .

Proposition 1 Let go be the canonical Euclidean metric on C × C∗ and
λ : C× C∗ → R, λ (z, w) = |w| . Then the map

F : (C× C∗, λgo)→ C, F (z, w) = γz,w

is a Riemannian isometry.

Proof. For t ∈ R and (ζ, ρ) ∈ C2 = T(z,w) (C× C∗), let

V (t) :=
d

ds

∣∣∣∣
0

F ((z, w) + s (ζ, ρ)) (t) =
d

ds

∣∣∣∣
0

z + sζ + (w + sρ) eit = ζ + ρeti.

Then V ∈ Tγz,wC and ‖V ‖2 = 1
2π

∫ 2π

0
|V (t)|2 |w| dt = |w|

(
|ζ|2 + |ρ|2

)
, since∫ 2π

0
eti dt = 0. �

Proposition 2 The submanifolds of C consisting of concentric circles, cir-
cles with collinear centers, or circles with the same initial angle, are totally
geodesic. More precisely, for any zo ∈ C, θ ∈ R, the following sets are totally
geodesic submanifolds of C:

Czo = {F (zo, w) | w ∈ C∗} (center zo),

C` = {F (zo + two, w) | t ∈ R,w ∈ C∗} (centers on ` = zo + Rwo),

Cθ =
{
F
(
z, reiθ

)
| z ∈ C,r > 0

}
(initial angle θ).
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Proof. First notice that if a ∈ C and A,B are othogonal transformations
of R2 = C, then the diffeomorphism T of C × C∗ given by T (z, w) =
(Az + a,Bw) is an isometry with respect to the metric induced by the iden-
tification with C given by Proposition 1, since T is an Euclidean isometry
preserving |w| .

One can verify easily that the given sets consist of the fixed points of the
isometries Tj (z, w) = (Ljz, w) (j = 1, 2) and T3 (z, w) = (z, L3w) , respec-
tively, where L1, L2, L3 are the reflexions in C with respect to the point zo,
and the lines ` and Reiθ, respectively. �

Remark. For any geodesic path of circles in C, their centers either coincide
or lie in a straight line, since any tangent vector to C is contained in the
tangent space of a submanifold of circles with collinear centers.

2.1 Concentric constant speed circles

We may suppose without loss of generality that the common center of the
circles is 0. We consider on C0 ∼= C∗ the Riemannian metric induced by the
inclusion in C (or equivalently, in E).

Proposition 3 Let ψ : M → C∗ ∼= C0 be the holomorphic function defined

by ψ (α) =
(

3
2
α
)2/3

, where M is the Riemann surface which is the natural
domain of ψ. If M carries the canonical (flat) Riemannian metric, then ψ
is an isometry.

Proof. Let p : R+ × R → C∗, p (r, θ) = reiθ be the Riemannian universal
covering of the pointed euclidean plane, that is, ∂

∂r
(r, θ) and ∂

∂θ
(r, θ) are

orthogonal and have norms 1 and r, respectively. Let ∼ be the equivalence
relation on R+ × R given by (r, θ) ∼ (r, θ + 3kπ) , k ∈ Z. Next we verify

that ψ : M := (R+ × R) /∼ → C∗ given by ψ ([r, θ]) = (3r/2)2/3 ei2θ/3 is
an isometry. Since ψ is clearly a diffeomorphism, we have to show that Ψ =
ψ◦pM is a local isometry, where pM : R+×R→M is the canonical projection.
We compute

ρ := dΨ (∂/∂r) = (∂/∂r) (3r/2)2/3 ei2θ/3 = (3r/2)−1/3 ei2θ/3,

a tangent vector of C∗ at w := Ψ (r, θ) , whose square norm by Proposition 1
is ∣∣wρ2

∣∣ = (3r/2)2/3 (3r/2)(−1/3)2 = 1 =
∣∣∣(∂/∂r)(r,θ)

∣∣∣2 .
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One checks similarly that the square norm of dΨ
(

(∂/∂θ)(r,θ)

)
is r2. �

One can also visualize C0 as the Riemannian double coverig of a standard
cone in Euclidean space, and also as a cone determined by a curve on the
unit sphere, as follows. Let β : R → S2 be a unit speed periodic curve of
length 3π which is injective on [0, 3π). Let S1 and S2 be the cones defined by

S1 =
{

(z, t) ∈ C× R | 9t2 = 7 |z|2 , t > 0
}

,

S2 = {tβ (θ) | t > 0, θ ∈ R} .

Proposition 4 The maps φj : M → Sj (j = 1, 2) defined by

φ1 ([r, θ]) = (r/4)
(

3ei4θ/3,
√

7
)

, φ2 ([r, θ]) = rβ (θ)

are, respectively, a Riemannian double covering and an isometry.

