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Abstract

Let E → M be a vector bundle with a metric connection over a
Riemannian manifold M and consider on E the Sasaki metric. We
find a condition for a section of the associated sphere bundle to be
a critical point of the energy among all smooth unit sections. We
apply the criterion to some particular cases where M is parallelizable,
for instance M = S7 or a compact simple Lie group G with a bi-
invariant metric, and E is the trivial vector bundle with a connection
induced by octonian multiplication or an irreducible real orthogonal
representation of G, respectively. Generically, these bundles have no
parallel unit sections.

Mathematics Subject Classification 2000. Primary: 53C20, 58E15. Sec-
ondary: 53C30, 58E20.

Introduction

Beginning with G. Wiegmink and C. M. Wood [5, 6], critical points of the
energy of unit tangent fields have been extensively studied (see for instance
in [1] the abundant bibliography on the subject). We are interested in a
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natural generalization, namely, critical points of the energy of sections of
sphere bundles.

Let π : E → M be a vector bundle with a metric connection ∇ over
an oriented Riemannian manifold, that is, each fiber has an inner product
depending smoothly on the base point and

Z 〈V,W 〉 = 〈∇ZV, W 〉+ 〈V,∇ZW 〉
for all vector fields Z on M and all smooth sections V, W of E.

On E one can define the canonical Sasaki metric associated with ∇ in
such a way that the map

(dπ,K)ξ : TξE → TqM × Eq

is a linear isometry for each ξ ∈ E (here q = π (ξ) and K is the connection
operator associated with ∇).

Let π : E → M be as before and denote by E1 = {ξ ∈ E | ‖ξ‖ = 1} the
associated sphere bundle. Let N be a relatively compact open subset of M
with smooth (possibly empty) boundary. Given a smooth section V : M →
E1, the total bending of V on N is defined by

BN (V ) =

∫

N

‖∇V ‖2 ,

where (∇V )p : TpM → Ep, ‖∇V ‖2 = tr (∇V )∗ (∇V ) and integration is taken
with respect to the volume associated to the Riemannian metric of M .

Consider on E the Sasaki metric. As in the case of vector fields, there
exist constants c1 and c2, depending only on the dimension and the volume of
N , such that the energy EN of the section V , thought of as map V : N → E,
is given by

EN (V ) = c1 + c2 BN (V ) .

In the following we refer to the energy of the section instead of the bending,
since that is a subject more commonly studied. In every example we will
be concerned with the nonexistence of parallel unit sections, since they are
trivial minima of the functional.

Definition. A smooth section V : M → E1 is said to be a harmonic section
if for every relatively compact open subset N of M with smooth (possibly
empty) boundary, V is a critical point of the functional BN (or equivalently, of
the energy EN) applied to smooth sections W of M satisfying W |∂N = V |∂N .
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Notice that a harmonic section may be not a harmonic map from M to
E1 (see for example [2, 3], where E = TM).

The rough Laplacian ∆ acts on smooth sections of E as follows:

(∆V ) (p) =
n∑

i=1

(∇Zi∇ZiV ) (p) ,

where {Zi | i = 1, . . . , n} is any section of orthonormal frames on a neigh-
borhood of p in M satisfying (∇ZiZj) (p) = 0 for all i, j.

Theorem 1 Let π : E → M be a vector bundle with a metric connection
over an oriented Riemannian manifold and consider on E the associated
Sasaki metric. The section V : M → E1 is a harmonic section if and only if
there is a smooth real function f on M such that

∆V = fV .

Remark. This condition was proved for the particular case where E is the
tangent bundle, by Wiegmink [5] and Wood [6] for compact manifolds and
by Gil-Medrano [1] for general (not necessarily compact) manifolds (with a
different presentation). Their proofs can be adapted to the present more
general case.

