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Abstract

Let H be the three dimensional hyperbolic space and let G be the
identity component of the isometry group of H. It is known that some
aspects of the dynamics of a rigid body in H contrast strongly with
the euclidean case, due to the lack of a subgroup of translations in G.
We present the subject in the context of homogeneous Riemannian
geometry, finding the metrics on G naturally associated with extended
rigid bodies in H. We concentrate on the concept of dynamical center,
characterizing it in various ways.
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1 Introduction.

Let H be the three dimensional hyperbolic space of (constant) curvature −1.
A rigid body in H is a measure space (A,m) of finite measure M, where A
is a bounded subset of H and the inclusion is measurable (M is the total
mass of the body). For example, a rigid body consisting of n particles pi

and masses mi is given by A = {p1, . . . , pn}, m {pi} = mi. Unless otherwise

∗Partially supported by conicor, ciem(conicet) and secyt(unc).
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stated, we will consider only extended rigid bodies, that is, the support of
the measure is not contained in the image of a geodesic in H.

Let (A,m) be an extended rigid body in H. A motion of (A,m) is said
to be force free if it is a critical point of the kinetic energy functional in
the configuration space. Let G be the identity component of the isometry
group of H and fix an orientation of H. Since G acts simply transitively on
positive orthonormal frames, it may be identified in a natural way with the
configuration space of A, and any smooth curve g (t) in G may be thought
of as a rigid motion of A, that is, a one-parameter family g (t) A.

J. Zitterbarth [9] (see also [3, 4, 5, 7, 8]) studied thoroughly the dynam-
ics of a rigid body in simply connected 3-dimensional manifolds of constant
sectional curvature κ. These manifolds share with the Euclidean space the
property of free movability of rigid bodies, the only requirement of the foun-
dations of classical mechanics. He proves stability of the “laws of nature”
with respect to perturbations of the curvature, in particular when perturbing
the value κ = 0. We are interested in the negative curvature cases and for the
sake of simplicity take κ = −1. In this case, Zitterbarth defines the center of
mass of a rigid body (A,m) as the (unique) point where the convex function
on H defined by

F (p) =

∫

A

sinh2 (d (p, q)) dm (q) (1)

attains the minimum. He poses the equations of motion and obtains that
even in the case when the rigid body is a ball with rotational symmetric
distribution of mass, under a free motion, the center of mass need not move
along a geodesic in H. This (perhaps surprising) contrast with the euclidean
case is to be attributed to the lack of a subgroup of translations in G.

In this note we present the subject in the context of homogeneous Rieman-
nian geometry, avoiding in general the use of coordinates. We concentrate
on the center of mass, introducing it in a more dynamical way, which is the
approach of P. Nagy in [6] for the two dimensional hyperbolic case. This def-
inition of center of mass (presented as dynamical center) has the additional
advantage of being susceptible of generalization to rigid bodies in symmetric
spaces of noncompact type (see Remark 2).

Definition 1 A rotation in H is a one-parameter group of isometries of H
fixing a point. Three rotations are said to be independent if the corresponding
Killing fields on H are linearly independent. A point p in H is said to be
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a dynamical center of the rigid body A in H if there are three independent
force free rotations of A around p.

Theorem 7 below, our main result, asserts that an extended rigid body
in H has exactly one dynamical center and characterizes it in various ways.

To illustrate the concept of dynamical center in noneuclidean spaces we
recall the following from the two dimensional situation: A point in the hy-
perbolic plane is said to be a dynamical center of a rigid body if there is a
force free rotation of the body around it. Given two points p1 and p2 in the
hyperbolic plane, at distance d from each other, with masses m1 and m2, the
dynamical center is the point p on the segment joining p1 and p2 at distance

d

2
+

1

4
log

(
m1 + m2e

2d

m2 + m1e2d

)

from p1 (by solving the first equation of Theorem 3 in [6] in this particular
case), while the corresponding number in the euclidean plane is m2d

m1+m2
.

Remark 2 The dynamical center of a rigid body in a symmetric space of
noncompact type N may be defined as follows. A rigid body (A,m) in N is
said to be extended if no one-parameter group of isometries of N fixes every
point of the support of m. Let G be the identity component of the isometry
group of N and let k be the dimension of the isotropy group of G at any point
of N. A point p ∈ N is said to be a dynamical center of (A,m) if there are k
independent force free rotations fixing p. As far as we know, for dim N ≥ 4,
existence and uniqueness of the dynamical center is an open problem.

Isometries of the hyperbolic space.

