On the energy of sections of trivializable sphere bundles

Marcos Salvai*
FaMAF - CIEM
Ciudad Universitaria, 5000 Córdoba, Argentina
salvai@mate.uncor.edu

Abstract

Let $E \rightarrow M$ be a vector bundle with a metric connection over a Riemannian manifold M and consider on E the Sasaki metric. We find a condition for a section of the associated sphere bundle to be a critical point of the energy among all smooth unit sections. We apply the criterion to some particular cases where M is parallelizable, for instance $M=S^{7}$ or a compact simple Lie group G with a biinvariant metric, and E is the trivial vector bundle with a connection induced by octonian multiplication or an irreducible real orthogonal representation of G, respectively. Generically, these bundles have no parallel unit sections.

Mathematics Subject Classification 2000. Primary: 53C20, 58E15. Secondary: 53C30, 58E20.

Introduction

Beginning with G. Wiegmink and C. M. Wood [5, 6], critical points of the energy of unit tangent fields have been extensively studied (see for instance in [1] the abundant bibliography on the subject). We are interested in a

[^0]natural generalization, namely, critical points of the energy of sections of sphere bundles.

Let $\pi: E \rightarrow M$ be a vector bundle with a metric connection ∇ over an oriented Riemannian manifold, that is, each fiber has an inner product depending smoothly on the base point and

$$
Z\langle V, W\rangle=\left\langle\nabla_{Z} V, W\right\rangle+\left\langle V, \nabla_{Z} W\right\rangle
$$

for all vector fields Z on M and all smooth sections V, W of E.
On E one can define the canonical Sasaki metric associated with ∇ in such a way that the map

$$
(d \pi, \mathcal{K})_{\xi}: T_{\xi} E \rightarrow T_{q} M \times E_{q}
$$

is a linear isometry for each $\xi \in E$ (here $q=\pi(\xi)$ and \mathcal{K} is the connection operator associated with ∇).

Let $\pi: E \rightarrow M$ be as before and denote by $E^{1}=\{\xi \in E \mid\|\xi\|=1\}$ the associated sphere bundle. Let N be a relatively compact open subset of M with smooth (possibly empty) boundary. Given a smooth section $V: M \rightarrow$ E^{1}, the total bending of V on N is defined by

$$
\mathcal{B}_{N}(V)=\int_{N}\|\nabla V\|^{2}
$$

where $(\nabla V)_{p}: T_{p} M \rightarrow E_{p},\|\nabla V\|^{2}=\operatorname{tr}(\nabla V)^{*}(\nabla V)$ and integration is taken with respect to the volume associated to the Riemannian metric of M.

Consider on E the Sasaki metric. As in the case of vector fields, there exist constants c_{1} and c_{2}, depending only on the dimension and the volume of N, such that the energy \mathcal{E}_{N} of the section V, thought of as map $V: N \rightarrow E$, is given by

$$
\mathcal{E}_{N}(V)=c_{1}+c_{2} \mathcal{B}_{N}(V) .
$$

In the following we refer to the energy of the section instead of the bending, since that is a subject more commonly studied. In every example we will be concerned with the nonexistence of parallel unit sections, since they are trivial minima of the functional.

Definition. A smooth section $V: M \rightarrow E^{1}$ is said to be a harmonic section if for every relatively compact open subset N of M with smooth (possibly empty) boundary, V is a critical point of the functional \mathcal{B}_{N} (or equivalently, of the energy \mathcal{E}_{N}) applied to smooth sections W of M satisfying $\left.W\right|_{\partial N}=\left.V\right|_{\partial N}$.

Notice that a harmonic section may be not a harmonic map from M to E^{1} (see for example [2, 3], where $E=T M$).

The rough Laplacian Δ acts on smooth sections of E as follows:

$$
(\Delta V)(p)=\sum_{i=1}^{n}\left(\nabla_{Z^{i}} \nabla_{Z^{i}} V\right)(p),
$$

where $\left\{Z^{i} \mid i=1, \ldots, n\right\}$ is any section of orthonormal frames on a neighborhood of p in M satisfying $\left(\nabla_{Z^{i}} Z^{j}\right)(p)=0$ for all i, j.