Proof. Since by standard arguments φ1 is a double covering, we only show
that φ1◦pM is a local isometry. Indeed,

∥∥d (φ1 ◦ pM) ∂
∂r

∥∥ =
∥∥1

4

(
3ei4θ/3,

√
7
)∥∥ =

1
4

√
9 + 7 = 1 and

∥∥d (φ1 ◦ pM) ∂
∂θ

∥∥ =
∥∥ r

4

(
4iei4θ/3, 0

)∥∥ = r =
∥∥ ∂
∂θ

∥∥. The state-
ment regarding φ2 follows from the fact that the circle on S1 at distance one
from zero has length 3π/2. �

Corollary 5 The parametrized circles γ0,w and γ0,w′ can be joined by a geode-
sic in C0 if and only if the angle between w and w′ is less than 2π/3.

Proof. Let x, x′ ∈M with ψ (x) = w,ψ (x′) = w′ and let α : [0, 1]→M be a
geodesic joining x with x′. Let α̃ be a lift of α to R+ × R with α̃ (0) = (r, θ)
and α̃ (1) = (r′, θ′) . Since p is a local isometry, p◦ α̃ is a segment of a straight
line in C∗. Hence |θ − θ′| < π. Applying ψ, we have that w = |w| ei2θ/3 and
w′ = |w′| ei2θ′/3. Thus, the angle between w and w′ is less than 2π/3. The
converse follows from the same arguments. �

2.2 Constant speed circles with collinear centers and the same ini-
tial angle

First we recall the well-known method of Clairaut to obtain the trajectories
of geodesics in an open set U of R2 with the metric given by

g11 (x, r) = g22 (x, r) = f (r) and g12 = 0.
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Clairaut’s criterion. Suppose that γ (t) = (x (t) , r (t)) is a unit speed
curve in U (with respect to the metric g) and let θ (t) be the angle between
γ̇ (t) and the horizontal coordinate curve through γ (t), that is, cos θ (t) =

g
(
γ̇ (t) , (∂/∂x)γ(t)

)
/
√
f (r (t)).

a) If x′ (to) = 0 for some to, then x is constant and γ is a geodesic.

b) If x′ never vanishes, r′ has isolated zeros, and moreover f (r) cos2 θ is
constant, then γ is a geodesic.

As a corollary, we have that if σ (x) = (x, ρ (x)) is a (not necessarily unit
speed) curve in U and the function ρ satisfies

c (f ◦ ρ) = 1 + (ρ′)
2

(1)

for some constant c, then any constant speed reparametrization of σ is a
geodesic.

By Proposition 2, the submanifold

Cθ` =
{
γz+xv,reiθ | x, r ∈ R, r > 0

}
of constant speed circles with centers on the line ` = z+Rv and initial angle θ
(here z ∈ C and v ∈ S1) is totally geodesic in C. We identify this submanifold
with R × R+ in the obvious manner: γz+xv,reiθ 7→ (x, r) . By Proposition 1,
the induced metric is rgo, where go is now the Euclidean metric on R× R+.
The Gaussian curvature function is easily computed to be K (z, r) = r−3/2.
In particular, it tends to infinity as r → 0.

Proposition 6 A unit speed curve γ (t) = (x (t) , r (t)) in R × R+
∼= Cθ`

endowed with the metric rgo is a geodesic if and only if

a) either x is constant and r (t)3/2 = 3
2
|±t− to| for some to,

b) or r = ρ◦x with ρ (x) = a (x− xo)2 +b for some constants a, b, xo with
a, b > 0 and 4ab = 1.

Moreover, γ can be defined on the whole real line if and only if x is not
constant.

Proof. If γ (t) = (xo, r (t)) with r as in (a), then one checks easily that γ
has unit speed and hence it is a geodesic by Clairaut’s criterion. If γ is as in
(b), a straightforward computation using (1) with f = id shows that γ is a
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geodesic. Any unit speed geodesic is one of the preceding, since for any unit
tangent vector of R×R+ there exists a geodesic as above having it as its initial
velocity. Concerning completeness, it is clear that a geodesic with constant
first coodinate is not complete. On the other hand, if σ (x) = (x, ρ (x)), with
ρ as in (b), then

‖σ′ (x)‖2 = ρ (x)
(
1 + ρ′ (x)2) ≥ b > 0,

where the norm on the left hand side is the one associated to the metric rgo.
Hence any unit speed reparametrization of σ is defined for all t. �

3. Unparametrized circles

Let π : E → E/∼ be as in the introduction the projection assigning to each
index one embedding of S1 in the plane its equivalence class modulo orien-
tation preserving diffeomorphism of S1. We can think of π (C) as being the
set of unparametrized circles (or just circles) in the plane.