Let H be as before the three dimensional hyperbolic space of curvature −1
and let G be the Lie group of orientation preserving isometries of H. Let
g ∈ G, g 6= id. We recall that g is said to be elliptic if there is a geodesic γ in
H such that g ◦γ = γ and g is hyperbolic if there exist a geodesic γ in H and
t0 ∈ R such that g (γ (t)) = γ (t + t0) and (dg)γ(t) = τ t+t0

t for all t (here τ s
t

denotes the parallel transport along γ from t to s). In either case γ is called
an axis of g.

Let g be the Lie algebra of G and let X ∈ g, X 6= 0. X is said to be elliptic
(respectively hyperbolic) if exp (tX) is elliptic (hyperbolic) for nearly all t.
In this case t 7→ exp (tX) is called a rotation (respectively a transvection)
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in G with axis γ (the common axis of all isometries exp (tX)). By abuse of
notation, an elliptic element Z ∈ g is said to have unit speed if the rotation
t 7→ exp (tZ) has unit angular speed, or equivalently, if it has period 2π.
Unless otherwise specified, geodesics are supposed to be complete and have
unit speed.

In general, computations on H will involve no particular model of this
space. The upper half space model for H and the associated presentation of
g as sl (2,C) are used almost exclusively to take advantage of the complex
structure on the latter to relate infinitesimal transvections and rotations with
the same axis.

Left invariant metrics induced on the isometry group.

Any smooth curve g in G may be thought of as a rigid motion of A, that
is, a one-parameter family g (t) A. A (possibly not extended) rigid body
(A, m) induces a left invariant semi Riemannian metric on G as follows: for
X, Y ∈ Tg0G,

〈X, Y 〉 =

∫

A

〈X.q, Y.q〉 dm (q)

where X.q = d
dt

∣∣
0
g (t) q for any curve g in G with g (0) = g0 and ġ (0) = X.

Notice that in the euclidean case one can study separately the rotational
and translational components of a force free motion, and it suffices to consider
metrics on SO (3) (see [1], where also free motions of generalized rigid bodies
are discussed).

Proposition 3 The induced metric on G is Riemannian if and only if the
rigid body is extended. In this case, a curve g (t) in G is a geodesic if and
only if (thought of as a rigid motion) is force free.

Proof. Suppose the rigid body (A,m) is not extended. If the support of m
is contained in a geodesic γ, then 〈X, X〉 = 0 holds for any elliptic element
X with axis γ. Conversely, if the metric is not Riemannian, there exists
X ∈ g, X 6= 0, with 0 = 〈X,X〉 =

∫
A
‖X.q‖2 dm (q) . Since q 7→ ‖X.q‖2 is

continuous and nonnegative, it must vanish on the support of m. Hence X
is elliptic and the support of m is contained in its axis.

The second assertion follows from the fact that if g (t) is a piecewise
smooth curve in G, then

1

2
‖ġ (t)‖2 =

1

2

∫

A

‖ġ (t) .q‖2 dm (q) (2)
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is the kinetic energy of the rigid motion g (t) A at the instant t. ¤

2 Characterizations of the dynamical center.

We next give a necessary condition for an inner product on g to be associated
with a rigid body in H of total mass M.

Proposition 4 Let 〈, 〉 be an inner product on g associated with a rigid body
in H of total mass M. Then

〈Z, iZ〉 = 0 and ‖iZ‖2 = M + ‖Z‖2 (3)

for all unit speed elliptic Z ∈ g.

Given q ∈ H, let g = kq + pq be the associated Cartan decomposition of
g (kq is the Lie algebra of the isotropy group at q and pq = k⊥q with respect
to B). We have also that pq = ikq. If πq : G → H is defined by πq (g) = g.q,
then (dπq)e : (pq, B) → TqH is a linear isometry. All non-zero elements in
kq (respectively in pq) are elliptic (respectively hyperbolic). Let Symm + (kq)
be the set of all positive definite self adjoint operators on kq with respect to
−B|kq×kq

. Next we introduce a class of inner products on g which will be
useful for our purpose.

Definition 5 a) Let M be a positive number, q ∈ H and let T ∈ Symm + (kq) .
An inner product 〈 , 〉 on g is said to be standard of type (q, T,M) if 〈X, Y 〉 =

−B
(
T̃X, Y

)
for all X, Y, where T̃ decomposes as T̃ = T ⊕ T ′ with respect

to the Cartan decomposition g = kq + pq and

T ′ = iT i−M id

b) Three positive numbers are said to satisfy the triangular condition if
each one is less than or equal to the sum of the other two.

We will show later that the type of a standard inner product on g is
uniquely determined. Next, the metrics on G associated with extended rigid
bodies in H are characterized (cf.. Lemma 5 (iii) in [9]).

