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Let G be a compact simply connected semisimple Lie group endowed with a
bi-invariant Riemannian metric and let E → G be a vector bundle with two-
dimensional fibers and a G-invariant metric connection (generically, it has no par-
allel unit sections). We prove that if E carries the Sasaki metric, then the constant
unit sections are exactly those of minimum volume and minimum energy among
all smooth sections of the associated circle bundle.

Gluck and Ziller proved in the much cited paper 5 that Hopf vector fields on
S3 are exactly those having minimum volume among all unit vector fields.
This article motivated the study of the volume, and later of the energy 11,12

of unit tangent fields on various Riemannian manifolds, mainly the critical
points of the functionals (see the abundant bibliography on the subject for
instance in the references to 4). Recently, Brito 1 proved the analogue of
the result by Gluck and Ziller for the energy instead of the volume. We are
interested in a natural generalization, namely, volume and energy of sections
of sphere bundles. An important source of examples is the following:

Let G be a Lie group with Lie algebra g. Let V be a finite dimensional
vector space with an inner product and o (V) the set of all skew-symmetric
endomorphisms of V. Let E = G × V → G be the trivial vector bundle. For
v ∈ V, let Lv : G → E be the “constant” section Lv (g) = (g, v) .

Given a linear map θ : g → o (V) , there exists a unique connection ∇ on
E → G such that

(∇ZLv) (g) = Lθ(Z)v (g)

for all g ∈ G and all left invariant vector fields Z on G. Moreover, the
connection is metric. If G has a left invariant Riemannian metric, one can
define on E the canonical Sasaki metric induced by ∇, in such a way that the
map

(dπ,K)ξ : TξE → TgG× Eg

is a linear isometry for each ξ ∈ E (here g = π (ξ) and K is the connection
operator associated with ∇). The vector bundle E → G with the connection
above and the Sasaki metric is called the Riemannian vector bundle over G
induced by θ.

seccir1l: submitted to World Scientific on November 28, 2006 1



For example, the situation in the paper of Gluck and Ziller is a particular
case of the preceding: Think of S3 as the Lie group of unit quaternions with
the canonical bi-invariant (round) metric. If E is the Riemannian vector
bundle over S3 induced by

θ = 1
2 ad = 1

2 dAd (1)

and `g denotes left invariant multiplication by g, then

F : E → TG, F (g, v) = d`g (v)

is an affine vector bundle isomorphism, and moreover an isometry if E and
TG carry the corresponding Sasaki metrics. Via this isomorphism, Hopf vec-
tor fields are congruent to constant unit sections. Notice that the involved
vector space is three-dimensional, so the result of Gluck and Ziller is not a
consequence of the result in this paper, which deals with circle bundles.

As far as we know, the following results are the unique ones concerning
minima of the volume and energy of sections of sphere bundles, apart from
the trivial case where parallel unit sections exist.

a) A detailed study on the minimum of the volume and energy of unit vector
fields on tori can be found in 8 and 11, respectively.

b) Hopf vector fields on S3 are exactly those unit vector fields on S3 with
minimum volume 5 and minimum energy 1.

c) In 9 we prove an analogue of the main result of 5, also in the setting above,
for the Riemannian vector bundle over S3 induced by θ = 1

2 dρ (cf (1)), where
V is the algebra of quaternions and ρ is the representation of S3 on V given
by ρ (g)h = hg−1 (quaternionic multiplication). We also use calibrations.

d) For n ≥ 1, no unit tangent vector field on S2n+1 has minimum energy 2,3.

e) The two distinguished left invariant unit vector fields on a Berger three-
sphere are exactly those of minimum energy 6.

In this note we obtain one more result in this direction:

Theorem. Let G be a compact simply connected semisimple Lie group en-
dowed with a bi-invariant Riemannian metric and let E → G be the Rieman-
nian vector bundle over G induced by a linear map θ : g → o (V), where V is a
two-dimensional vector space with an inner product. Then the constant unit
sections are exactly those of minimum volume and minimum energy among
all smooth unit sections.
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Corollary. Under the hypotheses of the theorem, if θ 6= 0 there are no
parallel unit sections.

Remark. In fact, the proof shows that a stronger statement is true: The
result is still valid if the metric is only left invariant and some (or any) gener-
ator Z of (Ker θ)⊥ satisfies that exp (tZ) acts on G on the right by isometries
(or equivalently, Z is a Killing vector field of G).

Critical points of the energy of unit sections of Riemannian vector bundles
induced by a map θ as above (and more general) have been studied in 10.

Given a smooth unit section V : G → E, the volume of V is defined to
be the volume of the submanifold V (G) of E, with the induced metric. A
section is in particular a map from a Riemannian manifold to another, hence
one has the notion of the energy E (V ) of the section V . As in the case of
vector fields, there exist constants c1 and c2, depending only on the dimension
and the volume of G, such that

E (V ) = c1 + c2 B (V ) , (2)

where B (V ) =
∫

G
‖∇V ‖2 ω is the total bending of V on G (here (∇V )g :

TgM → Eg, ‖∇V ‖2 = tr (∇V )∗ (∇V ), the star denotes transpose and integra-
tion is taken with respect to the volume form ω associated to the Riemannian
metric of G).

