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Abstract. We prove that the space of all oriented lines of the n-dimensional
Euclidean space admits a pseudo-Riemannian metric which is invariant by the
induced transitive action of a connected closed subgroup of the group of Euclidean
motions, exactly when n = 3 or n = 7 (as usual, we consider Riemannian metrics
as a particular case of pseudo-Riemannian ones). Up to equivalence, there are two
such metrics for each dimension, and they are of split type and complete. Besides,
we prove that the given metrics are Kähler or nearly Kähler if n = 3 or n = 7,
respectively.
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1. Introduction

An oriented line in Rn is a pair ` (u, v) := ({tu + v | t ∈ R}, u) for some
u, v ∈ Rn, |u| = 1, where u is the direction (orientation) of the oriented
line. Let Tn denote the set of all oriented lines of Rn and

TSn−1 = {(u, v) ∈ Rn × Rn | |u| = 1, 〈u, v〉 = 0}
the tangent space of the (n− 1)-dimensional sphere. Then ` : TSn−1 → Tn

is a bijection whose inverse is given by

F : Tn → TSn−1, F (` (u, v)) = (u, v − 〈v, u〉u) (1)

(here v − 〈v, u〉u is the point on the line which is closest to the origin).
This correspondence is called in [5] the minitwistor construction. By abuse
of notation we sometimes identify Tn with TSn−1.

The group SOn n Rn of Euclidean motions of Rn, with multiplication
given by (k, a) (k′, a′) = (kk′, a + ka′) acts transitively on Tn in the canon-
ical way (k, a) · (Ru + v, u) = (Rku + a + kv, ku). The action on TSn−1

induced by the identification F is

(k, a) · (u, v) = (ku, a + kv − 〈a + kv, ku〉 ku) . (2)
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2. Invariant metrics on Tn

Two pseudo-Riemannian metrics g1, g2 on a smooth manifold M are said
to be equivalent if there exists a diffeomorphism f and a constant c 6= 0
such that f : (M, g1) → (M, cg2) is an isometry. Given an inner product
〈, 〉 we denote ‖x‖ = 〈x, x〉 and |x| =

√
|〈x, x〉|. Let A denote either of the

normed division algebras H or O (quaternions and octonions, respectively)
and let × denote the cross product in ImA, the vector space of purely
imaginary elements of A. Let KA be the group of automorphisms of ×, that
is, KH = SO3 and KO = G2. For this subject we refer the reader to [4].

Theorem 1. Suppose that Tn has a pseudo-Riemannian metric g which is
invariant by the induced transitive action of a connected closed subgroup H
of SOn nRn. Then either n = 3 or n = 7.

Moreover, there is a cross product × on Rn, compatible with the Eu-
clidean metric and the orientation, such that (Rn,×) is isomorphic to ImA,
which induces an identification of H with KA n Rn (where A = H or O if
n = 3 or 7, respectively) and g is equivalent to exactly one of the split
pseudo-Riemannian metrics gµ, µ ∈ {0, 1}, whose associated norms are
given by

‖(x, y)‖µ = 〈x, u× y〉+ µ |x|2 (3)

for any (x, y) ∈ T(u,v)TSn−1 = T`(u,v)Tn.
In particular, H = SO3nR3 or H = G2nR7, and the metric is of type

(2, 2) or (6, 6), depending on whether n = 3 or 7.
Besides, the canonical projection of (TSm, g1) onto the standard round

sphere Sm of radius one, is a pseudo-Riemannian submersion.

Notation. In the following we set m = n − 1 and consider the canonical
orthonormal basis {e0, e1 . . . , em} of Rn.

Proposition 2. Let H be a connected closed subgroup of SOn n Rn such
that the induced action of H on Tn is transitive, then H = KnRn, where K
is a closed subgroup of SOn such that the induced action on Sm is transitive.

Proof. The canonical projection π : SOn n Rn → SOn is a Lie group
morphism, hence K := π (H) is a connected subgroup of SOn and V :=
{x ∈ Rn | (1, x) ∈ H} ' Ker (π|H) is a closed subgroup of Rn. The group
K acts transitively on Sm, since given u ∈ Sm and (k, a) ∈ H with (k, a) ·
` (e0, 0) = ` (u, 0), then ke0 = u.