Applications

Let M be a parallelizable manifold with a fixed parallelization {X1, . . . , Xn}.
Let V be a finite dimensional vector space with an inner product and o (V)
the set of all skew-symmetric endomorphisms of V . Let E = M × V → M
be the trivial vector bundle. For v ∈ V , let Lv : M → E be the “constant”
section Lv (p) = (p, v) .

Proposition 2 Given a map θ : {X1, . . . , Xn} → o (V) , there exists a
unique connection ∇ on E → M such that

(∇XiLv) (p) = Lθ(Xi)v (p) (1)

for all p ∈ M and all i = 1, . . . , n. Moreover, the connection is metric.
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Proof. Let {v1, . . . , vn} be an orthonormal basis of V . Let X ∈ TpM and
σ : M → E be a smooth section. Then

X =
m∑

i=1

aiX
i (p) and σ =

n∑
j=1

fjLvj

for some numbers ai and smooth functions fj : M → R. A standard compu-
tation shows that

(∇Xσ) (p) =
m∑

i=1

n∑
j=1

ai

(
X i

p (fj) Lvj
(p) + fj (p)

(
Lθ(Xi)vj

)
(p)

)

defines a connection on E satisfying condition (1), which is metric since
θ (X i) is skew-symmetric for all i. ¤
Examples.

(1) The Levi-Civita connection of a Lie group G with a left invariant
Riemannian metric may be obtained in this way: Let g be the Lie algebra
of G endowed with an arbitrary inner product. Let ∇ be the connection on
E = G× g → G induced by θ : g → o (g) given by

θ (X) Y =
1

2
(adXY − (adX)∗ Y − (adY )∗ X) ,

and any left invariant parallelization of G, where ∗ means transpose with
respect to the inner product at the identity. In this case the map

F : E → TG, F (g, v) = d`g (v) (2)

(`g denotes left multiplication by g) is an affine vector bundle isomorphism,
and moreover an isometry if E and TG carry the corresponding Sasaki met-
rics.

(2) A particular case of (1) is the following: If the metric on G is bi-
invariant, or equivalently the inner product is Ad (G)-invariant, we have

θ (X) Y =
1

2
[X, Y ] .

(3) Let G be a compact connected Lie group and (V , ρ) a real orthogonal
representation of G. Proposition 2 provides a connection ∇ on E = G×V →
G induced by any left invariant parallelization and θ = λ dρ, for some λ ∈ R.
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Let E = G×V → G as in Example 3. For v ∈ V , let Rv the section of E
defined by

Rv (g) =
(
g, ρ

(
g−1

)
v
)
. (3)

The sections Lv and Rv are called left and right invariant, respectively, since
in the particular case where V = g, ρ = Ad they correspond to left and right
invariant vector fields, respectively, via the isomorphism (2).

Remark. Although the vector bundles E → G of Example 3 are topolog-
ically trivial (as for instance the tangent spaces of parallelizable manifolds
are) in most cases they are not geometrically trivial, as shown in (b) of the
following Theorem.

Theorem 3 Let G be a compact connected simple Lie group endowed with a
bi-invariant Riemannian metric. Let (V , ρ) be an irreducible real orthogonal
representation of G and let E = G×V with the Sasaki metric induced by the
connection associated to any left invariant parallelization of G and θ = λdρ,
for some λ ∈ R. The following assertions are true:

(a) The left and right invariant unit sections are harmonic sections of
E1 → G.

(b) If λ = 0 or λ = 1, then Lv or Rv, respectively, are parallel sections for
all v ∈ V . If 0 6= λ 6= 1, then the bundle E → G has no parallel unit sections.

Remarks. (a) The result is still valid if G is semisimple and the metric of
G is a negative multiple of the Killing form.

(b) If (V , ρ) = (g, Ad) and λ = 1/2, we have the well-known fact that
the unit left invariant vector fields on G are harmonic sections of T 1G → G,
since they are Killing vector fields and G is Einstein [5] (see in [3, Section 4]
the case where the bi-invariant metric is not Einstein).

