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Abstract

Recent results of C. Gordon -Y. Mao and H. Pesce imply that
isospectral compact hyperbolic Riemann surfaces have Laplace and
length isospectral unit tangent bundles. In this note we give explicit
formulae relating the spectra of such surfaces and those of their unit
tangent bundles, and use them to prove the converses.
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1 Introduction

The problem whether within a family of compact Riemannian manifolds the
Laplace spectrum and the length spectrum determine each other has been
extensively studied. For example, by means of Poisson summation and of the
Selberg trace formula, one has a solution to this problem for the family of
flat tori of a given dimension, and the family of compact hyperbolic Riemann
surfaces, respectively (by a hyperbolic Riemann surface we understand an
oriented surface of constant curvature −1). Here we obtain the following
result, which implies in particular that within the family U of unit tangent
bundles of compact hyperbolic Riemann surfaces, the Laplace spectrum and
the length spectrum determine each other.

∗Partially supported by conicor, ciem (conicet) and secyt-unc.
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Theorem 1 Let S1 and S2 be compact hyperbolic Riemann surfaces and
let T 1S1, T 1S2 be their unit tangent bundles, endowed with the canonical
(Sasaki) Riemannian metric. Then the following assertions are equivalent.

(a) S1 and S2 are isospectral.

(b) T 1S1 and T 1S2 are length isospectral.

(c) T 1S1 and T 1S2 are Laplace isospectral.

This theorem is a consequence of theorems 2 and 4 below: the former
implies that (a) and (b) are equivalent, and the latter asserts the equivalence
between (a) and (c). On the other hand, the proposition in IV B of [P] yields
that (a) implies (c). Besides, (a) implies (b) essentially as a consequence of
this proposition and Proposition 1.3 and Theorem A in [G M]. We do not
comment on this since both implications also follow from explicit formulae
in the first items of Theorems 2 and 4 in this note.

At least with regard to the techniques, this is related to some extent to
the work of C. Gordon and E. Wilson ([G],[G W]) on the spectra of compact
Heisenberg manifolds. As for the unit tangent bundles considered here, they
are geometrically non trivial S1-bundles over manifolds about them much
spectral information is available (flat tori and compact hyperbolic Riemann
surfaces).

Next we recall some definitions and state the theorems referred to above.
Let M be a Riemannian manifold. The length spectrum of M is the

function mM : R → N ∪ {0,∞} defined as follows: mM (`) is the number
of free homotopy classes which contain a closed geodesic of length `. If
M is a Riemannian covering of a compact manifold, then the support of
mM (called the weak length spectrum of M) consists of a discrete sequence
0 < `1 < `2 < . . . (the lengths) and mM (`) is the multiplicity of `. The
primitive length spectrum PmM of M is defined analogously, replacing closed
geodesic with primitive closed geodesic. If M is compact these functions are
finite and every free homotopy class contains a closed geodesic.

Let H be the hyperbolic plane and let T 1H be its unit tangent bundle
endowed with the Sasaki metric. For ` ∈ R let X` : R → N∪ {0} be defined

by X` (t) = #
{

(p, q) ∈ N× Z |
√

2π2q2 + `2p2 = t
}

.

Theorem 2 Let S be a compact hyperbolic Riemann surface and let T 1S be
its unit tangent bundle endowed with the Sasaki metric.
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(a) The following formula gives the length spectrum of T 1S in terms of
that of S.

mT 1S =
∑

`>0

PmS (`)X` + mT 1H (1)

(b) Conversely, the length spectrum of T 1S determines that of S.

Theorem 3 The weak length spectrum of T 1S can be expressed in terms of
that of S as Lhor ∪ Lver, where

Lhor =
{√

2π2q2 + `2p2 | (p, q) ∈ N× Z and ` ∈ supp (PmS)
}

and Lver =
{

π
√

2q2 − 4p2 | q, p ∈ N and q ≥ 2p
}

(here supp (PmS) is the primitive weak length spectrum of S). If we require
p and q to be coprime, we obtain the primitive weak length spectrum of T 1S.

The Laplace spectrum of a compact Riemannian manifold M is the func-
tion µM : R → N∪{0} defined by µM (λ) = dim (Vλ), where Vλ = {f ∈
L2 (M) | ∆f = λf}. The support of µM consists of a discrete sequence
0 = λ0 < λ1 < λ2 < · · · → ∞ (the eigenvalues) and µM (λ) is the multiplic-
ity of λ.

For λ ∈ R, let δλ and ζλ be respectively the characteristic functions of {λ}
and {λ + k2 | k ∈ N}. Let ζ̃m be the characteristic function of {m−m2 + k2

| k ∈ N, k ≥ m} if m ∈ N.

Theorem 4 Let S be a compact hyperbolic Riemann surface and let T 1S be
its unit tangent bundle endowed with the Sasaki metric. Let g = g (S) denote
the genus of S, which is a spectral invariant.