Next we see that V is invariant by the action of K on Rn. Indeed,
let k ∈ K and x ∈ V , and take a ∈ Rn such that

(
k−1, a

) ∈ H. Then(
k−1, a

)−1 (1, x)
(
k−1, a

)
= (1, kx) ∈ H and hence kx ∈ V .

Moreover, V 6= {(1, 0)}, since otherwise the group H = K ⊂ SOn

would act transitively on TSm. Since V is invariant by the action of K
(and this group acts transitively on Sm), it contains a full sphere. But the
only closed subgroups of Rn are congruent in Gl (n,R) to Rs × Zt, which
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contain a full sphere only if s = n and t = 0. Therefore V = Rn. It follows
that H = K n Rn, since given k ∈ K, x, y ∈ Rn with (k, y) ∈ H, then
(1, x− y) (k, y) = (k, x) ∈ H (the other inclusion is clear). In particular K
is closed in SOn and hence compact. ut

Let {1, i, j, k} be the standard orthonormal basis of H. Let m = 2 or m =
6 if A = H or O, respectively. Let i⊥ denote the orthogonal complement of
Ri in ImA. Given any unit element e ∈ O orthogonal to H ⊂ O, we consider
the orthonormal bases B2 = {j, k} or B6 = {j, e, je, k, ie, i(je) = −ke} of i⊥

= TiS
m and use them to identify this vector space with Rm. Let us define

Li : i⊥ → i⊥, Li (z) = iz = i× z, (4)

whose matrix with respect to the basis Bm is J =
(

0 −1
1 0

)
. Identify as usual

(Rm, Li) = Cm/2 and consider the C-bases B1 = {j} and B3 = {j, e, je} of
C and C3.

The special unitary group SU3 consists of all 3× 3 complex matrices A
with AĀt = 1 and det A = 1. Define

f : SU3 → SO6, f (x + iy) =
(

x −y
y x

)
and G = f (SU3) .

Then f is a one to one morphism of Lie groups, and hence an isomorphism
onto G, whose Lie algebra is

g =
{

z =
(

x −y
y x

)
| x, y ∈ R3×3, x + xt = 0, yt = y, tr y = 0

}
. (5)

Lemma 3. A 6× 6 real matrix w commutes with any k ∈ G ⊂ SO6 if and
only if w = a16 + bJ for some a, b ∈ R.

Proof. Suppose that the matrix w with blocks ws,t ∈ R3×3 (1 ≤ s, t ≤ 2)
commutes with every k ∈ G ∼= SU3. Then, by the well-known interplay
between the actions of a Lie group and of its Lie algebra, it commutes with
every z ∈ g ⊂ so6, that is, with any z as in (5). Setting y = 0, one has that
each ws,t commutes with every x ∈ so3, or equivalently, that ws,t is a fixed
point of the adjoint action of SO3. Hence, ws,t = cs,t13 for any s, t. Setting
now x = 0, one obtains that c1,1 = c2,2 and c1,2 = −c2,1, as desired. The
converse is straightforward. ut

Notation. We take o := ` (e0, 0) as origin in Tn. The isotropy subgroup at o
of the action of H on Tn is Ho := Ko×Re0, where Ko = {k ∈ K | ke0 = e0},
the isotropy subgroup at e0 of the action of K on Sm.

Proof of Theorem 1. One can easily verify that

T(u,v)TSm = {(x, y) ∈ Rn × Rn | 〈x, u〉 = 0, 〈x, v〉+ 〈y, u〉 = 0} . (6)
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In particular, ToTSm = e⊥0 ×e⊥0 = Rm×Rm. Next we compute the derivative
at o of the action of H on TSm. Given (k, a) ∈ H and (x, y) ∈ ToTSm let
(ut, vt) be a curve in TSm with (u0, v0) = o and (u′0, v

′
0) = (x, y). Using (2)

we compute

(d (k, a))o (x, y) = d
dt

∣∣
0
(k, a) · (ut, vt) (7)

= (kx, ky − 〈a, kx〉 ke0 − 〈a, ke0〉 kx) .