Lemma. Let G be a compact Riemannian manifold and f : G → R a smooth
function satisfying

∫
G

f ω = 0. Then
∫

G

√
1 + (f + c)2 ω ≥ vol (G)

√
1 + c2 (3)

and
∫

G

(f + c)2 ω ≥ c2 vol (G) (4)

for any constant c ∈ R. Moreover, equality holds if and only if f vanishes
identically.

Proof. We may suppose without loss of generality that G has unit volume.
We verify (3): The function φ (x) =

√
1 + x2 is convex, hence, by Jensen’s

inequality 7 we have
∫

G

√
1 + (f + c)2 ω ≥ φ

(∫

G

(f + c) ω

)
=

√
1 + c2.
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The other inequality follows in a similar manner, using instead of φ the convex
function ψ (x) = x2. In both cases, since φ and ψ are strictly convex, equality
holds if and only if f + c (or equivalently f) is constant, and this clearly
happens if and only if f ≡ 0. ¤

We prove the Theorem by carefully computing and taking appropriate
lower bounds, as in 1.

Proof of the Theorem. We may suppose that θ 6= 0, otherwise for a unit
section it is equivalent being parallel, constant and realizing the minimum
of both functionals. Let {u, v} be an orthonormal basis of V and λ ∈ g∗

satisfying θ (Z)u = λ (Z) v and θ (Z) v = −λ (Z) u for all Z ∈ g. Let V be
a smooth unit section of E → G. Since G is simply connected, there exists a
smooth function α : G → R such that

V (g) = (g, cos (α (g)) u + sin (α (g)) v) (5)
= cos α (g)Lu (g) + sin α (g) Lv (g) .

By the definition of ∇, we have for any left invariant vector field Z on G that

∇ZLu = Lθ(Z)u = λ (Z)Lv and ∇ZLv = Lθ(Z)v = −λ (Z)Lu. (6)

From (5) and (6) we have

∇ZV = (Z (α) + λ (Z)) (− (sin α) Lu + (cos α) Lv) . (7)

On the other hand, let Z1 be a unit generator of (Ker θ)⊥ = (Ker λ)⊥. We
compute

Z1 (α) ω = dα (Z1) ω = dα ∧ iZ1ω = d (α iZ1ω)− α.d (iZ1ω)

(i denotes interior multiplication). By Stokes’ Theorem,
∫

G

Z1 (α) ω = −
∫

G

α.d (iZ1 ω) = −
∫

G

α. (div Z1) ω = 0, (8)

since div Z1 = 0 (Z1 is a Killing vector field on G because exp (tZ1) acts on
G on the right by isometries).

At each g ∈ G we have the operator (∇V )g : TgG → Eg = {g} × V ∼= V.
In the following we do not write explicitly the basepoint g. Let {Z1, . . . , Zn}
be an orthonormal left invariant parallelization, where Z1 is as above, and let
A be the matrix of ∇V with respect to the bases {Z1, . . . , Zn} and {u, v} . By
(7) and the choice of Z1, we have

A =
(− (sinα)X

(cos α)X

)
,
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with X = (Z1 (α) + λ (Z1) , Z2 (α) , . . . , Zn (α)) . Hence A∗A = X∗X and so,
if xi is the i-th component of X, we have

(A∗A)i,j = xixj . (9)

Energy: By (2), instead of the energy of V , we may consider its total bending,
which is given by

B (V ) =
∫

G

‖∇V ‖2 ω =
∫

G

tr (A∗A) ω =
∫

G

n∑

i=1

x2
i ω.

Therefore, by (8) and (4) with f = Z1 (α) and c = λ (Z1), we have

B (V ) ≥
∫

G

x2
1 ω =

∫

G

(Z1 (α) + λ (Z1))
2

ω ≥ vol (G) λ (Z1)
2
,

which equals the total bending of any constant unit section.

Volume: As for tangent bundles, we have

vol (V ) =
∫

G

√
det

(
Id + (∇V )∗ (∇V )

)
ω,

where Id is the identity on TG. By (9), if ei is the i-th element of the canonical
basis of Rn, we have

det (I + A∗A) = det (e1 + x1X, . . . , en + xnX)

= det (e1, . . . , en) +
n∑

i=1

det (e1, . . . , ei−1, xiX, ei+1, . . . , en)

= 1 + x2
1 + · · ·+ x2

n,

since det is n-linear and vanishes whenever two entries are proportional.
Therefore, by (8) and (3), with f = Z1 (α) and c = λ (Z1), we have

vol (V ) =
∫

G

√
1 + x2

1 + · · ·+ x2
n

≥
∫

G

√
1 + x2

1

≥ vol (G)
√

1 + λ (Z1)
2
,

which equals the volume of any constant unit section.
By the Lemma, both for the total bending and the volume, equality holds

if and only if Zi (α) = 0 for all i = 1, . . . , n, that is, if and only if α (or
equivalently the unit section V ) is constant. ¤
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Proof of the Corollary. Looking at the expressions for the volume and the
energy of unit sections, it is clear that these functionals attain the minimum
at parallel unit sections, provided they exist. By the Theorem they can exist
only if θ = 0, since otherwise the constant unit sections are not parallel. ¤
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