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Abstract

Let £ — M be a vector bundle with a metric connection over a
Riemannian manifold M and consider on E the Sasaki metric. We
find a condition for a section of the associated sphere bundle to be
a critical point of the energy among all smooth unit sections. We
apply the criterion to some particular cases where M is parallelizable,
for instance M = S7 or a compact simple Lie group G with a bi-
invariant metric, and F is the trivial vector bundle with a connection
induced by octonian multiplication or an irreducible real orthogonal
representation of GG, respectively. Generically, these bundles have no
parallel unit sections.

Mathematics Subject Classification 2000. Primary: 53C20, 58E15. Sec-
ondary: 53C30, 58E20.

Introduction

Beginning with G. Wiegmink and C. M. Wood [5, 6], critical points of the
energy of unit tangent fields have been extensively studied (see for instance
in [1] the abundant bibliography on the subject). We are interested in a
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natural generalization, namely, critical points of the energy of sections of
sphere bundles.

Let m : £ — M be a vector bundle with a metric connection V over
an oriented Riemannian manifold, that is, each fiber has an inner product
depending smoothly on the base point and

Z (VW) = (VzV,IW) + (V,VzIWV)

for all vector fields Z on M and all smooth sections V, W of E.
On E one can define the canonical Sasaki metric associated with V in
such a way that the map

(dm,K)e : TeE — TyM x B,

is a linear isometry for each £ € E (here ¢ = 7w (§) and K is the connection
operator associated with V).

Let 7 : E — M be as before and denote by E' = {£ € E | ||€|| = 1} the
associated sphere bundle. Let N be a relatively compact open subset of M
with smooth (possibly empty) boundary. Given a smooth section V' : M —
E', the total bending of V on N is defined by

By (V) = /N Ve,

where (VV), : T,M — E,, IVV|? = tr (VV)* (VV) and integration is taken
with respect to the volume associated to the Riemannian metric of M.

Consider on E the Sasaki metric. As in the case of vector fields, there
exist constants ¢; and ¢y, depending only on the dimension and the volume of
N, such that the energy £y of the section V', thought of as map V : N — F|
is given by

5N (V) = C +CQBN (V)

In the following we refer to the energy of the section instead of the bending,
since that is a subject more commonly studied. In every example we will
be concerned with the nonexistence of parallel unit sections, since they are
trivial minima of the functional.

Definition. A smooth section V : M — E' is said to be a harmonic section
if for every relatively compact open subset N of M with smooth (possibly
empty) boundary, V' is a critical point of the functional By (or equivalently, of
the energy €y) applied to smooth sections W of M satisfying W,y = V|,y-
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Notice that a harmonic section may be not a harmonic map from M to
E! (see for example [2, 3], where E = TM).

The rough Laplacian A acts on smooth sections of E as follows:

n

(AV) (p) = Z (Vz:Vz:V)(p),

i=1

where {Z%|i=1,...,n} is any section of orthonormal frames on a neigh-
borhood of p in M satisfying (V£ Z7) (p) = 0 for all 4, j.

Theorem 1 Let m : E — M be a vector bundle with a metric connection
over an oriented Riemannian manifold and consider on E the associated
Sasaki metric. The section V : M — E' is a harmonic section if and only if
there is a smooth real function f on M such that

AV = fV.

Remark. This condition was proved for the particular case where F is the
tangent bundle, by Wiegmink [5] and Wood [6] for compact manifolds and
by Gil-Medrano [1] for general (not necessarily compact) manifolds (with a
different presentation). Their proofs can be adapted to the present more
general case.

Applications

Let M be a parallelizable manifold with a fixed parallelization {X?!,... X"}.
Let V be a finite dimensional vector space with an inner product and o (V)
the set of all skew-symmetric endomorphisms of V. Let £ = M xV — M
be the trivial vector bundle. For v € V, let L, : M — E be the “constant”
section L, (p) = (p,v).

Proposition 2 Given a map 0 : {X',..., X"} — o(V), there erists a
unique connection V on E — M such that

(VxiLy) (p) = Loxiy (p) (1)

forallp e M and all i = 1,...,n. Moreover, the connection is metric.