In particular, if (k, a) ∈ Ho, with a = ce0,

(d (k, a))o (x, y) = (kx, k (y − cx)) . (8)

Let χ be the endomorphism of Rm×Rm given by χ (x, y) = (y,−x) and
let ω be the nondegenerate skew-symmetric bilinear form on Rm×Rm given
by ω (ξ, η) = 〈ξ, χη〉, which can easily be seen to be invariant by the action
of Ho, using (8). (In fact, ω is the value at o of a constant multiple of the
canonical symplectic form of TSm, identified with T ∗Sm via the metric on
the sphere.) Hence, any H-invariant pseudo-Riemannian metric g on TSm

(provided it exists) is given at o by g (ξ, η) = ω (ξ, Bη) for a nonsingular
B ∈ End (Rm × Rm) which commutes with the action (8) of the isotropy
subgroup Ho. We write B (x, y) = (αx + βy, γx + δy). Since g is symmetric
and χ is skew-symmetric, we have that χB + Btχ = 0. This implies that
β and γ are symmetric and δ = −αt. The fact that B commutes with the
action of Ho is equivalent to requiring that

k (αx + βy) = αkx + βk (y − cx) (9)
k

(
γx− αty − c (αx + βy)

)
= γkx− αtk (y − cx) (10)

for all x, y ∈ Rm, c ∈ R and k ∈ Ko. Setting x = 0, k = id and c = 1 in (10)
we obtain that β = 0. This implies, looking at (9), that α commutes with
every k ∈ Ko. Setting y = 0 and c = 0 in (10), we have that γ commutes
with every k ∈ Ko. Now, setting y = 0, k = id and c = 1 in (10), one has
that α is skew-symmetric.

Therefore m must be even, since otherwise α is degenerate and hence
B is singular. Now, by [7] (see also [1]) the only compact connected groups
acting effectively and transitively on m-dimensional spheres, with m even,
are SOn, or congruent to G2, if m = 6. The isotropy subgroup at e0 of the
action of SOn on Sm is SOm. Since the adjoint action of SOm on its Lie
algebra has no nonzero fixed points for m ≥ 3, the nonsingular matrix α
can commute with every element of SOm only if m = 2. Thus, only m = 2
and m = 6 are admitted.

Since we look for invariant metrics on Tn up to isometries, we may
identify R3 and R7 with ImA, where A = H or O endowed with its standard
cross product, respectively, and set also e0 = i. Thus H = KA n Rm by
Proposition 2. For m = 2, 7, let Sm be as above the unit sphere in A,
then TiS

m = Rm = i⊥. The isotropy subgroup at e0 = i of SO3 on S2 is
SO2 = U1, and of G2 on S6, by [4], the group G ∼= SU3 defined before (5).
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Now let m = 6. If α ∈ End
(
R6

)
is nonsingular, skew-symmetric and

commutes with every k ∈ G ⊂ SO6, then, by Lemma 3, α = λ
2 Li for some

λ 6= 0. If γ is a symmetric m×m matrix commuting with every k ∈ G, then,
again by Lemma 3, γ = µ1 for some µ ∈ R. For m = 2 similar statements
hold, by elementary reasons.

Consequently, since Li is skew-symmetric, we have that up to an isom-
etry, B (x, y) =

(
λ
2 Lix, µx + λ

2 Liy
)

for some λ, µ ∈ R, λ 6= 0 . For (x, y) ∈
ToTSm, the norm associated to g is

‖(x, y)‖µ,λ = g ((x, y) , (x, y)) = 〈(x, y) , χB (x, y)〉
=

〈
(x, y) ,

(
µx + λ

2 i× y,−λ
2 i× x

)〉

= λ 〈x, i× y〉+ µ |x|2 .

If (x, y) ∈ T(u,v)S
m, let us denote gµ,λ (u, v, x, y) = µ |x|2+λ 〈x, u× y〉. This

is the norm associated to a pseudo-Riemannian metric on TSm. We have
that gµ,λ = ‖ ‖µ,λ, since they clearly coincide at o and gµ,λ is invariant by
the action of H. Indeed, given (x, y) ∈ ToTSm and (k, a) ∈ H, one can show
using (7) that

gµ,λ ((d (k, a))o (x, y)) = gµ,λ ((e0, 0, x, y)) ,

since k is orthogonal and preserves the product ×, and 〈e0 × x, x〉 = 0,
x× x = 0 for all x. Next we verify that for any fixed λ and µ, the map