We need the following Lemma to prove the Theorem.

Lemma 4 Let ∇ be the connection on the bundle E → G in the hypothesis
of Theorem 3. If Z is a left invariant vector field on G, then

(∇Z∇ZRv) (g) =
(
g, (λ− 1)2 dρ (Z)2 ρ

(
g−1

)
v
)

(4)

for all g ∈ G, v ∈ V .
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Proof. Let V be a smooth section of E → G and suppose that V (h) =
(h, u (h)). Denote w (h) = (d/dt)0 u (h exp (tZ)) and γ (t) = g exp (tZ) for
t ∼ 0. We may assume that Z 6= 0, otherwise the assertion is trivial. A
smooth section W such that

W (γ (t)) = (cos t) Lu(g) (γ (t)) + (sin t) Lw(g) (γ (t))

satisfies W (g) = V (g) and (W ◦ γ)′ (0) = (V ◦ γ)′ (0) . Hence, (∇ZV ) (g) =
(∇ZW ) (g) , which by (1) equals

Lλ dρ(Z)u(g) (g) + Lw(g) (g) = (g, λ dρ (Z) u (g) + w (g)) .

Applying this procedure to V = Rv, that is, u (h) = ρ (h−1) v and w (h) =
−dρ (Z) ρ (h−1) v, one obtains

(∇ZRv) (g) =
(
g, (λ− 1) dρ (Z) ρ

(
g−1

)
v
)
. (5)

Finally, applying again the procedure to the section V = ∇ZRv, one obtains
(4). ¤

Proof of Theorem 3. (a) Let {Z1, . . . , Zn} be an orthonormal basis of g

and consider on G the associated left invariant parallelization. Given v ∈ V ,
by (1) we compute

(∆Lv) (g) =
n∑

i=1

(∇Zi∇ZiLv) (g) =
n∑

i=1

Lλ2dρ(Zi)2v (g)

=

(
g, λ2

n∑
i=1

dρ
(
Zi

)2
v

)
=

(
g, λ2Cρ (v)

)
,

where Cρ is a multiple of the Casimir of the representation ρ (notice that
the metric is a negative multiple of the Killing form). Now, the Casimir is a
multiple of the identity, since ρ is irreducible (a direct application of Schur’s
Lemma). Hence, ∆Lv = µLv for some µ and so Lv is a harmonic section of
E1 → G by Theorem 1. On the other hand, a straightforward computation
shows that

dρ (Z) ρ
(
g−1

)
= ρ

(
g−1

)
dρ (Ad (g) Z)

for all g ∈ G and Z ∈ g. Hence, if we call U i = Ad (g) Zi, we have by Lemma
4 that

(∆Rv) (g) =
n∑

i=1

(
g, (λ− 1)2 ρ

(
g−1

)
dρ

(
U i

)2
v
)

=
(
g, (λ− 1)2 ρ

(
g−1

) Cρ (v)
)
,
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since {U i | i = 1, . . . , n} is an orthonormal basis of g (the metric on G is
bi-invariant). As before, Cρ is a multiple µ̄ of the identity, hence ∆Rv =
µ̄ (λ− 1)2 Rv, which implies by Theorem 1 that Rv is a harmonic section of
E1 → G.

(b) If λ = 0, clearly Lv is parallel by definition of the connection. If
λ = 1, then Rv is parallel by (5). Suppose that a smooth unit section V with
V (e) = (e, v) is parallel. Then, for X,Y ∈ g the curvature

R (X, Y ) (e, v) =
(∇X∇Y Lv −∇Y∇XLv −∇[X,Y ]Lv

)
(e)

= (e, [θ (X) , θ (Y )] v − θ [X, Y ] v)

=
(
e, λ2 [dρ (X) , dρ (Y )] v − λdρ [X,Y ] v

)

