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Abstract

Let G be a compact connected semisimple Lie group endowed with
a bi-invariant Riemannian metric. We prove that maximal singular
unit vector fields on G are minimal, that is, they are critical points
of the volume functional on unit vector fields on G. Besides, we give
a lower bound for the number of nonequivalent minimal unit vector
fields on G.

Mathematics Subject Classification 2000: 22E46, 53C30, 53C35, 53C42.

Introduction

Let M be a compact Riemannian manifold. The volume of a unit vector
field on M is by definition the volume of the submanifold that it determines
in T 1M , the unit tangent bundle of M endowed with the canonical (Sasaki)
metric. A unit vector field on M is said to be minimal if it is a critical
point of the volume functional on unit vector fields on M . Gil-Medrano and
Llinares-Fuster proved in [2] that a unit vector field is minimal if and only if
it determines a minimal submanifold of T 1M (in this approach, M does not
need to be compact). The characterization by Gluck and Ziller of Hopf vector
fields as the unit vector fields on S3 with minimum volume [4], motivated the
study of minimal unit vector fields (see the abundant bibliography on this
subject for instance in the references of [1]).

Minimality of some left or right invariant unit vector fields

∗Partially supported by foncyt, ciem (conicet) and secyt (unc).
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Let G be a compact connected semisimple Lie group endowed with a bi-
invariant Riemannian metric. In this note we deal with minimal unit vector
fields on G. On other Lie groups with left invariant metrics, they have been
studied in [3, 6, 9].

Let g ∼= TeG be the Lie algebra of G and let S = T 1
e G denote the unit

sphere in g. A unit vector v ∈ g is said to be maximal singular if the Ad(G)-
orbit of v has dimension strictly smaller than that of any other Ad(G)-orbit
through a unit vector in some neighborhood of v. A unit vector field on G
is said to be maximal singular if it is left or right invariant and its value at
the identity is maximal singular.

Remark 1 Let U and V be unit vector fields on a compact Riemannian
manifold M such that U ◦ ψ = Ψ ◦ V , where ψ and Ψ are isometries of M
and T 1M, respectively. Clearly, U and V have the same volume and if one of
them is minimal, so is the other one. In particular, this happens if U, V are
the following pairs of unit vector fields on a compact Lie group G as above.

(a) If U and V are left invariant and Ue = Ad (g) Ve for some g ∈ G:
Take ψ = Lg ◦ Rg−1 and Ψ = dψ, where Lk and Rk denote left and right
multiplication by k, respectively.

(b) If U is left invariant, V is right invariant and Ue = Ve: Take ψ =
Inv : G → G, Inv(h) = h−1 (notice that G is a symmetric space and Inv is
the geodesic symmetry at e) and Ψ = −d Inv (the opposite of the identity on
T 1M is an isometry, by definition of the Sasaki metric).

Theorem 2 Maximal singular unit vector fields on G are minimal.

Proof. By the previous remark, it suffices to prove the assertion for left
invariant maximal singular unit vector fields on G.

The product G × G acts on T 1G by isometries as follows: (g, h) u =
dLgdRh−1u. Let v be a unit vector in g. The orbit (G×G) v is a subman-
ifold of T 1G whose dimension equals dim G+dim Ad(G) v. Let us consider
the action ρ of G on (G×G) v defined by ρ (g, u) = dLgu. Notice that any
orbit of ρ is the submanifold of T 1M determined by the left invariant vec-
tor field taking the value Ad(g) v at the identity, for some g ∈ G. Hence,
all orbits of ρ in (G×G) v have the same dimension dim G and also the
same volume, by Remark 1 (a). Therefore, by the main result of Hsiang and
Lawson in [8], they are all minimal in (G×G) v, and so the mean curva-
ture vector field Hu of the orbit ρ (G) u is perpendicular to (G×G) v for
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all u ∈ Ad (g) v. Let u ∈ Ad (G) v. Now, Tu (G×G) v ⊂ TuT
1G includes