φ : (TSm, gµ,λ) → (TSm, gµ,1) , φ (u, v) = (u, λv) , (11)

is an isometry. Indeed,
∥∥dφ(u,v) (x, y)

∥∥
µ,1

= ‖(u, λv, x, λy)‖µ,1 = 〈x, u× λy〉+ µ |x|2 ,

which equals = ‖(u, v, x, y)‖µ,λ. Hence, all the norms ‖ ‖µ,λ on Tn are iso-
metric to gµ := ‖ ‖µ,1. But gµ is isometric to gµ′ only if µ = µ′ by Propo-
sition 6 below. Up to homothety we may suppose that µ = 0 or µ = 1.
Therefore any H-invariant metric on Tn (n = 3, 7) is equivalent to exactly
one of the metrics g0, g1. Let us note that by polarization of (3), if ξ = (x, y),
η = (x′, y′) ∈ T(u,v)TSm, then

4 〈ξ, η〉µ = 〈x, u× y′〉+ 〈x′, u× y〉+ µ 〈x, x′〉 . (12)

Finally, given (u, v) ∈ TSm, one has that Ker dπ(u,v) =
{
(0, y) | y ∈ u⊥

}
.

By (6) and (12), its orthogonal complement in T(u,v)TSm with respect to the
metric gµ is H(u,v) := {(x,−〈x, v〉u) | 〈x, u〉 = 0}. The last assertion follows
from the fact that ‖(x,−〈x, v〉u)‖1 = |x|2 =

∣∣dπ(u,v) (x,−〈x, v〉u)
∣∣2. ut

Remarks. a) Although the map φ defined in (11) is an isometry from one
H-homogeneous space to another, it is not H-equivariant if λ 6= 1, since by
(8), given c 6= 0 and x 6= 0, we have

d (φ ◦ (1, ce0))o (x, 0) = (x, λcx) 6= (x, cx) = d ((1, ce0) ◦ φ)o (x, 0) .
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b) The metric g0 on T3 is equivalent to those defined in [10] and [2] (in
the first article lines without orientation are considered).

c) The space of oriented geodesics of a non-Euclidean space form M of
any dimension admits pseudo-Riemannian metrics invariant by the canon-
ical action of the group of orientation preserving isometries of M . Indeed,
the space of oriented geodesics of the sphere Sn is the Grassmannian of
oriented planes in Rn+1, which admits SOn+1-invariant metrics; if M is the
hyperbolic space, this issue has been studied in [9].

d) Let n = 3 or n = 7. For the sake of simplicity of the computations
we work with TSm as a submanifold of R2n, as presented in (6). But, in
fact, the expression for the metric gµ given in Theorem 1 does not change
if one identifies as usual T(u,v)TSm ∼= u⊥ ⊕ u⊥: Let π : TSm → Sm be
the canonical projection and let K(u,v) : T(u,v)TSm → TuSm = u⊥ be the
connection operator, that is,

K(u,v) (x, y) = D
dt

∣∣
0
(ut, vt) = y − 〈y, u〉u,

where (ut, vt) is a curve in TSm with initial velocity (x, y) ∈ T(u,v)TSm

and D
dt denotes covariant derivative along the curve ut. We observe that its

kernel coincides with the subspace H(u,v) defined at the end of the proof of
Theorem 1. The map

ψ(u,v) :=
(
dπ(u,v),K(u,v)

)
: T(u,v)TSm → u⊥ × u⊥ (13)

is a linear isomorphism leaving invariant the expression (3).

The proof of Theorem 1 will be complete as soon as we show that gµ is
isometric to gµ′ only if µ = µ′. This will be achieved using the lengths of
the periodic geodesics in (Tn, gµ) for n = 3 and n = 7. For that reason we
study next geodesics in these spaces.

As an immediate corollary of Theorem 1 in [8] we have the following
criterion for a vector field along a curve in a pseudo-Riemannian manifold
to be parallel.

Lemma 4. If p : M → B is a pseudo-Riemannian submersion, α is a
horizontal curve in M and X is a horizontal vector field along α whose
covariant derivative has vanishing horizontal component, then the vector
field dp (X) along p ◦ α is parallel.