For any γ ∈ E we have the decomposition TγE = H (γ) ⊕ V (γ) in hori-
zontal and vertical subspaces at γ, where V (γ) = Ker (dπγ) and H (γ) is the
orthogonal complement of V (γ). They consist of all the smooth vector fields
along γ which are tangent to γ (S1), respectively, normal, at each point of
S1. Notice that H is not compatible with the reduction of E to the principal
bundle Ea → E/∼ of all the constant speed positively oriented embeddings of
the circle in the plane [3, 2.8].

Since TγC ∩ V (γ) has dimension one for any γ ∈ C, the inclusion in E/∼
induces on π (C) = π (C0) a Riemannian metric.

Proposition 7 The inclusion of π (C) in E/∼ induces on the former a Rie-
mannian metric in such a way that the map

c : (C× R+, h)→ π (C) , c (z, r) = π (γz,r)

is an isometry, where h11 (z, r) = h22 (z, r) = r/2, h33 (z, r) = r and hij = 0
if i 6= j.

Proof. We first note that V (t) := d
ds

∣∣
0
γz+s,r (t) equals the constant vector

field ∂/∂x ∼= 1 ∈ C. The horizontal component of V is given by V N (t) =
〈V (t) , eit〉 eit = (cos t) eit. Hence,∥∥∥dc(z,r) (∂/∂x)(z,r)

∥∥∥2

=
∥∥dπγz,r (V )

∥∥2
=
∥∥V N

∥∥2
=

1

2π

∫ 2π

0

r cos2 t dt = r/2.
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Thus, with the induced metric,
∥∥∥(∂/∂x)(z,r)

∥∥∥2

= r/2. The same is valid for

(∂/∂y). On the other hand, dc(z,r)

(
(∂/∂r)(z,r)

)
= dπγz,r (W ), where W (t) =

d
dr
γz+s,r (t) = eti = WN (t) . Hence, with the induced metric,

∥∥∥(∂/∂r)(z,r)

∥∥∥2

=

1
2π

∫ 2π

0
r dt = r. �

Proposition 8 For any z ∈ C, the curve γ (t) = c
(
z, (3t/2)2/3

)
is a geodesic

of π (C) whose maximal interval of definition is R+. Any non-concentric
geodesic path in π (C) is a unit speed reparametrization of the curve σ (t) =
c (z + tv, at2 + b) for some z ∈ C, v ∈ S1 and positive numbers a, b with
8ab = 1.

Proof. Let ` be a straight line in C and identify C with C×R+ endowed with
the Riemannian metric h, as in Proposition 7. The (Euclidean) reflection on
C × R+ with respect to ` × R+ is an isometry for h fixing exactly ` × R+.
Hence this submanifold is totally geodesic. Now, if g = rgo is the metric on
R × R+ induced by the identification with Cθ` , as stated before Proposition
6, then

F : (R× R+, g)→ (R× R+, h) , F (x, r) =
(√

2x, r
)

(2)

is an isometry. Hence it takes geodesics to geodesics and so the expressions
for the geodesics of C can be obtained. �

Proposition 9 Two circles in π (C) with the same radius R can be joined by
a geodesic in π (C) if and only if the distance d between their centers satisfies
d ≤

√
2R. If equality holds, there is only one geodesic path joining them;

otherwise there are exactly two.

Proof. Using the isometry F of (2), it suffices to prove the assertion that
the points (−x,R), (x,R) can be joined by a geodesic in C0 ≡ (R× R+, g)
if and only if x ≤ R, and that the geodesic is unique for x = R, otherwise
there are two of them. We know from Proposition 6 that the images of the
geodesics in C0 with not concentric centers are the parabolas a (t− to)2 + b,
with 4ab = 1. One computes that such a geodesic joins the points (−x,R),
(x,R) if and only if a, b satisfy the system of equations ax2 + b = R, 4ab = 1,
which has solutions if and only if x ≤ R; moreover, exactly two solutions if
x < R and only one if x = R. �
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Remark. We see that if two circles, say of the same radius R, are sufficiently
close, then the best path joining them consists of circles of radii smaller than
R. This may be explained by saying that a smaller circle will travel with less
effort, since the definition of the metric on C is purely geometric (no mass
consideration is involved: the circles do not become more dense when they
contract, cf. the other metric defined in [1]).