Theorem 1 Let $\pi: E \rightarrow M$ be a vector bundle with a metric connection over an oriented Riemannian manifold and consider on E the associated Sasaki metric. The section $V: M \rightarrow E^{1}$ is a harmonic section if and only if there is a smooth real function f on M such that

$$
\Delta V=f V
$$

Remark. This condition was proved for the particular case where E is the tangent bundle, by Wiegmink [5] and Wood [6] for compact manifolds and by Gil-Medrano [1] for general (not necessarily compact) manifolds (with a different presentation). Their proofs can be adapted to the present more general case.

Applications

Let M be a parallelizable manifold with a fixed parallelization $\left\{X^{1}, \ldots, X^{n}\right\}$. Let \mathcal{V} be a finite dimensional vector space with an inner product and $\mathfrak{o}(\mathcal{V})$ the set of all skew-symmetric endomorphisms of \mathcal{V}. Let $E=M \times \mathcal{V} \rightarrow M$ be the trivial vector bundle. For $v \in \mathcal{V}$, let $L_{v}: M \rightarrow E$ be the "constant" section $L_{v}(p)=(p, v)$.

Proposition 2 Given a map $\theta:\left\{X^{1}, \ldots, X^{n}\right\} \rightarrow \mathfrak{o}(\mathcal{V})$, there exists a unique connection ∇ on $E \rightarrow M$ such that

$$
\begin{equation*}
\left(\nabla_{X^{i}} L_{v}\right)(p)=L_{\theta\left(X^{i}\right) v}(p) \tag{1}
\end{equation*}
$$

for all $p \in M$ and all $i=1, \ldots, n$. Moreover, the connection is metric.

Proof. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthonormal basis of \mathcal{V}. Let $X \in T_{p} M$ and $\sigma: M \rightarrow E$ be a smooth section. Then

$$
X=\sum_{i=1}^{m} a_{i} X^{i}(p) \quad \text { and } \quad \sigma=\sum_{j=1}^{n} f_{j} L_{v_{j}}
$$

for some numbers a_{i} and smooth functions $f_{j}: M \rightarrow \mathbf{R}$. A standard computation shows that

$$
\left(\nabla_{X} \sigma\right)(p)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i}\left(X_{p}^{i}\left(f_{j}\right) L_{v_{j}}(p)+f_{j}(p)\left(L_{\theta\left(X^{i}\right) v_{j}}\right)(p)\right)
$$

defines a connection on E satisfying condition (1), which is metric since $\theta\left(X^{i}\right)$ is skew-symmetric for all i.

Examples.

(1) The Levi-Civita connection of a Lie group G with a left invariant Riemannian metric may be obtained in this way: Let \mathfrak{g} be the Lie algebra of G endowed with an arbitrary inner product. Let ∇ be the connection on $E=G \times \mathfrak{g} \rightarrow G$ induced by $\theta: \mathfrak{g} \rightarrow \mathfrak{o}(\mathfrak{g})$ given by

$$
\theta(X) Y=\frac{1}{2}\left(\operatorname{ad}_{X} Y-\left(\operatorname{ad}_{X}\right)^{*} Y-\left(\operatorname{ad}_{Y}\right)^{*} X\right)
$$

and any left invariant parallelization of G, where * means transpose with respect to the inner product at the identity. In this case the map

$$
\begin{equation*}
F: E \rightarrow T G, \quad F(g, v)=d \ell_{g}(v) \tag{2}
\end{equation*}
$$

(ℓ_{g} denotes left multiplication by g) is an affine vector bundle isomorphism, and moreover an isometry if E and $T G$ carry the corresponding Sasaki metrics.
(2) A particular case of (1) is the following: If the metric on G is biinvariant, or equivalently the inner product is $\operatorname{Ad}(G)$-invariant, we have

$$
\theta(X) Y=\frac{1}{2}[X, Y]
$$

(3) Let G be a compact connected Lie group and (\mathcal{V}, ρ) a real orthogonal representation of G. Proposition 2 provides a connection ∇ on $E=G \times \mathcal{V} \rightarrow$ G induced by any left invariant parallelization and $\theta=\lambda d \rho$, for some $\lambda \in \mathbf{R}$.