Theorem 6 An inner product on g is induced by an extended rigid body of
total mass M if and only if it is standard of type (p, T,M) for some p ∈ H,
T ∈ Symm + (kp) , and the eigenvalues of T satisfy the triangular condition.
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Theorem 7 Let A be an extended rigid body in H of total mass M and let G
be endowed with the associated Riemannian metric. Then A has exactly one
dynamical center p, which is characterized by any of the following equivalent
assertions.

a) The inner product on g is standard of type (p, T,M) for some T ∈
Symm + (kp) with eigenvalues satisfying the triangular condition.

b) p belongs to the axis of any free rotation of the body.
c) p belongs to the axis of any free transvection of the body.
d) There exist three geodesics of H meeting orthogonally at p, which are

axes of free rotations and free transvections of the body.
e) kp⊥ pp.
f) The isotropy group at p is totally geodesic in G.
g) The volume of the isotropy group at p is less than the volume of the

isotropy group at any other point.
h) p is the center of mass of A, that is, the convex function F : H → R

defined in (1) attains the minimum at p.

Corollary 8 Given an extended rigid body A in H with dynamical center p,
there exists a rigid particle system consisting of six points with equal masses,
at the vertices of a hyperbolic octahedron with equal faces, centered at p, which
has the same force free motions as A.

Given a dynamical system, in our case the one associated with the force
free motions of an extended rigid body in the hyperbolic space (which turns
out to be the geodesic flow of G endowed with some left invariant metric),
a natural question arises whether it has periodic orbits. The existence of a
dynamical center guarantees a positive answer.

Corollary 9 The dynamical system associated with the force free motions of
any extended rigid body in H has at least three periodic orbits.

3 Proofs of the results.

We consider for the hyperbolic space the model H = {(x, y, z) ∈ R3 | z > 0}
with the metric ds2 = (dx2 + dy2 + dz2) /z2. Let ∂H = R2 ∪ {∞} be the
asymptotic border. G may be identified with the group

PSl (2,C) = {A ∈ M (2,C) | det (A) = 1} / {± id}
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as follows: G acts on ∂H ≈ C ∪ {∞} by Möbius transformations, which
extend uniquely to orientation preserving isometries of H (see [2]).

Consider on the Lie algebra g = {X ∈ M (2,C) | tr (X) = 0} of G the
bilinear form B defined by B (X,Y ) = 2 Re tr (XY ), which is a positive
multiple of the Killing form. B satisfies B (iX, iY ) = −B (X,Y ) for all X, Y
(here i =

√−1). If Z is elliptic, then iZ is hyperbolic and has the same
axis as Z. It has unit speed if and only if B (Z, Z) = −1. If X is hyperbolic
with axis γ, then the transvection t 7→ exp (tX) has unit speed (that is,
t 7→ exp (tX) γ (0) has unit speed) if and only if B (X, X) = 1. In this case,
by abuse of notation, we say that X has unit speed (see also the comment
before Lemma 10).

We will need the notion of positively oriented (or simply positive) axis of
an elliptic or hyperbolic element of g. An axis γ of an elliptic (respectively hy-

perbolic) element Y ∈ g is said to be positive if
{

u, d
dt

∣∣
0
(d exp tY )γ(0) u, γ̇ (0)

}

is a positively oriented basis of Tγ(0)H for each 0 6= u⊥ γ̇ (0) (respectively
if 〈 d

dt

∣∣
0
exp (tY ) γ (0) , γ̇ (0)〉 > 0). Given p ∈ H and Z ∈ kp, then t 7→

exp (tiZ) .p is a positive axis of Z. Moreover, if Z is elliptic, then γ is a
positive axis of Z if and only if it is a positive axis of iZ.

Since each unit speed elliptic (respectively hyperbolic) element Y ∈ g is

conjugate in G to Z0 = 1
2

(
i 0
0 −i

)
(respectively X0 = iZ0), any assertion

concerning elliptic or hyperbolic elements may be checked, without loss of
generality, only for Z0 and X0 (which have a common positive axis t 7→
(0, 0, et))

Lemma 10 Let σ : [0, d] → H be a unit speed geodesic segment and let
{u, v, σ̇} be a parallel positively oriented orthonormal frame along σ. Let γw

denote the geodesic with initial velocity w. For j = 0, d, let Zj be the unit
speed elliptic element of g with positive axis γv(j), and let Xj be the unit speed
hyperbolic element of g with positive axis γu(j). Then

Zd = − (sinh d) X0 + (cosh d) Z0 and Xd = (cosh d) X0 − (sinh d) Z0

Proof. For j = 0, d, let Z̃j, X̃j be the associated Killing fields. Z̃0 ◦ σ and

X̃0 ◦ σ are Jacobi fields along σ. The Jacobi equation is simple since the
curvature tensor is parallel. Computing the initial conditions using the fact
that Zj and Xj have unit speed, one obtains