One can also consider on π (C) ∼= C × R+ the hypebolic metric go/r
2 of

constant curvature −1 (go being as above the Euclidean metric). We have
shown in [6] that it can be interpreted as one which does not discriminate
the size of the circles, that is, each circle takes its own size as a yardstick
to measure travelled distances or changes in its size. A bigger circle will
cover great distances more easily, since it will perceive distances as shorter
compared with its size. Thus, it is not surprising that for this metric the
trajectory of the best path joining two circles of the same radius, say R,
consists of circles of radii larger that R. This contrasts with the form of the
geodesics of the metric that we study in this note.

4. The holonomy of a closed path in π (C)

Given a path γ in π (C) we compare the lift of γ to C0 (constant speed circles
with initial angle zero) with the horizontal lift to E . In this section we present
the circle S1 as {z ∈ C | |z| = 1} instead of R/ (2πZ).

Let M be the Möbius group of the circle, that is, M consists of the
restrictions to the circle of the Möbius transformations of C ∪ {∞} preserv-
ing it. Let us mention that M is a Lie group isomorphic to Oo (2, 1) and
PSl (2,R). If

φα (z) =
z + α

1 + ᾱz
and ∆ = {φα | |α| < 1} ,

thenM = {uφ | |u| = 1, φ ∈ ∆} . Although we are interested in the action of
M on S1 we recall that if the disc D = {z ∈ C | |z| < 1} carries the metric
conformal to the euclidean one with constant curvature −1, then M is the
group of orientation preserving isometries of D. The circle subgroup S1 ⊂M
is the isotropy subgoup at 0 ∈ D, ∆ is the set of transvections through 0 ∈ D
and Lie (M) = Ri ⊕ p is the Cartan decomposition at 0, where p = Tid∆.
Let D be the right invariant distribution on M with D (id) = p.

The following Lemma is well-known and we omit the proof.
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Lemma 10 Let G be a Lie group and let X : R→ g be a smooth curve in its
Lie algebra. Then there exists a unique smooth curve φ : R → G satisfying
φ (0) = id and the equation

φ′ (t) = dRφ(t)Xt

for all t, where Rk denotes right multiplication by k. Moreover, if G acts
smoothly on a manifold M and the vector field X̃ on M is defined by X̃ (p) =
(d/dt)0 exp (tX) p, then for all s,

(d/dt)s φt (q) = X̃s (φs (q)) .

Theorem 11 For any smooth path γ = c (z, r) in C, the unique curve φ in
Diff+ (S1) such that φ (0) = id and t 7→ γz(t),r(t)◦φ (t) is horizontal, is a curve
in M tangent to the distribution D.

As a corollary we have that the holonomy subgroup at any c ∈ π (C) is
contained in M (after identifying c (S1) with S1), since if γ (0) = γ (a) = c
for some a > 0, then φ (a) is in the holonomy subgroup at c.

Proof. We denote γt = γz(t),r(t). For each s let Vs = d
ds
γs : S1 → C and let vs

be the vector field on S1 defined by d γs (vs) = −V T
s , where V T

s (ζ) denotes
the orthogonal projection of Vs (ζ) to the tangent space of γs (S1) at γs (ζ),
for any ζ ∈ S1. Since

Vs (ζ) =
d

ds
γs (ζ) =

d

ds
z (s) + r (s) ζ = z′ (s) + r′ (s) ζ

and (dγs)ζ (iζ) = r (s) iζ, one computes

vs (ζ) = −〈z′ (s) , iζ〉 iζ/r (s) ,

where the inner product on the right hand side is the canonical one on R2.
Hence, vs is the vector field on S1 obtained by orthogonal projection of
the constant vector field ζ 7→ z′ (s) /r (s) along S1. It is well-known (see
for instance [5]) that vs is the vector field on the circle (thought of as the
imaginary boundary of the hyperbolic disc D) associated to a one parameter

group of transvections of D through zero. That is, vs = X̃s for a unique Xs

∈ p. Hence, the curve φt in M given by Lemma 10 (setting G = M) will
be tangent to the distribution D. Clearly γt ◦ φt projects to γt for all t. It
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remains only to show that it is horizontal. We denote Γ (t, ζ) = γt (ζ). We
compute

(d/dt)s γt (φtζ) = (d/dt)s Γ (t, φtζ)

= (dΓφsζ)s ((d/dt)s) + (dΓs)φsζ ((d/dt)s φtζ)

= (d/dt)s γzt,rt (φsζ) + (dγs)φsζ (vs (φsζ))

= V (φsζ)− V T (φsζ) = V N (φsζ)

(we have used the second assertion of the Lemma). Therefore, t 7→ γz(t),r(t)◦φt
is horizontal. �
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