Let $E=G \times \mathcal{V} \rightarrow G$ as in Example 3. For $v \in \mathcal{V}$, let R_{v} the section of E defined by

$$
\begin{equation*}
R_{v}(g)=\left(g, \rho\left(g^{-1}\right) v\right) . \tag{3}
\end{equation*}
$$

The sections L_{v} and R_{v} are called left and right invariant, respectively, since in the particular case where $\mathcal{V}=\mathfrak{g}, \rho=$ Ad they correspond to left and right invariant vector fields, respectively, via the isomorphism (2).
Remark. Although the vector bundles $E \rightarrow G$ of Example 3 are topologically trivial (as for instance the tangent spaces of parallelizable manifolds are) in most cases they are not geometrically trivial, as shown in (b) of the following Theorem.

Theorem 3 Let G be a compact connected simple Lie group endowed with a bi-invariant Riemannian metric. Let (\mathcal{V}, ρ) be an irreducible real orthogonal representation of G and let $E=G \times \mathcal{V}$ with the Sasaki metric induced by the connection associated to any left invariant parallelization of G and $\theta=\lambda d \rho$, for some $\lambda \in \mathbf{R}$. The following assertions are true:
(a) The left and right invariant unit sections are harmonic sections of $E^{1} \rightarrow G$.
(b) If $\lambda=0$ or $\lambda=1$, then L_{v} or R_{v}, respectively, are parallel sections for all $v \in \mathcal{V}$. If $0 \neq \lambda \neq 1$, then the bundle $E \rightarrow G$ has no parallel unit sections.

Remarks. (a) The result is still valid if G is semisimple and the metric of G is a negative multiple of the Killing form.
(b) If $(\mathcal{V}, \rho)=(\mathfrak{g}, \operatorname{Ad})$ and $\lambda=1 / 2$, we have the well-known fact that the unit left invariant vector fields on G are harmonic sections of $T^{1} G \rightarrow G$, since they are Killing vector fields and G is Einstein [5] (see in [3, Section 4] the case where the bi-invariant metric is not Einstein).

We need the following Lemma to prove the Theorem.
Lemma 4 Let ∇ be the connection on the bundle $E \rightarrow G$ in the hypothesis of Theorem 3. If Z is a left invariant vector field on G, then

$$
\begin{equation*}
\left(\nabla_{Z} \nabla_{Z} R_{v}\right)(g)=\left(g,(\lambda-1)^{2} d \rho(Z)^{2} \rho\left(g^{-1}\right) v\right) \tag{4}
\end{equation*}
$$

for all $g \in G, v \in \mathcal{V}$.

Proof. Let V be a smooth section of $E \rightarrow G$ and suppose that $V(h)=$ $(h, u(h))$. Denote $w(h)=(d / d t)_{0} u(h \exp (t Z))$ and $\gamma(t)=g \exp (t Z)$ for $t \sim 0$. We may assume that $Z \neq 0$, otherwise the assertion is trivial. A smooth section W such that

$$
W(\gamma(t))=(\cos t) L_{u(g)}(\gamma(t))+(\sin t) L_{w(g)}(\gamma(t))
$$

satisfies $W(g)=V(g)$ and $(W \circ \gamma)^{\prime}(0)=(V \circ \gamma)^{\prime}(0)$. Hence, $\left(\nabla_{Z} V\right)(g)=$ $\left(\nabla_{Z} W\right)(g)$, which by (1) equals

$$
L_{\lambda d \rho(Z) u(g)}(g)+L_{w(g)}(g)=(g, \lambda d \rho(Z) u(g)+w(g)) .
$$

Applying this procedure to $V=R_{v}$, that is, $u(h)=\rho\left(h^{-1}\right) v$ and $w(h)=$ $-d \rho(Z) \rho\left(h^{-1}\right) v$, one obtains

$$
\begin{equation*}
\left(\nabla_{Z} R_{v}\right)(g)=\left(g,(\lambda-1) d \rho(Z) \rho\left(g^{-1}\right) v\right) \tag{5}
\end{equation*}
$$

Finally, applying again the procedure to the section $V=\nabla_{Z} R_{v}$, one obtains (4).