Z̃0 (σ (t)) = (sinh t) u (t) and X̃0 (σ (t)) = (cosh t) u (t)
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Reversing the direction of σ we have analogously

Z̃d (σ (d− t)) = − sinh (t) u (d− t) and X̃0 (σ (d− t)) = cosh (t) u (d− t)

Hence

Z̃d (σ (t)) = − sinh (d− t) u (t) =
(
− (sinh d) X̃0 + (cosh d) Z̃0

)
(σ (t))

and X̃d (σ (t)) = cosh (d− t) u (t) =
(
(cosh d) X̃0 − (sinh d) Z̃0

)
(σ (t))

Since Z̃d and − (sinh d) X̃0 + (cosh d) Z̃0 are Killing fields which coincide
along σ, they differ in an elliptic field with axis σ, that must be zero since the
one-parameter groups of isometries associated with the fields clearly preserve
the totally geodesic submanifold containing σ and orthogonal to v. The same
happens for X̃d and (cosh d) X̃0 − (sinh d) Z̃0 and the lemma follows. ¤

Lemma 11 The type of a standard inner product on g is uniquely deter-
mined.

Proof. We mention first that it is easy to show that such a bilinear form
is actually an inner product on g (notice that B|pp×pp

> 0). Let 〈, 〉 be a

standard inner product on g of type (p, T,M) and also of type (p′, T ′,M ′)
(in particular 〈kp, pp〉 = 〈kp′ , pp′〉 = 0). Suppose p′ is at distance d > 0 from
p and let σ be the geodesic segment joining p with p′. If Zj, Xj are as in the
previous lemma (j = 0, d) we have 〈Z0, X0〉 = 0 and also

0 = 〈Zd, Xd〉 = − sinh (d) cosh (d)
(‖Z0‖2 + ‖X0‖2) ,

which is a contradiction. Then p′ = p. Now T ′ = T since B|kp×kp
is nonde-

generate and thus obviously M ′ = M. ¤

Proof of Proposition 4. Let Z be a unit speed elliptic element of g,
let γ be a positive axis of both Z and X := iZ, and let Z̃ and X̃ be the
associated Killing fields. Suppose the rigid body is (A,m) . For each q ∈ A,
let γ (tq) be the closest point to q on the axis, and let σq : [0, dq] → H be the
geodesic segment joining γ (tq) to q. Let {u, v, σ̇q} be a parallel positively
oriented orthonormal frame along σq such that v (0) = γ̇ (tq) . We have that

Z̃ (q) = sinh (dq) u (dq) and X̃ (q) = cosh (dq) v (dq) . Therefore,

〈Z,X〉 =

∫

A

〈Z.q,X.q〉 dm (q) = 0 and
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‖X‖2 =

∫

A

cosh2 (dq) dm (q) =

∫

A

dm +

∫

A

sinh2 (dq) dm (q) = M + ‖Z‖2 .¤

Notation. Let SM be the set of all standard inner products on g of type
(p, T, M) for some p, T, and let AM be the set of inner products on g such
that (3) is satisfied for all unit speed elliptic Z ∈ g.

Given a real vector space V, we consider on the set of inner products on V
the topology relative to V ∗⊗ V ∗ (in particular we have uniform convergence
on bounded sets of V × V ). We consider on AM the relative topology, and
on SM the topology induced by the bijection given in the following Lemma.

Lemma 12 Let o = (0, 0, 1) ∈ H and let K be the isotropy subgroup of
G at o. Let σ : H ≈ G/K → G be a continuous section. Then the map
F : H× Symm+ (ko) → SM defined by

F (p, T ) = −B
(
Ad (σ (p)) T̃ Ad

(
σ (p)−1) . , .

)

is a bijection (here T̃ is obtained from T as in Definition 5 for the Cartan
decomposition g = ko + po).

Proof. Since Ad(g) preserves Cartan decompositions and the Killing form,
and commutes with multiplication by i, we have that

S := Ad (σ (p)) T Ad
(
σ (p)−1)∣∣

kp

is self-adjoint with respect to −B|kp×kp
and F (p, T ) = −B

(
S̃., .

)
. Hence

F (p, T ) is standard of type (p, S,M). Now, F is one to one by uniqueness
of the type and it is easily seen to be onto. ¤

Lemma 13 AM is contained in a real vector space of dimension nine.