the horizontal space, since parallel transport is realized by the action of the
group (G is a symmetric space). Therefore, Hu (u) is vertical and we have
an Ad (G)-invariant vector field V (u) = Hu (u) on Ad (G) v, tangent to S. If
v is maximal singular, V vanishes identically, since otherwise, for all s ∼ 0,
{ExpusV (u) | u ∈ Ad (G) v} would be an orbit of Ad (G) close to Ad (G) v
with the same dimension, but different from it if s 6= 0 (Expu : TuS → S de-
notes the geodesic exponential function of S at u). By G-invariance, Hv ≡ 0
and hence the left invariant vector field taking the value v at the identity is
minimal. ¤

Remark 5 provides another proof of the Theorem.

The following criterion for a unit vector field on a unimodular Lie group
to be minimal, obtained by Tsukada and Vanhecke, will be useful below.

Criterion. [9, Proposition 2.2] Let G be a unimodular Lie group endowed
with a left invariant metric. Let f : S → R be defined by

f (v) = vol (V ) /vol (G) ,

where V is a left invariant vector field with V (e) = v. Then a left invariant
unit vector field V is minimal if and only if dfV (e) = 0.

For the basic facts from the theory of compact semisimple Lie groups we
refer the reader to [7]. Let t be a maximal abelian subalgebra of g and ∆ the
corresponding root system. Let C be a Weyl chamber and Φ = {α1, . . . , αn}
the associated basis of ∆. For each 0 ≤ k < n let Sk be the unit sphere in
the (k + 1)-dimensional wall W = {w ∈ t | αi (w) = 0 for all i > k + 1} in t.

Proposition 3 If v ∈ Sk is a critical point of the restriction of f to Sk, then
a left or right invariant vector field V on G with Ve = v is minimal.

Proof. First we show that d f |Tv(t∩S) = 0. Let Hi the vector dual to αi,

Ĥi = Hi/ ‖Hi‖ and let ρi be the reflection of t fixing Ker (αi). Let us recall
that the action of the Weyl group

{g ∈ G | Ad (g) t = t} / {g ∈ G | Ad (g) u = u for all u ∈ t}
on t is generated by the reflections with respect to the kernels of the roots
in Φ, hence any such a reflection ρ may be written as ρ = Ad (g)|t for some
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g ∈ G. Now, the orthogonal complement of TvSk in Tv (S ∩ t) is the subspace
spanned by {Hi | i > k + 1} (empty if k = n). For k+1 < i ≤ n we compute

dfv

(
−Ĥi

)
=

d

dt

∣∣∣∣
0

f
(
(cos t) v − (sin t) Ĥi

)

=
d

dt

∣∣∣∣
0

f
(
ρi

(
(cos t) v + (sin t) Ĥi

))

=
d

dt

∣∣∣∣
0

f
(
Ad (gi)

(
(cos t) v + (sin t) Ĥi

))

=
d

dt

∣∣∣∣
0

f
(
(cos t) v + (sin t) Ĥi

)
= dfv

(
Ĥi

)
.

Hence, d f |Tv(t∩S) = 0, since
(
df |Sk

)
v

= 0 by hypothesis. Now we prove that
dfv = 0. The following decomposition of g is well-known.

g = Ker (ad v)⊕ Image (ad v) (1)

=
⋃

Ad (g) (t)⊕
{

d

dt

∣∣∣∣
0

Ad (exp tX) v | X ∈ g

}
,

where the union is over Gv = {g ∈ G | Ad (g) v = v} . Let u be a unit vector
in Tv (t ∩ S) and let g ∈ Gv. We already know that dfv (u) = 0. Therefore

dfv (Ad (g) u) =
d

dt

∣∣∣∣
0

f (Ad (g) ((cos t) v + (sin t) u))

=
d

dt

∣∣∣∣
0

f ((cos t) v + (sin t) u) = dfv (u) = 0.