Let h, ho, k, ko be the Lie algebras of H, Ho, K and Ko, respectively.
We have the following direct sum decompositions: Rn = Re0 + Rm, ho =
ko + Re0 and also, since K acts transitively on Sm, k = ko + m, where m =

{x̃ | x ∈ Rm}, with x̃ =
(

0 −xt

x 0m

)
∈ k. Hence h decomposes as h = ho ⊕ p,

with p = m ⊕ Rm (by abuse of notation we denote the subgroup {1} × Rn

of H by Rn, and use the same notation for its subgroups).
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Let p : H → TSm be the projection p (k, a) = (k, a) · (e0, 0). The kernel
of dp(1,0) : h → ToTSm ∼= Rm×Rm is clearly ho. If we call ρ the restriction
of dp(1,0) to p, then ρ (x̃, y) = (x, y) .

For any µ consider on H the left invariant pseudo-Riemannian metric
Γµ defined at the identity as follows: The subspaces ho and p are orthogonal
with respect to Γµ, set any nondegenerate inner product on ho, and on p
the inner product such that ρ is a linear isometry, where ToTSm has the
metric gµ. Then p is a pseudo-Riemannian submersion.

The canonical isomorphism of the group H with the matrix group

H̄ =
{(

1 0
a k

)
| k ∈ K, a ∈ Rn

}

induces an isomorphism of Lie algebras. The element (x̃, y) ∈ p is identified

with the matrix
(

0 0
ŷ x̃

)
, where ŷ =

(
0
y

)
. Using this identification one

obtains that
[p, p]p = {0}, (14)

where the subindex p stands for the p-component of a vector in h.

Proposition 5. For n = 3 or n = 7, the geodesics in (Tn, gµ) through o
are exactly the curves s 7→ expH (sX) · o, for X ∈ p. In particular they are
defined on the whole real line and do not depend on µ.

Proof. Since the metric Γµ on H is left-invariant, calling ∇ its Levi Civita
connection, one has

2Γµ (∇XY, Z) = Γµ ([X, Y ] , Z) + Γµ ([Y, Z] , X)− Γµ ([Z, X] , Y ) (15)

for any left invariant vector fields X, Y, Z. Consider the pseudo-Riemannian
submersion p : H → Tn as above. Let X ∈ p and let α (s) = expH (sX),
which is clearly a horizontal curve in H. By Lemma 4 and homogeneity, to
see that p ◦ α is a geodesic in Tn, it suffices to show that Γµ (∇XX, Z) = 0
for any Z ∈ p, but this is clear from (15) and (14). ut

Proposition 6. Let n = 3 or n = 7. If µ > 0, every periodic geodesic
in (Tn, gµ) has length 2π

√
µ. In particular, (Tn, gµ) is not isometric to

(Tn, gµ′) if µ 6= µ′.

Proof. Let γ be a nonconstant geodesic in Tn ∼= TSm. Since the action
of H on Tn is transitive, we may suppose that γ (0) = o. Hence γ′ (0) =
(x, y) ∈ Rm×Rm. We may suppose additionally that 〈x, y〉 = 0. Indeed, this
is clear if x = 0; if not, setting k = 1 and c = 〈x, y〉 /|x| in (8) on sees that
γ is conjugate by an element in Ho to a geodesic satisfying this condition.

Now, if (x̃, y) ∈ p and 〈x, y〉 = 0, we have by definition of the multipli-
cation in SOn n Rn that expH t (x̃, y) = (expK (tx̃) , ty). By Proposition 5
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we have

γ (t) = expH t (0, y) · o = (1, ty) · ` (e0, 0) = ` (e0, ty)
γ (t) = expH t (x̃, y) · o = (expK (tx̃) , ty) · ` (e0, 0)

= ` ((cos t) e0 + (sin t)x, ty)

if x = 0 or |x| = 1, respectively (if x 6= 0 we may suppose that |x| = 1 by
considering a reparametrization of γ). Therefore a geodesic in Tn is periodic
if and only if it is congruent in H to a constant speed reparametrization
of the geodesic σ (t) = ` ((cos t) e0 + (sin t)x, 0) for some unit x ⊥ e0. The
lenght of σ is 2π

√
µ since its period is 2π and ‖σ′ (0)‖µ = ‖(x, 0)‖µ =

〈x, e0 × 0〉+ µ |x|2 = µ. ut

3. Additional geometric structures on Tn

An almost Hermitian structure on a pseudo-Riemannian manifold (M, g) is
a smooth tensor field J of type (1, 1) on M such that Jp is an orthogonal
transformation of (TpM, gp) and satisfies J2

p = −1 for all p ∈ M . If ∇ is
the Levi Civita connection of (M, g) , then (M, g, J) is said to be Kähler if
∇J = 0 and nearly Kähler if (∇XJ)X = 0 for any vector field X on M .