Proof. Let p be any point in H and let {U1, U2, U3} be an orthonormal
basis of kp (with respect to −B|kp×kp

) such that {u, v, σ̇} as in Lemma 10

is positively oriented, where u (0) = (dπp)e (iU1) , v (0) = (dπp)e (iU2) and
σ (t) = exp (tiU3) .p. Let d > 0, let Zd be as in Lemma 10 and denote
Z = Zd. By that lemma we have Z = − (sinh d) iU1 + (cosh d) U2. Now let
〈, 〉 ∈ AM . We have

0 = 〈Z, iZ〉 = sinh d cosh d (〈U1, U2〉 − 〈iU1, iU2〉) .
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In a similar way we obtain 〈iUj, iUk〉 = 〈Uj, Uk〉 for all j 6= k. On the
other hand, an analogous computation using ‖iZ‖2 = M + ‖Z‖2 yields that
〈iUj, Uk〉 = 〈Uj, iUk〉 for all j 6= k. Therefore, the matrix of 〈, 〉 in the basis
{U1, U2, U3, iU1, iU2, iU3} is determined by the nine coefficients corresponding
to ‖Uj‖2 , 〈Uj, Uk〉 and 〈Uj, iUk〉 with j < k. ¤

Lemma 14 SM = AM .

Proof. First we see that SM ⊂ AM . Let 〈, 〉 be a standard inner product
on g of type (p, T, M) and let Z ∈ g elliptic with B (Z,Z) = −1. Let γ
be a positive axis of Z, let γ (t0) be the closest point to p on the axis,
and let σ : [0, d] → M be the geodesic segment joining p to γ (t0). Let
{u, v, σ̇} be a parallel positively oriented orthonormal frame along σ such that
v (d) = γ̇ (t0) and define Zj, Xj as in Lemma 10. By this lemma, Z = Zd =
− (sinh d) X0 + (cosh d) Z0 and hence iZ = − (sinh d) iX0 + (cosh d) iZ0.
Now 〈X0, Z0〉 = 〈iX0, iZ0〉 = 0 since pp⊥ kp. Next we compute

〈X0, iZ0〉 = −B
(
T̃X0, iZ0

)
= −B (−MX0 + iT iX0, iZ0) =

= MB (X0, iZ0)−B (iT iX0, iZ0) = B (TiX0, Z0) =

= B (TZ0, iX0) = −〈Z0, iX0〉

Hence 〈Z, iZ〉 = − sinh d cosh d (〈X0, iZ0〉+ 〈Z0, iX0〉) = 0. On the other
hand,

M + ‖Z‖2 = M + sinh2 d ‖X0‖2 + cosh2 d ‖Z0‖2 =

= M + sinh2 d
(
M + ‖−iX0‖2) + cosh2 d ‖Z0‖2

= sinh2 d ‖iX0‖2 + cosh2 d
(
M + ‖Z0‖2)

= sinh2 d ‖iX0‖2 + cosh2 d ‖iZ0‖2 = ‖iZ‖2

Therefore, SM ⊂ AM . Let ι : SM → AM denote the inclusion.
Let us prove now that SM is closed in AM . Suppose that (pn, Tn) is

a sequence in H× Symm+ (ko) such that bn = ι ◦ F (pn, Tn) converges to
an inner product b = −B (S., .) on g. If {pn} is bounded, there exists
a subsequence qj = pnj

converging to some p ∈ H. If we denote Uj =
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Ad(σ (qj)) T̃nj
Ad

(
σ (qj)

−1), we have that −B (Uj., .) converges to −B (S., .) .
Hence limj→∞ Uj = S and

T̃ := lim
j→∞

T̃nj
= lim

j→∞
Ad

(
σ (qj)

−1) UjAd (σ (qj)) = Ad
(
σ (p)−1) S Ad (σ (p))

Thus, b (., .) = −B
(
Ad (σ (p)) T̃ Ad

(
σ (p)−1) ., .

)
= ι ◦ F

(
p, T̃

∣∣∣
ko

)
is in

SM . Now we see that pn must be bounded. If not, there exists a subsequence
qj = pnj

converging to some point in ∂H, which we may suppose without
loss of generality to be (0, 0, 0) . Hence qj = (zj, tj) , with zj ∈ C and tj > 0,
both converging to zero. Let

Z =

(
0 −1
1 0

)
∈ ko, X =

(
0 1
1 0

)
∈ po,

Y =

(
0 0
1 0

)
∈ g and gj =

[ √
tj zj/

√
tj

0 1/
√

tj

]
∈ G.

Then gj (0, 0, 1) = qj, Zj := tj Ad(gj) Z ∈ kqj
and Xj := tj Ad(gj) X ∈ pqj

.
Thus bnj

(Zj, Xj) = 0. Now a straightforward computation yields

lim
j→∞

Zj = lim
j→∞

Xj = Y.