Proof. Let {vi,...,v,} be an orthonormal basis of V. Let X € T,M and
o: M — E be a smooth section. Then

X = f: a;X"(p)  and o= 2": fiLy,
i=1 j=1

for some numbers a; and smooth functions f; : M — R. A standard compu-
tation shows that

n

(Vxo)(p) = Z Z a; (X2 (f;) Lo, (p) + f; (p) (Locxipe,) (P))

defines a connection on E satisfying condition (1), which is metric since
0 (X") is skew-symmetric for all 4. O

Examples.

(1) The Levi-Civita connection of a Lie group G with a left invariant
Riemannian metric may be obtained in this way: Let g be the Lie algebra
of G endowed with an arbitrary inner product. Let V be the connection on
E =G xg— G induced by 0 : g — 0 (g) given by

1 * *
0(X)Y = 3 (adxY — (adx)" Y — (ady)” X),
and any left invariant parallelization of G, where * means transpose with
respect to the inner product at the identity. In this case the map

F:E—-TG, F(g,v)=dl,(v) (2)

(¢, denotes left multiplication by g) is an affine vector bundle isomorphism,
and moreover an isometry if £ and T'G carry the corresponding Sasaki met-
rics.

(2) A particular case of (1) is the following: If the metric on G is bi-
invariant, or equivalently the inner product is Ad (G)-invariant, we have
1
0(X)Y = 5 (X,Y].
(3) Let G be a compact connected Lie group and (V, p) a real orthogonal
representation of G. Proposition 2 provides a connection Von E =G xV —
(G induced by any left invariant parallelization and 6 = A dp, for some A € R.
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Let E =G xV — G as in Example 3. For v € V, let R, the section of F
defined by

R,(9)=(9.p(g7")v). (3)

The sections L, and R, are called left and right invariant, respectively, since
in the particular case where V = g, p = Ad they correspond to left and right
invariant vector fields, respectively, via the isomorphism (2).

Remark. Although the vector bundles F — G of Example 3 are topolog-
ically trivial (as for instance the tangent spaces of parallelizable manifolds
are) in most cases they are not geometrically trivial, as shown in (b) of the
following Theorem.

Theorem 3 Let G be a compact connected simple Lie group endowed with a
bi-invariant Riemannian metric. Let (V, p) be an irreducible real orthogonal
representation of G and let E = G x V with the Sasaki metric induced by the
connection associated to any left invariant parallelization of G and 6 = A\dp,
for some A € R. The following assertions are true:

(a) The left and right invariant unit sections are harmonic sections of
E' - G.

(b) If A\ =0 or A =1, then L, or R,, respectively, are parallel sections for
allve V. If 0 # X # 1, then the bundle E — G has no parallel unit sections.

Remarks. (a) The result is still valid if G is semisimple and the metric of
G is a negative multiple of the Killing form.

(b) If (V,p) = (g, Ad) and A\ = 1/2, we have the well-known fact that
the unit left invariant vector fields on G are harmonic sections of 7'G — G,
since they are Killing vector fields and G is Einstein [5] (see in [3, Section 4]
the case where the bi-invariant metric is not Einstein).

We need the following Lemma to prove the Theorem.

Lemma 4 Let V be the connection on the bundle E — G in the hypothesis
of Theorem 3. If Z is a left invariant vector field on G, then

(V2VzR,) (9) = (9, (A= 1)*dp (Z2)°p(g7") v) (4)

forallge G,veV.



Proof. Let V be a smooth section of £ — G and suppose that V (h) =
(h,u(h)). Denote w(h) = (d/dt),u(hexp(tZ)) and v (t) = gexp (tZ) for
t ~ 0. We may assume that Z # 0, otherwise the assertion is trivial. A
smooth section W such that

W (v (1)) = (cost) Lugg) (v (1)) + (sint) Lug) (v (¢))
satisfies W (g) = V (g) and (W o~)" (0) = (V o) (0). Hence, (VzV)(g9) =
(VzW) (g), which by (1) equals
Lidp(zyu(a) (9) + Lu(g) (9) = (9, Adp (Z) u(g) +w (g)) -
Applying this procedure to V' = R, that is, u (k) = p(h™')v and w (h) =
—dp (Z) p(h™1) v, one obtains

(VzR.) (9) = (9. (A =1)dp(Z) p(g7) v). (5)
Finally, applying again the procedure to the section V =V R,, one obtains
(4). O