Proof of Theorem 3. (a) Let $\left\{Z_{1}, \ldots, Z_{n}\right\}$ be an orthonormal basis of \mathfrak{g} and consider on G the associated left invariant parallelization. Given $v \in \mathcal{V}$, by (1) we compute

$$
\begin{aligned}
\left(\Delta L_{v}\right)(g) & =\sum_{i=1}^{n}\left(\nabla_{Z^{i}} \nabla_{Z^{i}} L_{v}\right)(g)=\sum_{i=1}^{n} L_{\lambda^{2} d \rho\left(Z^{i}\right)^{2} v}(g) \\
& =\left(g, \lambda^{2} \sum_{i=1}^{n} d \rho\left(Z^{i}\right)^{2} v\right)=\left(g, \lambda^{2} \mathcal{C}_{\rho}(v)\right)
\end{aligned}
$$

where \mathcal{C}_{ρ} is a multiple of the Casimir of the representation ρ (notice that the metric is a negative multiple of the Killing form). Now, the Casimir is a multiple of the identity, since ρ is irreducible (a direct application of Schur's Lemma). Hence, $\Delta L_{v}=\mu L_{v}$ for some μ and so L_{v} is a harmonic section of $E^{1} \rightarrow G$ by Theorem 1. On the other hand, a straightforward computation shows that

$$
d \rho(Z) \rho\left(g^{-1}\right)=\rho\left(g^{-1}\right) d \rho(\operatorname{Ad}(g) Z)
$$

for all $g \in G$ and $Z \in \mathfrak{g}$. Hence, if we call $U^{i}=\operatorname{Ad}(g) Z^{i}$, we have by Lemma 4 that

$$
\begin{aligned}
\left(\Delta R_{v}\right)(g) & =\sum_{i=1}^{n}\left(g,(\lambda-1)^{2} \rho\left(g^{-1}\right) d \rho\left(U^{i}\right)^{2} v\right) \\
& =\left(g,(\lambda-1)^{2} \rho\left(g^{-1}\right) \mathcal{C}_{\rho}(v)\right)
\end{aligned}
$$

since $\left\{U^{i} \mid i=1, \ldots, n\right\}$ is an orthonormal basis of \mathfrak{g} (the metric on G is bi-invariant). As before, \mathcal{C}_{ρ} is a multiple $\bar{\mu}$ of the identity, hence $\Delta R_{v}=$ $\bar{\mu}(\lambda-1)^{2} R_{v}$, which implies by Theorem 1 that R_{v} is a harmonic section of $E^{1} \rightarrow G$.
(b) If $\lambda=0$, clearly L_{v} is parallel by definition of the connection. If $\lambda=1$, then R_{v} is parallel by (5). Suppose that a smooth unit section V with $V(e)=(e, v)$ is parallel. Then, for $X, Y \in \mathfrak{g}$ the curvature

$$
\begin{aligned}
R(X, Y)(e, v) & =\left(\nabla_{X} \nabla_{Y} L_{v}-\nabla_{Y} \nabla_{X} L_{v}-\nabla_{[X, Y]} L_{v}\right)(e) \\
& =(e,[\theta(X), \theta(Y)] v-\theta[X, Y] v) \\
& =\left(e, \lambda^{2}[d \rho(X), d \rho(Y)] v-\lambda d \rho[X, Y] v\right) \\
& =(e, \lambda(\lambda-1) d \rho[X, Y] v)
\end{aligned}
$$

vanishes. If G is semisimple, $[\mathfrak{g}, \mathfrak{g}]=\mathfrak{g}$. Hence, $0 \neq \lambda \neq 1$ implies that $d \rho(Z) v=0$ for all $Z \in \mathfrak{g}$. This contradicts the fact that ρ is irreducible.