= (e, λ (λ− 1) dρ [X,Y ] v)

vanishes. If G is semisimple, [g, g] = g. Hence, 0 6= λ 6= 1 implies that
dρ (Z) v = 0 for all Z ∈ g. This contradicts the fact that ρ is irreducible. ¤

Next we deal with an analogue of the particular case of Theorem 3 when
V = H is the algebra of quaternions, G = S3 = {q ∈ H | |q| = 1} and
ρ (q) X = q.X (quaternion multiplication) for X ∈ ImH = T1S

3. (It is not a
particular case of Theorem 3, since S7 is not a Lie group.)

Let O ∼= R8 denote the octonians with the canonical inner product and let
S7 = {q ∈ O | |q| = 1} with the induced metric. The tangent space of S7 at
the identity may be identified with ImO, the purely imaginary octonians. Fix
an orthonormal basis {x1, . . . , x7} of ImO and consider the parallelization
of S7 consisting of the corresponding left invariant vector fields X i’s, that is,
X i (q) = q.xi ∈ q⊥ = TqS

7. By analogy with (3), given v ∈ O, we define the
section Rv of the trivial vector bundle S7 ×O → S7 by Rv (q) = (q, q̄v) .

Theorem 5 Let E = S7 × O → S7 be the trivial vector bundle with the
connection ∇ induced by

θ :
{
X1, . . . , X7

} → o (O) , θ
(
X i

)
v = λ xiv,

with λ ∈ R, and consider on E the Sasaki metric induced by ∇. The connec-
tion is independent of the choice of the orthonormal basis of ImO. If v ∈ O
with |v| = 1, the following assertions are true for the sections Lv, Rv of the
associated spherical bundle E1 → S7.

(a) If λ = 0, then Lv and Rv are harmonic sections. If λ 6= 0, then Lv is
a harmonic section and Rv is a harmonic section if and only if v = ±1.
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(b) If 0 6= λ 6= 1, then the bundle E1 → S7 has no parallel sections. The
section Lv is parallel if and only if λ = 0, and Rv is parallel if and only if
λ = 1 and v = ±1.

Before proving the theorem we recall from Chapter 6 of [4] some facts
about the octonians O (also called Cayley numbers), which are a non-asso-
ciative normed algebra with identity, isomorphic to R8 as an inner product
vector space. The algebra O is H×H, with the multiplication given by

(a, b) (c, d) =
(
ac− d̄b, da + bc̄

)
. (6)

Setting 1 = (1, 0) and e = (0, 1) , one writes (a, b) = a+ be. If u = a+ x with
a ∈ R.1 and 〈x, 1〉 = 0, the conjugate of u is ū = a− x and 〈u, v〉 = Re (uv̄)
holds for all u, v ∈ O. If x ∈ ImO = 1⊥ with |x| = 1, then

x2 = −xx̄ = − |x|2 = −1. (7)

Moreover, if 〈u, v〉 = 0, then

u (v̄w) = −v (ūw) (8)

for all w. From Lemma 6.11 of [4] and its proof we have that the associator

[u, v, w] = (uv) w − u (vw)

is an alternating 3-linear form which vanishes either if one of the arguments is
real or if two consecutive arguments are conjugate. In particular, if x ∈ ImO
with |x| = 1, we have by (7) that for all v,

x (xv) =
(
x2

)
v − [x, x, v] = −v + [x, x̄, v] = −v. (9)

Lemma 6 Let z = x` be an element of the basis of ImO considered above
and denote Z = X`. Then for unit octonians v and q one has

(∇ZRv) (q) = (q, λz (q̄v)− (zq̄) v) (10)

and

(∇Z∇ZRv) (q) = − (
1 + λ2

)
Rv (q)− 2λ (q, z ((zq̄) v)) . (11)
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Proof. The assertions follow proceeding as in the proof of Lemma 4, set-
ting ρ (q) X = qX and dρ (z) X = zX, taking into account that O is not
associative and using (9). ¤