Let E =
{
(u, v, x, y) ∈ R4n | (u, v) ∈ TSm, 〈x, u〉 = 〈y, u〉 = 0

}
. Then

ψ : TTSm → E defined in (13) is a vector bundle isomorphism over the iden-
tity on TSm. For m = 2 or m = 6, let jo be the canonical almost complex
structure on the round sphere Sm, that is jo (x) = u×x if x ∈ u⊥ = TuSm,
which is known to be Kähler (in particular integrable) if m = 2 and nearly
Kähler but not integrable if m = 6. Let J be the induced almost com-
plex structure on TSm, that is, J = ψ−1 ◦ (jo, jo) ◦ ψ. Since ψ−1

(u,v) (x, y) =
(x, y − 〈x, v〉u), one computes J(u,v) (x, y) = (u× x, u× y − 〈u× x, v〉u).
One can check using (7) that J is invariant by the action of H.

Next we see that J is not integrable if m = 6. Let No and N denote the
Nijenhuis tensors of jo and J , respectively. Since it is well-known that in
this case jo is not integrable, there exist vector fields X1, X2 on S6 such that
No (X1, X2) 6= 0. Let ζ : S6 → TS6 be the zero section and S its image. For
i = 1, 2, let Yi be a vector field on TS6 extending the tangent vector field
dζ ◦ Xi ◦ π on S. We have that N (Y1, Y2) 6= 0, since Yi is ζ-related to Xi

and is horizontal on S. Therefore, J is not integrable.

Proposition 7. For µ = 0, 1, (Tn, J, gµ) is Kähler if n = 3, and nearly
Kähler but not Kähler if n = 7.

Remark. The Kähler structure
(
T3, g0, J

)
is equivalent to that defined in

[3]. The Kähler structure
(
T3, g1, J

)
is probably new in this setting and has

the additional property stated at the end of Theorem 1.

Proof. Let n = 3. We know that J is integrable. The metric g0 is Kähler
by [3]. To show that g1 is Kähler, we verify that the associated Hermitian
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form is closed (see [6]). Let Ωµ the Hermitian form of gµ. For ξ = (x, y),
η = (x′, y′) in ToTS2 we have by (12) that

4Ω1
o (ξ, η) = 4 〈ξ, Jη〉1 =

〈
x, L2

i y
′〉 + 〈Lix

′, Liy〉+ 〈x, Lix
′〉 =

= −〈x, y′〉+ 〈x′, y〉+ 〈x, Lix
′〉 = 4Ω0

o (ξ, η)−Ωo (ξ, η) ,

where Ω is the pull-back of the standard volume form θ of S2. Indeed, at
i ∈ S2,

(π∗θ) (ξ, η) = θ (x, x′) = 〈Lix, x′〉 ,
and since J and all the bilinear forms involved are H-invariant, we have
that 4Ω1 = 4Ω0 − Ω. Hence Ω1 is closed, since Ω0 is so (we already know
that g0 is Kähler) and Ω is clearly closed. Therefore (g1, J) is Kähler.

Now we consider the case n = 7. We have already verified that J is
not integrable and hence gµ is not Kähler. To see that it is nearly Kähler
we show that for every geodesic γ in T7 the vector field Jγ′ along γ is
parallel. By homogeneity we may suppose that γ (0) = o. We know from
Proposition 5 and its previous paragraphs that p : (H,Γµ) → (

T7, gµ

)
is

a pseudo-Riemannian submersion and that any geodesic γ has the form
γ (s) = p (α (s)) with α (s) = exp (sX) for some X ∈ p. Since J is H-
invariant, by Lemma 4, it suffices to show that the horizontal component of
∇X (Jα′) vanishes. This is true, since if Y denotes the left invariant vector
field on H such that Y ◦ α = Jα′ and Z is any horizontal left invariant
vector field, then Γµ (∇XY, Z) = 0 by (15) and (14). ut
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