Next we deal with an analogue of the particular case of Theorem 3 when $\mathcal{V}=\mathbf{H}$ is the algebra of quaternions, $G=S^{3}=\{q \in \mathbf{H}| | q \mid=1\}$ and $\rho(q) X=q \cdot X$ (quaternion multiplication) for $X \in \operatorname{Im} \mathbf{H}=T_{1} S^{3}$. (It is not a particular case of Theorem 3, since S^{7} is not a Lie group.)

Let $\mathbf{O} \cong \mathbf{R}^{8}$ denote the octonians with the canonical inner product and let $S^{7}=\{q \in \mathbf{O}| | q \mid=1\}$ with the induced metric. The tangent space of S^{7} at the identity may be identified with $\operatorname{Im} \mathbf{O}$, the purely imaginary octonians. Fix an orthonormal basis $\left\{x_{1}, \ldots, x_{7}\right\}$ of $\operatorname{Im} \mathbf{O}$ and consider the parallelization of S^{7} consisting of the corresponding left invariant vector fields X^{i} 's, that is, $X^{i}(q)=q \cdot x^{i} \in q^{\perp}=T_{q} S^{7}$. By analogy with (3), given $v \in \mathbf{O}$, we define the section R_{v} of the trivial vector bundle $S^{7} \times \mathbf{O} \rightarrow S^{7}$ by $R_{v}(q)=(q, \bar{q} v)$.

Theorem 5 Let $E=S^{7} \times \mathbf{O} \rightarrow S^{7}$ be the trivial vector bundle with the connection ∇ induced by

$$
\theta:\left\{X^{1}, \ldots, X^{7}\right\} \rightarrow \mathfrak{o}(\mathbf{O}), \quad \theta\left(X^{i}\right) v=\lambda x_{i} v
$$

with $\lambda \in \mathbf{R}$, and consider on E the Sasaki metric induced by ∇. The connection is independent of the choice of the orthonormal basis of $\operatorname{Im} \mathbf{O}$. If $v \in \mathbf{O}$ with $|v|=1$, the following assertions are true for the sections L_{v}, R_{v} of the associated spherical bundle $E^{1} \rightarrow S^{7}$.
(a) If $\lambda=0$, then L_{v} and R_{v} are harmonic sections. If $\lambda \neq 0$, then L_{v} is a harmonic section and R_{v} is a harmonic section if and only if $v= \pm 1$.
(b) If $0 \neq \lambda \neq 1$, then the bundle $E^{1} \rightarrow S^{7}$ has no parallel sections. The section L_{v} is parallel if and only if $\lambda=0$, and R_{v} is parallel if and only if $\lambda=1$ and $v= \pm 1$.

Before proving the theorem we recall from Chapter 6 of [4] some facts about the octonians \mathbf{O} (also called Cayley numbers), which are a non-associative normed algebra with identity, isomorphic to \mathbf{R}^{8} as an inner product vector space. The algebra \mathbf{O} is $\mathbf{H} \times \mathbf{H}$, with the multiplication given by

$$
\begin{equation*}
(a, b)(c, d)=(a c-\bar{d} b, d a+b \bar{c}) . \tag{6}
\end{equation*}
$$