Proof of Theorem 5. (a) First we show that θ (X i) is skew symmetric for
all i = 1, . . . , 7. Indeed, given v ∈ O, since xi ∈ ImO, then

〈λxiv, v〉 = λRe ((xiv) v̄) = λ Re
(
[xi, v, v̄]− xi |v|2

)
= 0,

by one of the properties of the associator mentioned above. On the other
hand, by definition of the connection and (9), we compute

(∆Lv) (q) =
7∑

i=1

(∇Xi∇XiLv) (q) =
7∑

i=1

Lλ2xi(xiv) (q) =

=

(
q,−

7∑
i=1

λ2v

)
=

(
q,−7λ2v

)
= −7λ2Lv (q) .

By Theorem 1, Lv is a harmonic section of E1 → S7 for any λ and using (11)
and (9), Rv is a harmonic section if λ = 0 or v = ±1. Now we consider the
case λ 6= 0. If Rv is a harmonic section, by Theorem 1 and (11) there exists
a smooth function f on S7 such that

7∑

`=1

x` ((x`q̄) v) = f (q) q̄v (12)

for all q ∈ S7. By Proposition 6.40 in [4], based on a theorem of Artin, we
may suppose without loss of generality that v = a + bi, with a2 + b2 = 1. We
must show that b = 0. Take q̄ = c + dj with c2 + d2 = 1 and suppose that
{x` | ` = 1, . . . , 7} is the canonical basis {i, j, k, e, ie, je, ke} . Now a straight-
forward computation using (6) and (9) yields that

∑7
`=1 x` ((x`j) i) = −k.

Setting ξ = ac + cbi + adj, equality (12) becomes

−7ξ − dbk = f (c− dj) (ξ − dbk) .

Suppose that b 6= 0. If b = ±1 (so a = 0), taking c = d 6= 0, one has
1 = f (c− dj) = −7. If b 6= ±1 (so a 6= 0), taking c = 0, d = 1, one gets also
a contradiction. Thus, b = 0 as desired.

(b) By definition of the connection, Lv is parallel if and only if λ = 0.
Suppose that 0 6= λ 6= 1. As in the proof of Theorem 3 (b), we show that for

9



any v ∈ O, v 6= 0, there exist an orthonormal set {x, y} ⊂ T1S
7 = ImO such

that the curvature R (x, y) v 6= 0. Let X, Y be the left invariant vector fields
on S7 corresponding to x and y, respectively. By Proposition 6.40 of [4], based
on a theorem of Artin, the span H of {1, x, y, xy} is a normed subalgebra
isomorphic to the quaternions. Hence, one can think of X,Y as left invariant
vector fields on the Lie group S3 = H ∩ S7. Therefore [X, Y ] (1) = xy − yx.
Using (8) we compute

R (x, y) v =
(∇X∇Y Lv −∇Y∇XLv −∇[X,Y ]Lv

)
(1)

= λ2x (yv)− λ2y (xv)− λ (xy − yx) v

= 2λ (λx (yv)− (xy) v)

= 2λ ((λ− 1) (xy) v − λ [x, y, v]) .

If v = ±1, for any orthonormal set {x, y} ⊂ ImO one has clearly

R (x, y) v = ±2λ (λ− 1) xy 6= 0.

If v 6= ±1, then u := Im v 6= 0 and taking an orthonormal set {x, y} in
ImO, with y = ū/ |u| , by the properties of the associator given after (8), one
has R (x, y) v = 2λ (λ− 1) (xy) v 6= 0. Finally, by (10), Rv is not parallel if
λ = 0, and if λ = 1, then (∇ZRv) (q) = (q,− [z, q̄, v]) for all q ∈ S7, Re z = 0.
Similar arguments yield that in this case Rv is parallel if and only if v = ±1.
This concludes the proof of (b). ¤
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