Similarly, if X ∈ g, we have dfv

(
d
dt

∣∣
0
Ad (exp tX) v

)
= 0. By (1), the pre-

ceding clearly implies that dfv vanishes identically. Thus, V is minimal by
the criterion of Tsukada and Vanhecke. ¤

Given α ∈ Φ, let vα be the unique unit vector in t satisfying α (vα) > 0
and β (vα) = 0 for all β ∈ Φ−{α} . The vector vα is a vertex of the spherical
simplex C ∩ S (the unit vectors in the closure of the Weyl chamber C) and
is maximal singular. Moreover, any maximal singular unit vector in g is
in the Ad(G)-orbit of exactly one of these vertices. Let Vα denote the left
invariant vector field on G taking the value vα at the identity. As a corollary
of Proposition 3, we have the following result.
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Theorem 4 If α 6= β ∈ Φ and the maximal singular unit vector fields Vα

and Vβ have the same volume, then there exists v in the shortest geodesic arc
in S joining vα with vβ, v 6= vα, vβ, such that the left invariant vector field V
with V (e) = v is minimal.

Proof. Let u (s), 0 ≤ s ≤ 1 be a parametrization of the shortest geodesic
arc in S joining vα with vβ, which is an edge of the spherical simplex C ∩ S.
Suppose that the basis of the root system is {α1, . . . , αn} , with α = α1 and
β = α2. Then u (s) is a regular curve in S1 as in Proposition 3, which in
this case is a circle. Since f (vα) = f (vβ) by hypothesis, there exists so with
(f ◦ u)′ (so) = 0. Hence, taking v = u (so) , we have that

(
d f |S1

)
v

= 0.
Therefore, the statement follows from Proposition 3. ¤

Remark 5 With similar arguments we can give another proof of Theorem
2: Suppose that α = α1 ∈ Φ. By definition of vα, we have that S0 has only
two elements ±vα. Hence

(
d f |S0

)
vα

= 0 trivially. Thus, Vα is a minimal
unit vector field by Proposition 3.

Counting nonequivalent minimal unit vector fields

In order to have a clear statement of Theorem 7 below, we say that two
unit vector fields U, V on a Riemannian manifold M are equivalent if there
exists φ in the identity component of the isometry group of M such that
U ◦ φ = dφ ◦ V.

Remark 6 Two left invariant unit vector fields U and V on G are equivalent
if and only if Ue = Ad (g) Ve for some g ∈ G, since the identity component
of the isometry group of G consists of {Lg ◦Rh | g, h ∈ G}. In particular,
by Remark 1 (a), equivalent unit vector fields have the same volume and if
one of them is minimal, so is the other one. Moreover, no right invariant
unit vector field is equivalent to a left invariant one, since the center of G is
finite.

If Φ = {α1, . . . , αn} is as above a basis of the root system, then V =
{Vα1 , . . . , Vαn} consists of nonequivalent left invariant unit vector fields. Sup-
pose that {V1, . . . , Vk1}, {Vk1+1, . . . , Vk2} , etc., are ` disjoint subsets of V con-
sisting of vector fields with the same volume. Next, we give a lower bound
for the number of nonequivalent minimal unit vector fields on G in terms of
the numbers kj.
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Theorem 7 Let n be the rank of G and let k1, . . . , k` be the cardinalities
of disjoint sets of nonequivalent maximal singular left invariant unit vector
fields having the same volume. Then the number of nonequivalent minimal
unit vector fields on G is not smaller than 2n +

∑`
i=1 ki (ki − 1).

Proof. By Theorem 4, the number of nonequivalent minimal left invariant
unit vector fields on G is not smaller than n +

∑`
i=1

(
ki

2

)
. By Remark 6, this

lower bound doubles if one considers the corresponding right invariant vector
fields. ¤

An expression for the volume of a left invariant unit vector field

We show later that in some cases, a lower bound as in Theorem 7 can be
obtained without actually computing the volume of maximal singular unit
vector fields, but just using the symmetries of the associated root system.
Nevertheless, if it has no symmetries (or if it has, but one wants to try to
improve the lower bound), Proposition 8 below gives a simple formula for
the volume of maximal singular unit vector fields in terms of the root system
(see the examples).