Proof of Theorem 3. (a) Let {Z;,...,Z,} be an orthonormal basis of g
and consider on G the associated left invariant parallelization. Given v € V,
by (1) we compute

(AL)(G) = Y (V2V2L0) (9) = Y Ly (9

) (WZ@ <zi>zv) = (9,2, ().

where C, is a multiple of the Casimir of the representation p (notice that
the metric is a negative multiple of the Killing form). Now, the Casimir is a
multiple of the identity, since p is irreducible (a direct application of Schur’s
Lemma). Hence, AL, = uL, for some p and so L, is a harmonic section of
E' — G by Theorem 1. On the other hand, a straightforward computation
shows that
dp(Z)p(97") = p(97") dp(Ad (9) 2)

for all g € G and Z € g. Hence, if we call U = Ad (g) Z¢, we have by Lemma
4 that

n

(AR, (g9) = > <g7 A=1)7p(g7")dp (Ui)2v)

=1

= (9. 0=1)%p(g71)C,(v)),
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since {U'|i=1,...,n} is an orthonormal basis of g (the metric on G is
bi-invariant). As before, C, is a multiple fi of the identity, hence AR, =
(A — 1)2 R,, which implies by Theorem 1 that R, is a harmonic section of
E' - G.

(b) If A = 0, clearly L, is parallel by definition of the connection. If
A =1, then R, is parallel by (5). Suppose that a smooth unit section V' with
V (e) = (e, v) is parallel. Then, for X,Y € g the curvature

R(X,Y)(e,v) = (VxVyL,—VyVxL, — VixyLy) (€)
= (e [0(X), (Y)]v—G[X,Y]v)
= (e, X [dp(X),dp(Y)]v— Adp[X,Y]v)
(e, AN =1)dp[X,Y]v)

vanishes. If G is semisimple, [g,g] = g. Hence, 0 # A # 1 implies that
dp(Z)v =0 for all Z € g. This contradicts the fact that p is irreducible. O

Next we deal with an analogue of the particular case of Theorem 3 when
V = H is the algebra of quaternions, G = S® = {g€H]| |q| =1} and
p(q) X = ¢.X (quaternion multiplication) for X € ImH = T153. (It is not a
particular case of Theorem 3, since S” is not a Lie group.)

Let O = R® denote the octonians with the canonical inner product and let

={q € O ||q| =1} with the induced metric. The tangent space of S7 at
the identity may be identified with Im O, the purely imaginary octonians. Fix
an orthonormal basis {z1,...,27} of ImO and consider the parallelization
of S consisting of the corresponding left invariant vector fields X’s, that is,
Xi(q) = q.x' € ¢+ = T,S". By analogy with (3), given v € O, we define the
section R, of the trivial vector bundle S” x O — S7 by R, (q) = (q,qv) .

Theorem 5 Let E = S™” x O — S7 be the trivial vector bundle with the
connection V induced by

9:{X1,...,X7}—>0(O), Q(Xi)v:/\xiv,

with A € R, and consider on E the Sasaki metric induced by V. The connec-
tion is independent of the choice of the orthonormal basis of ImO. Ifv € O
with |v| = 1, the following assertions are true for the sections L,, R, of the
associated spherical bundle ' — S7.

(a) If A =0, then L, and R, are harmonic sections. If X # 0, then L, is
a harmonic section and R, is a harmonic section if and only if v = %1.
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(b) If 0 # X\ # 1, then the bundle E* — ST has no parallel sections. The
section L, 1s parallel if and only if A = 0, and R, s parallel if and only if
A=1andv==l1.

Before proving the theorem we recall from Chapter 6 of [4] some facts
about the octonians O (also called Cayley numbers), which are a non-asso-
ciative normed algebra with identity, isomorphic to R® as an inner product
vector space. The algebra O is H x H, with the multiplication given by

(a,b) (c,d) = (ac — db,da + bE) . (6)
Setting 1 = (1,0) and e = (0, 1), one writes (a,b) = a+ be. If u = a+ x with
a € R.1 and (x,1) = 0, the conjugate of u is « = a — x and (u,v) = Re (uv)
holds for all u,v € O. If # € Im O = 1+ with |z| = 1, then
2= —x% = — |x\2 = —1. (7)
Moreover, if (u,v) = 0, then
u (vw) = —v (uw) (8)
for all w. From Lemma 6.11 of [4] and its proof we have that the associator
[u, v, w] = (uv) w — u (Vw)

is an alternating 3-linear form which vanishes either if one of the arguments is
real or if two consecutive arguments are conjugate. In particular, if x € Im O
with |z| = 1, we have by (7) that for all v,

z (zv) = (2°) v — [z,2,0] = —v + [2,Z,v] = —v. 9)