Setting $1=(1,0)$ and $e=(0,1)$, one writes $(a, b)=a+b e$. If $u=a+x$ with $a \in \mathbf{R} .1$ and $\langle x, 1\rangle=0$, the conjugate of u is $\bar{u}=a-x$ and $\langle u, v\rangle=\operatorname{Re}(u \bar{v})$ holds for all $u, v \in \mathbf{O}$. If $x \in \operatorname{Im} \mathbf{O}=1^{\perp}$ with $|x|=1$, then

$$
\begin{equation*}
x^{2}=-x \bar{x}=-|x|^{2}=-1 . \tag{7}
\end{equation*}
$$

Moreover, if $\langle u, v\rangle=0$, then

$$
\begin{equation*}
u(\bar{v} w)=-v(\bar{u} w) \tag{8}
\end{equation*}
$$

for all w. From Lemma 6.11 of [4] and its proof we have that the associator

$$
[u, v, w]=(u v) w-u(v w)
$$

is an alternating 3-linear form which vanishes either if one of the arguments is real or if two consecutive arguments are conjugate. In particular, if $x \in \operatorname{Im} \mathbf{O}$ with $|x|=1$, we have by (7) that for all v,

$$
\begin{equation*}
x(x v)=\left(x^{2}\right) v-[x, x, v]=-v+[x, \bar{x}, v]=-v \tag{9}
\end{equation*}
$$

Lemma 6 Let $z=x_{\ell}$ be an element of the basis of $\operatorname{Im} \mathbf{O}$ considered above and denote $Z=X_{\ell}$. Then for unit octonians v and q one has

$$
\begin{equation*}
\left(\nabla_{Z} R_{v}\right)(q)=(q, \lambda z(\bar{q} v)-(z \bar{q}) v) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{Z} \nabla_{Z} R_{v}\right)(q)=-\left(1+\lambda^{2}\right) R_{v}(q)-2 \lambda(q, z((z \bar{q}) v)) . \tag{11}
\end{equation*}
$$

Proof. The assertions follow proceeding as in the proof of Lemma 4, setting $\rho(q) X=q X$ and $d \rho(z) X=z X$, taking into account that \mathbf{O} is not associative and using (9).

Proof of Theorem 5. (a) First we show that $\theta\left(X^{i}\right)$ is skew symmetric for all $i=1, \ldots, 7$. Indeed, given $v \in \mathbf{O}$, since $x_{i} \in \operatorname{Im} \mathbf{O}$, then

$$
\left\langle\lambda x_{i} v, v\right\rangle=\lambda \operatorname{Re}\left(\left(x_{i} v\right) \bar{v}\right)=\lambda \operatorname{Re}\left(\left[x_{i}, v, \bar{v}\right]-x_{i}|v|^{2}\right)=0
$$

by one of the properties of the associator mentioned above. On the other hand, by definition of the connection and (9), we compute

$$
\begin{aligned}
\left(\Delta L_{v}\right)(q) & =\sum_{i=1}^{7}\left(\nabla_{X^{i}} \nabla_{X^{i}} L_{v}\right)(q)=\sum_{i=1}^{7} L_{\lambda^{2} x^{i}\left(x^{i} v\right)}(q)= \\
& =\left(q,-\sum_{i=1}^{7} \lambda^{2} v\right)=\left(q,-7 \lambda^{2} v\right)=-7 \lambda^{2} L_{v}(q) .
\end{aligned}
$$

By Theorem $1, L_{v}$ is a harmonic section of $E^{1} \rightarrow S^{7}$ for any λ and using (11) and (9), R_{v} is a harmonic section if $\lambda=0$ or $v= \pm 1$. Now we consider the case $\lambda \neq 0$. If R_{v} is a harmonic section, by Theorem 1 and (11) there exists a smooth function f on S^{7} such that

$$
\begin{equation*}
\sum_{\ell=1}^{7} x_{\ell}\left(\left(x_{\ell} \bar{q}\right) v\right)=f(q) \bar{q} v \tag{12}
\end{equation*}
$$

for all $q \in S^{7}$. By Proposition 6.40 in [4], based on a theorem of Artin, we may suppose without loss of generality that $v=a+b i$, with $a^{2}+b^{2}=1$. We must show that $b=0$. Take $\bar{q}=c+d j$ with $c^{2}+d^{2}=1$ and suppose that $\left\{x_{\ell} \mid \ell=1, \ldots, 7\right\}$ is the canonical basis $\{i, j, k, e, i e, j e, k e\}$. Now a straightforward computation using (6) and (9) yields that $\sum_{\ell=1}^{7} x_{\ell}\left(\left(x_{\ell} j\right) i\right)=-k$. Setting $\xi=a c+c b i+a d j$, equality (12) becomes