Let ∆+ be the set of positive roots with respect to Φ. Given a root
φ ∈ ∆+, there exist nonnegative integers mβ (φ) , β ∈ Φ, such that φ =∑

β∈Φ mβ (φ) β.

Proposition 8 The volume of a left or right invariant unit vector field V
on G with Ve = v is given by

vol (G)
∏

φ∈∆+

(
1 + 1

4
φ (v)2) .

In particular, the volume of a maximal singular unit vector field Vα is given
by

vol (G)
∏

φ∈∆+

(
1 + 1

4
α (vα)2 mα (φ)2) .

Proof. It is well-known that the volume of a unit vector field V on a compact
Riemannian manifold M is given by

∫

M

√
det (I + (∇V )∗ (∇V )) ,
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where integration is taken with respect to the Riemannian volume form on M .
Let V be a left invariant unit vector field on G with Ve = v. The Levi-Civita
connection of the bi-invariant metric on G satisfies that ∇W V = 1

2
[W,V ] for

any left invariant vector field W. Since ad v is skew-symmetric with respect
to any bi-invariant metric, we have then

vol (V ) = vol (G)
√

det (I + (∇V )∗ (∇V ))

= vol (G)
√

det
(
I + 1

4
(ad v)∗ (ad v)

)

= vol (G)
√

det
(
I − 1

4
(ad v)2) .

Let m be the orthogonal complement of t in g with respect to the Killing
form. There exists an orthonormal basis {xφ|φ ∈ ∆+} ∪ {yφ|φ ∈ ∆+} of m

such that
ad vxφ = φ (v) yφ and ad vyφ = −φ (v) xφ

for all v ∈ t and φ ∈ ∆+. The matrix of − (ad v)2
∣∣
m

with respect to that

basis consists then of blocks φ (v)2 I, φ ∈ ∆+, where I is the 2 × 2 identity
matrix. Moreover, clearly, adv = 0 on t. Therefore, the stated formula for
vol(V ) is valid. The expression for vol(Vα) follows, since by definition of vα

we have that φ (vα) = mα (φ) α (vα). ¤

Examples

In the following, compact semisimple Lie groups are supposed to be endowed
with a bi-invariant Riemannian metric. A reference for the symmetries of
the Dynking diagrams referred to below is for instance [7, Ch. X, Theorem
3.29]. For αk belonging to a basis of a root system we denote vk = vαk

and
Vk = Vαk

.

Example 1. The number of nonequivalent minimal unit vector fields on
SU (n + 1) is not smaller than 2n+

∑[n/2]
i=1 2 = 2n+2 [n/2], where [a] denotes

the integral part or a.

It follows from Theorem 7, since vol(Vk) = vol(Vn−k+1) by the Z2 sym-
metry of the Dynking diagram of SU (n + 1) .

Example 2. For SO (5) and G2 (the only groups of rank 2 which remain
to analyze), two nonequivalent maximal singular unit vectors have different
volumes. Thus, in these cases, Theorem 7 yields the lower bound 4 and so it
does not improve Theorem 2.
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The statement for SO (5) follows from Example 4 below for n = 2. On
the other hand, a basis of the root system of g2 (contained in R2 with the
canonical metric) consists of α1 = r (2, 0) and α2 = r

(−3,
√

3
)

for some
r > 0. The positive roots are α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2 and
3α1 + 2α2. One easily computes v1 =

(
1,
√

3
)
/2 and v2 = (0, 1) . Hence

α1 (v1) = r and α2 (v2) =
√

3r. Therefore, by Proposition 8,

vol (V1) = vol (G)
(
1 + r2

) (
1 +

r2

4

)2 (
1 +

9r2

4

)2

,

vol (V2) = vol (G)
(
1 + 3r2

) (
1 +

3r2

4

)4

.