Hence ‖Zj −Xj‖j converges to zero for j → ∞ (‖.‖j denotes the norm
associated with bnj

). On the other hand, by Pythagoras Theorem we have

‖Zj −Xj‖2
j = ‖Zj‖2

j + ‖Xj‖2
j → 2 ‖Y ‖2 > 0 for j →∞

Thus, if pn is not bounded, bn cannot converge to any inner product on g.
To complete the proof we note that SM has dimension nine. Hence by

invariance of domain (the inclusion ι : SM → AM is easily seen to be continu-
ous) it is an open set inAM , since the latter is contained in a nine dimensional
real vector space by Lemma 13. Moreover, AM is connected (the segment
joining two elements in AM is contained in AM). Since we already know that
SM is closed in AM , we have then SM = AM . ¤

Proof of Theorem 6. By Proposition 4 and Lemma 14, an inner product on
g associated with a rigid body in H of mass M is standard of type (p, T, M)
for some p ∈ H and T ∈ Symm+ (kp) . Now we show that the eigenvalues of
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T satisfy the triangular condition. Let {Z1, Z2, Z3} be an orthonormal (with
respect to −B) basis of eigenvectors of T with eigenvalues λ1, λ2, λ3. We have

λj = −B (TZj, Zj) = ‖Zj‖2 =

∫

A

‖Zjq‖2 dm (q)

Let q ∈ H, let γj be an axis of Zj and denote dj (q) = d (q, γj) and dp (q) =
d (q, p) . Hence ‖Zjq‖ = sinh (dj (q)) . For each j = 1, 2, 3 consider the hy-
perbolic triangle with vertices at p, q and the closest point to q on γj, and
let αj be the angle at p. Now by Theorem 7.11.2 (ii) in [2] we have that
sinh (dj) = sinh (dp) sin (αj) . On the other hand, an easy linear algebra com-
putation on TpH yields sin2 (α3) ≤ sin2 (α1) + sin2 (α2) . Therefore

λ1 + λ2 =

∫

A

sinh2 (d1) + sinh2 (d2) dm =

=

∫

A

sinh2 dp

(
sin2 (α1) + sin2 (α2)

)
dm ≥

∫

A

sinh2 (dp) sin2 (α3) dm = λ3

Hence any eigenvalue of T is less than or equal to the sum of the other two.
Conversely, suppose that 〈, 〉 is a standard inner product on g of type

(p, T, M) and let {Z1, Z2, Z3} be an orthonormal (with respect to −B) basis
of eigenvectors of T, with eigenvalues λ1, λ2, λ3 satisfying the hypothesis. We
will show that there exist positive numbers dj (j = 1, 2, 3) such that 〈, 〉 is
the inner product on g associated with the rigid particle system

{exp (±djiZj) .p | j = 1, 2, 3}

consisting of six points with equal masses M/6. Indeed, let 〈, 〉0 be the inner
product on g associated with this rigid body. Let π : G → H, π (g) = g.p.
Suppose that {j, k, `} = {1, 2, 3} and {Zj, Zk, Z`} is positively oriented (i.e.
its image under (dπ) i is positively oriented). Let γu (s) = π exp (siZu) and

denote by X̃u the parallel transport of (dπ) (iZu) along γk. We obtain

Zj.γj (s) = 0, (iZj) .γj (s) = γ̇j (s) , (4)

Zj.γk (s) = sinh (s) X̃` (s) and (iZj) .γk (s) = cosh (s) X̃j (s)

We prove only the third assertion, the other ones follow from similar argu-
ments. Zj.γk (s) = d

dt

∣∣
0
exp (tZj) .γk (s) = J (s) , a Jacobi field along γk with

12



J (0) = 0. Hence J (s) = (sinh s) τ s
0J ′ (0) . Next we compute

J ′ (0) =
D

ds

∣∣∣∣
0

J (s) =
D

dt

∣∣∣∣
0

d

ds

∣∣∣∣
0

exp (tZj) γk (s) =

=
D

dt

∣∣∣∣
0

(dπ)
(
dLexp(tZj)

) (
d

ds

∣∣∣∣
0

exp (siZk)

)
=

=
D

dt

∣∣∣∣
0

(dπ) Ad (exp (tZj)) (iZk) = (dπ) (i [Zj, Zk]) = (dπ) (iZ`)

Hence the third assertion in (4) is true. Denote p±u = γu (±du) and suppose
that 〈, 〉0 = −B (T0., .). By (4) we have

−B (T0Zj, Zj) = ‖Zj‖2
0 =

∑

1≤|u|≤3

(‖Zj.pu‖2 M
6

)
= M

6

3∑
u=1

2 ‖Zj.pu‖2 =

= M
3

(‖Zj.pk‖2 + ‖Zj.p`‖2) = M
3

(
sinh2 (dk) + sinh2 (d`)

)

Now if the eigenvalues of T satisfy the hypothesis, then the equation



λ1

λ2

λ3


 = M

3




0 1 1
1 0 1
1 1 0







sinh2 (d1)
sinh2 (d2)
sinh2 (d3)




admits a unique solution (d1, d2, d3), with du > 0. Using the other identities
of (4) one completes the proof that 〈, 〉0 = 〈, 〉. ¤

Proposition 15 Let G carry a left invariant metric induced by a standard
inner product on g of type (p, T, M) .

a) The isotropy group at p is totally geodesic in G.
b) If U ∈ g, then t 7→ exp (tU) is a geodesic if and only if U is a complex

multiple of an eigenvector of T in kp.