$$
-7 \xi-d b k=f(c-d j)(\xi-d b k)
$$

Suppose that $b \neq 0$. If $b= \pm 1$ (so $a=0$), taking $c=d \neq 0$, one has $1=f(c-d j)=-7$. If $b \neq \pm 1$ (so $a \neq 0)$, taking $c=0, d=1$, one gets also a contradiction. Thus, $b=0$ as desired.
(b) By definition of the connection, L_{v} is parallel if and only if $\lambda=0$. Suppose that $0 \neq \lambda \neq 1$. As in the proof of Theorem 3 (b), we show that for
any $v \in \mathbf{O}, v \neq 0$, there exist an orthonormal set $\{x, y\} \subset T_{1} S^{7}=\operatorname{Im} \mathbf{O}$ such that the curvature $R(x, y) v \neq 0$. Let X, Y be the left invariant vector fields on S^{7} corresponding to x and y, respectively. By Proposition 6.40 of [4], based on a theorem of Artin, the span H of $\{1, x, y, x y\}$ is a normed subalgebra isomorphic to the quaternions. Hence, one can think of X, Y as left invariant vector fields on the Lie group $S^{3}=H \cap S^{7}$. Therefore $[X, Y](1)=x y-y x$. Using (8) we compute

$$
\begin{aligned}
R(x, y) v & =\left(\nabla_{X} \nabla_{Y} L_{v}-\nabla_{Y} \nabla_{X} L_{v}-\nabla_{[X, Y]} L_{v}\right)(1) \\
& =\lambda^{2} x(y v)-\lambda^{2} y(x v)-\lambda(x y-y x) v \\
& =2 \lambda(\lambda x(y v)-(x y) v) \\
& =2 \lambda((\lambda-1)(x y) v-\lambda[x, y, v]) .
\end{aligned}
$$

If $v= \pm 1$, for any orthonormal set $\{x, y\} \subset \operatorname{Im} \mathbf{O}$ one has clearly

$$
R(x, y) v= \pm 2 \lambda(\lambda-1) x y \neq 0 .
$$

If $v \neq \pm 1$, then $u:=\operatorname{Im} v \neq 0$ and taking an orthonormal set $\{x, y\}$ in $\operatorname{Im} \mathbf{O}$, with $y=\bar{u} /|u|$, by the properties of the associator given after (8), one has $R(x, y) v=2 \lambda(\lambda-1)(x y) v \neq 0$. Finally, by (10), R_{v} is not parallel if $\lambda=0$, and if $\lambda=1$, then $\left(\nabla_{Z} R_{v}\right)(q)=(q,-[z, \bar{q}, v])$ for all $q \in S^{7}, \operatorname{Re} z=0$. Similar arguments yield that in this case R_{v} is parallel if and only if $v= \pm 1$. This concludes the proof of (b).

References

[1] O. Gil-Medrano, Relationship between volume and energy of vector fields, Diff. Geom. Appl. 15 (2001) 137-152.
[2] O. Gil-Medrano, J. C. González-Dávila, L. Vanhecke, Harmonic and minimal invariant unit vector fields on homogeneous Riemannian manifolds, Houston J. Math. 27 No. 2 (2001) 377-409.
[3] J. C. González-Dávila, L. Vanhecke, Invariant harmonic unit vector fields on Lie groups, to appear in Boll. Un. Mat. Ital.
[4] F. R. Harvey, Spinors and calibrations, Perspectives in Mathematics, Academic Press, Boston, 1990.
[5] G. Wiegmink, Total bending of vector fields on Riemannian manifolds, Math. Ann. 303 (1995) 325-344.
[6] C. M. Wood, On the energy of a unit vector field, Geom. Ded. 64 (1997) 319-330.

[^0]: *Partially supported by FONCyT, CIEM (CONICET) and SECyT (UNC)