With the aide of the computer one obtains easily that vol(V2) > vol(V1) for
any r > 0.

Example 3. The group SO (8) has at least 14 nonequivalent minimal unit
vector fields. Besides, for this group, no lower bound as in Theorem 7 is
sharp.

Let {α1, α2, α3, α4} be a basis of the root system of SO (8), where α4 is
the distinguished root, that is, there is an action of the group of permuta-
tions of three elements by root system isomorphisms (corresponding to the
symmetries of the Dynking diagram), fixing α4 and interchanging the rest
of the roots. Hence the left invariant vector fields V1, V2, V3 have the same
volume. Thus, the first assertion follows from Theorem 7. Next we check
the validity of the second one. In fact, for SO (8) there exists at least one
minimal unit vector field not detected by Theorem 7 and its proof: Let C
be the closure of the Weyl chamber associated to the given basis and let S2

be as in Proposition 3. Then S2 ∩C is an equilateral spherical triangle with
vertices v1, v2, v3. Now, by the symmetry of the root system, the center v of
the spherical triangle is a critical point of f restricted to S2. By Proposition
3, a left or right invariant vector field on SO (8) taking the value v at the
identity is minimal.

Example 4. Let G = SO (2n + 1) be endowed with the metric −λ2B, where
B is the Killing form, and let {α1, . . . , αn} be a basis of the root system with
Dynking diagram

2◦ –
2◦ – · · · –

2◦ =
1◦

α1 α2 αn−1 αn

.
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Then, for 1 ≤ k ≤ n, the volume of Vk is given by

vol (G)

(
1 +

ρ2

4k

)k+2k(n−k) (
1 +

ρ2

k

)k(k−1)/2

, (2)

where 2 (2n− 1) ρ2 = λ2. If λ and the rank n are given concretely, using this
expression, one can compare the values of vol(Vk) with the aide of a com-
puter. If n = 3, one sees that for all but two values of λ2, three nonequivalent
maximal singular unit vector fields have different volumes, while for the re-
maining values of λ2, two of them have the same volume.

Let {e1, . . . , en} be an orthogonal basis of Rn with ‖ei‖ = r for all i. The
roots

αi = ei − ei+1 (1 ≤ i < n) and αn = en

form a basis of the root system of so (2n + 1) , corresponding to the given
Dynking diagram, whose positive roots are (see [7, p 462])

ei = αi + · · ·+ αn for 1 ≤ i ≤ n,
ei − ej = αi + · · ·+ αj−1 for 1 ≤ i < j ≤ n,
ei + ej = αi + · · ·+ αj−1 + 2αj + · · ·+ 2αn for 1 ≤ i < j ≤ n.

Denoting mαk
by mk, one has then for 1 ≤ k ≤ n that

mk (ei − ej) =

{
1 if i ≤ k < j
0 if not

, mk (ei + ej) =





1 if i ≤ k < j
2 if k ≥ j
0 if not

and mk (ei) =

{
1 if k ≥ i
0 if not

.

Solving the equation for vk one obtains vk = xk (e1 + · · ·+ ek) , with kx2
kr

2 =
1, for 1 ≤ k ≤ n. Hence, αk (vk)

2 = x2
kr

4 = r2/k. Now, since for 1 ≤ k ≤ n
the cardinalities of the sets

{(i, j) | 1 ≤ i ≤ k < j ≤ n} and {(i, j) | 1 ≤ i < j ≤ k}

are k (n− k) and k (k − 1) /2, respectively, we have by Proposition 8 that
the volume of Vk equals

vol (G)

(
1 +

r2

4k

)k+2k(n−k) (
1 +

r2

k

)k(k−1)/2

.
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Finally, since the opposite of the Killing form corresponds to 2 (2n− 1) r2 =
1, formula (2) is true (set ρ2 = λ2r2).

Acknowledgments. I would like to thank the referee for making me aware
of a bad mistake in the first version, and Carlos Olmos for his helpful com-
ments.
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