Proof. Let K denote the isotropy group at p and let X, Y, Z be left invariant
vector fields on G such that X, Y ∈ kp and Z ∈ pp. By the formula for the
Levi-Civita connection applied to left invariant vector fields, we have

2 〈∇XY, Z〉 = −〈[Y, Z] , X〉 − 〈[X, Z] Y, 〉 − 〈[Y,X] , Z〉 =

= B
(
T̃ [Y, Z] , X

)
+ B

(
T̃ [X,Z] , Y

)
+ B

(
T̃ [Y, X] , Z

)
= 0,

13



since [kp, pp] ⊂ pp and kp⊥ pp. Hence, the second fundamental form of K
vanishes at the identity. By invariance of the metric, K is totally geodesic in
G. Now we prove (b). By the same formula for the Levi-Civita connection,
t 7→ exp (tU) is a geodesic if and only if

0 = 〈U, [U, Y ]〉 = −B
(
T̃U, [U, Y ]

)
= B

([
U, T̃U

]
, Y

)

for all Y ∈ g. Then T̃U = αU for some α ∈ C, since B is nondegenerate
and a straightforward computation yields that two elements of g commute
if and only if they are linearly dependent over C. Now, if α = a + ib and
U = Z + iZ ′ with Z,Z ′ ∈ kp, we obtain by definition of T̃ that

TZ = aZ − bZ ′ and TZ ′ = −bZ − (M + a) Z ′ (5)

Suppose Z and Z ′ span a two dimensional real subspace W. An easy compu-
tation yields that the matrix of T |W in the basis {Z, Z ′} has one eigenvalue
which is not positive. This contradicts the fact that T |W is positive definite.
Hence Z,Z ′ are linearly dependent over the real numbers. If Z ′ = cZ, then
U = (1 + ic) Z and TZ = (a− bc) Z by (5). If Z = cZ ′ one obtains in a
similar way that U is a complex multiple of an eigenvector of T. ¤

Lemma 16 Let p ∈ H, let Z ∈ kp, Y ∈ pp be unit speed elements of g and let
d > 0. Then Ad (exp dY ) Z is a unit speed elliptic element of g with positive
axis γ, where γ̇ (0) = τ d

0 (dπp) (iZ) and τ is the parallel transport along the
geodesic σ (t) = exp (tY ) .p.

Proof. γ0 (s) = exp (siZ) .p is a positive axis of Z and satisfies γ̇0 (0) =
(dπp) (iZ) . Let g (t) = exp (dY ) exp (tZ) exp (−dY ) . Clearly d

dt

∣∣
0
g (t) =

Ad (exp dY ) Z is an elliptic element with positive axis γ (s) = exp (dY ) γ0 (s)
with initial velocity γ̇ (0) = τ d

0 γ̇0 (0) , since (dLexp dY ) realizes the parallel
transport along σ (notice that the parallel transport preserves orientation).
¤

Lemma 17 Let 〈, 〉 be an inner product on g of type (p, T,M) , let {Z1, Z2, Z3}
be an orthonormal basis of kp (with respect to −B|kp×kp

). Let d > 0 and let

g = exp (diZ3) . Let E and D be the 3× 3 matrices with coefficients
〈
Zk, Z l

〉
and

〈
Ad (g)

(
Zk

)
, Ad (g)

(
Z l

)〉
, respectively. Then

det (D) ≥ cosh4 d det (E) and tr (D) ≥ c1 + c2 sinh2 d

for some positive constants c1 and c2.
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Proof. Clearly q = g (p) is at distance d from p and σ (t) = exp (tiZ3) .p for
0 ≤ t ≤ d is the geodesic segment joining p with q. Let {u1, u2, u3 = σ̇} be the
parallel orthonormal frame along σ satisfying (dπ)

(
iZk

)
= uk (0) (k = 1, 2).

We may suppose the it is positively oriented. For k = 1, 2, 3 and j = 0, d,
let Zk

j be the unit speed elliptic element of g with positive axis γuk(j) (hence
iZk

j is hyperbolic and has the same positive axis). We will write Zk
0 = Zk.