Lemma 6 Let z = xy be an element of the basis of Im O considered above
and denote Z = X,. Then for unit octonians v and q one has

(VzR,) (q) = (¢, Az (qv) — (2q) v) (10)
and

(VzV2zR,) () = — (1 +2?) Ry (q) — 2A (¢, 2 ((29) v)) - (11)



Proof. The assertions follow proceeding as in the proof of Lemma 4, set-
ting p(¢) X = ¢X and dp(z) X = zX, taking into account that O is not
associative and using (9). O

Proof of Theorem 5. (a) First we show that 6 (X?) is skew symmetric for
alli =1,...,7. Indeed, given v € O, since x; € Im O, then

(Az;v,v) = ARe ((z;v) 0) = ARe ([z;,v,70] — z; |v|2) =0,

by one of the properties of the associator mentioned above. On the other
hand, by definition of the connection and (9), we compute

7
(AL)(q) = > (VxiVxiLy) ZLW v (q) =
=1

_ (qv - ZA”> = (¢, ~7\v) = =TN’Ly (q) -

By Theorem 1, L, is a harmonic section of E* — S7 for any A and using (11)
and (9), R, is a harmonic section if A = 0 or v = +1. Now we consider the
case A # 0. If R, is a harmonic section, by Theorem 1 and (11) there exists
a smooth function f on S7 such that

S e () v) = f (q) v (12)

(=1

for all ¢ € S7. By Proposition 6.40 in [4], based on a theorem of Artin, we
may suppose without loss of generality that v = a + bi, with a® 4+ b? = 1. We
must show that b = 0. Take § = ¢ + dj with ¢ + d?> = 1 and suppose that
{z,| € =1,...,7} is the canonical basis {i, j, k, e, ie, je, ke} . Now a straight-
forward computation using (6) and (9) yields that >,z ((z4)7) = —F.
Setting & = ac + cbi + adj, equality (12) becomes

—7¢ — dbk = f (c — dj) (€ — dbk) .

Suppose that b # 0. If b = +1 (so a = 0), taking ¢ = d # 0, one has
1=f(c—dj)=—=7.1fb# £1 (so a # 0), taking ¢ = 0,d = 1, one gets also
a contradiction. Thus, b = 0 as desired.

(b) By definition of the connection, L, is parallel if and only if A = 0.
Suppose that 0 # A # 1. As in the proof of Theorem 3 (b), we show that for

9



any v € O, v # 0, there exist an orthonormal set {z,y} C 7157 =Im O such
that the curvature R (z,y)v # 0. Let X, Y be the left invariant vector fields
on S7 corresponding to x and y, respectively. By Proposition 6.40 of [4], based
on a theorem of Artin, the span H of {1,z,y,zy} is a normed subalgebra
isomorphic to the quaternions. Hence, one can think of X, Y as left invariant
vector fields on the Lie group S* = H N S7. Therefore [X,Y] (1) = zy — yx.
Using (8) we compute

R(z,y)v = (vayLv —VyVxL, — V[Xy]Lv) (1)
= N (yv) — Ny (zv) = A (zy — yz)v
= 22 (Az (yv) — (zy)v)
= 22((A=1) (zy)v — Az, y,9]).

If v = £1, for any orthonormal set {x,y} CIm O one has clearly
R(z,y)v=22\(A—1)xy #0.

If v # 41, then v := Imv # 0 and taking an orthonormal set {x,y} in
Im O, with y = u/ |u|, by the properties of the associator given after (8), one
has R (z,y)v = 2A (A — 1) (xy) v # 0. Finally, by (10), R, is not parallel if
A=0,and if A =1, then (VzR,) (¢) = (¢, — [2,q,v]) for all g € S7, Rez = 0.
Similar arguments yield that in this case R, is parallel if and only if v = +1.
This concludes the proof of (b). 0
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