Clearly Z3
d = Z3. By Lemma 10 we have

Z2
d = − (sinh d) iZ1 + (cosh d) Z2

and analogously Z1
d = (sinh d) iZ2 + (cosh d) Z1. Now Zk

d = Ad (g) Zk for

k = 1, 2, 3 by Lemma 16. Since kp⊥ pp,
∥∥iZk

∥∥2
= M +

∥∥Zk
∥∥2

for all k,
〈iZk, iZ`〉 = 〈Zk, Z`〉 and 〈iZk, Z`〉 = 〈Zk, iZ`〉 if k 6= ` (see the proof of
Lemma 13), we have that the matrix D may be written as A +

(
sinh2 d

)
C,

where

A =




c2E11 c2E12 cE13

c2E12 c2E22 cE23

cE13 cE23 E33


 and C =




M + E22 −E12 0
−E12 M + E11 0
0 0 0




(here c = cosh d). Now,

det
(
A +

(
sinh2 d

)
C

) ≥ det A

since A and C are symmetric, A > 0 and C ≥ 0. On the other hand, clearly,
det A = c4 det E and the first assertion follows. A straightforward computa-
tion yields the second one. ¤

Proof of Theorem 7. Suppose the inner product associated with the rigid
body is of type (p, T,M) and let {Z1, Z2, Z3} be an orthonormal basis of kp

(with respect to −B) consisting of eigenvectors of T. Then p is a dynamical
center of the rigid body since by Proposition 15, t 7→ exp (tZj) are three in-
dependent free rotations around p. Moreover, t 7→ exp (tiZj) .p (which meet
orthogonally at p) are axes of the three independent free rotations (respec-
tively transvections) generated by Zj (respectively iZj). On the other hand,
let t 7→ exp (tY ) be a free rotation (respectively transvection). By Proposi-
tion 15, Y = αZ for some eigenvector Z of T in kp and some α ∈ C. Hence
α ∈ R (respectively α ∈ iR), since in each complex line of g all elliptic (re-
spectively hyperbolic) elements are real multiples of a given one. Moreover,
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axes of three independent rotations may intersect at most at one point, which
must be p by the preceding argument. This proves the first assertion of the
theorem and that (a), (b), (c) and (d) are equivalent. The equivalence with
(e) follows from the proof of Lemma 11.

In the following let q 6= p and let Kp and Kq denote the isotropy groups
at p and q, respectively.

Kp has been shown to be totally geodesic in Proposition 15 (a). Now,
Kq with the metric induced from G is isomorphic to SO (3) with a left in-
variant metric. By well-known facts on the dynamics of a rigid body in
euclidean space (see [1]), there are three independent rotations in Kq which
are geodesics in the induced metric. Two of them do not fix p, hence they
are not geodesics in G by Proposition 15 (b). Consequently, Kq is not totally
geodesic.

Endowed with the metric induced from G, Kq is isometric to Kp endowed
with the left invariant metric 〈, 〉q defined at the identity by

〈Z, Z ′〉q = 〈Ad (g) Z, Ad (g) Z ′〉 (6)

for all Z,Z ′ ∈ kp (here 〈, 〉 is the metric induced on Kp from G). Hence
vol (Kq) = vol (Kp, 〈, 〉q) . Choose the basis in Lemma 17 such that g =
exp (diZ3) satisfies g (p) = q. Since q 6= p, we have then by Lemma 17 that

vol (Kq) / vol (Kp) =
√

det D/
√

det E = cosh2 d > 0,

and the equivalence with (g) is proved.
Denote Uk = Ad (g) Zk (k = 1, 2, 3). By the arguments in the first part

of the proof of Theorem 6, with p = q, q = q′ and Zk = Uk, we obtain

∥∥Uk
∥∥2

=

∫

A

sinh2 (d (q, q′)) sin2 (αk (q′)) dm (q′)

Now, an easy linear algebra computation on TpH yields sin2 α1 + sin2 α2 +
sin2 α3 = 2. Hence, Lemma 17 implies that

2F (q) = 2

∫

A

sinh2 (d (q, q′)) dm (q′) =

=
∥∥U1

∥∥2
+

∥∥U2
∥∥2

+
∥∥U3

∥∥2
= tr (D) = c1 + c2 sinh2 d

for some positive constants c1 and c2. Consequently, F attains the minimum
at p. ¤
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Remark. The proof shows that F (q) is the sum of the kinetic energies of
three unit speed rotations around axes meeting orthogonally at q.

Corollary 8 is an immediate consequence of Theorem 7 (a) and the last
part of the proof of Theorem 6.

Corollary 9 is an immediate consequence of Theorem 7 (d).
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