(a) The following formula gives the Laplace spectrum of T 1S in terms of
that of S.

µT 1S = δ0 +
∑

λ>0

µS (λ) (δλ + 2ζλ) + 2 g ζ̃1 + 2 (g − 1)
∑

2≤m∈N

(2m− 1) ζ̃m

(b) Conversely, the Laplace spectrum of T 1S determines that of S.

Y. Colin de Verdière proved in [C de V] that for a generic compact Rie-
mannian manifold (all critical submanifolds of the energy function on the
loop space are non degenerate) the Laplace spectrum determines the length
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spectrum. In the last section we show that no manifold in the family U is
generic in this sense. We also see that U contains non isometric isospectral
manifolds.

I am indebted to Roberto Miatello for helpful suggestions.

2 Preliminaries

Let M be a smooth manifold. A smoothly closed (or briefly a closed) curve γ
in M is a non constant smooth function γ : [0, a] → M such that γ̇ (a) = γ̇ (0).
Such a curve extends uniquely to a periodic curve in M defined on the whole
real line, with period t0 satisfying that a is an integral multiple of t0. γ is
said to be primitive if a = t0.

Two closed curves γi : [0, ai] → M (i = 0, 1) are said to be free homotopic
(γ1 ∼ γ2) if there is a continuous map h : [0, 1]× [0, 1] → M such that h (t, i)
is an increasing reparametrization of γi for i = 0, 1, and h (0, s) = h (1, s) for
all s. Free homotopy is an equivalence relation.

Let M̃ denote the universal covering of M, let Γ be the fundamental group
of M , and let conj denote conjugation in Γ. The map

i : {closed curves in M} /∼ −→ Γ/conj

given by i [γ] = [g] if γ̃ (a) = gγ̃ (0) with g ∈ Γ, where γ̃ is a lift of γ
to M̃ of the closed curve γ defined on the interval [0, a], is a well defined
bijection. If M is a Lie group and M̃ carries the induced multiplication, then
i [γ] =

[
γ̃ (a) γ̃ (0)−1].

Suppose now that M is Riemannian. If γ : R → M is periodic and t0 is

its period, then we define length (γ) = length
(

γ|[0,t0]

)
. Thus the length of

a closed curve is an integral multiple of the length of its periodic extension.
We denote by G (M) the set of all closed geodesics and by P (M) the set of
all primitive closed geodesics in M .

Let G = PSl(2,R) = {g ∈ M2(R) | det g = 1}/{±I} and let g = {X ∈
M2(R) | tr X = 0} be its Lie algebra. Consider on G the left invariant Rie-
mannian metric 〈, 〉 such that 〈X,Y 〉 = 2 tr (XY t) for all X,Y ∈ g. Con-

sider the Cartan decomposition g = RZ ⊕ m, where Z = 1
2

(
0 1
−1 0

)
and

m = {X ∈ g | X = X t}. Let K be the subgroup of G with Lie algebra
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k = RZ and let H = G/K be endowed with the Riemannian metric such
that the canonical projection π : G → H is a Riemannian submersion. As
usual we shall identify TeKH with m. H is the hyperbolic plane with constant
curvature −1.

G can be identified via left multiplication with the set of orientation pre-
serving isometries of H, and hence it acts canonically on T 1H. We consider
on T 1H the canonical (Sasaki) metric, defined by ‖ξ‖2 = ‖π∗vξ‖2 + ‖K(ξ)‖2

for ξ ∈ TvT
1H, v ∈ T 1H, where K is the connection operator.

H carries a canonical complex structure, which comes from the G-invariant

quasi complex structure i induced by adZ : m → m. Let X1 = 1
2

(
1 0
0 −1

)

and X2 = iX1 = 1
2

(
0 1
1 0

)
. By the usual identification of m with TeKH we

can write Xi ∈ T 1
eKH since ‖Xi‖ = 1.

The map Φ : G → T 1H defined by Φ(g) = g∗eK(X1) is an isometry (notice
that for Y ∈ m, (exp tY )∗eKX1 is the parallel transport of X1 along the curve
(exp tY )K, since (G,K) is a symmetric pair).

Let S be an oriented surface of constant curvature −1 and positive injec-
tivity radius, and let Γ be its fundamental group. S is naturally isometric
to Γ\H with the induced metric. Γ is a discrete subgroup of G which acts
freely and properly discontinuously on H and contains no parabolic isome-
tries. Hence every g ∈ Γ, g 6= e, translates a unique (up to an increasing
reparametrization) unit speed geodesic in H.

An element g ∈ Γ, g 6= e, is called primitive if whenever g = gp
0 for

some g0 ∈ Γ and p ∈ N, then p = 1. Let PΓ denote the set of all primitive
elements of Γ. For each g ∈ Γ there exist unique g0 ∈ PΓ and p ∈ N such that
g = gp

0. If two elements of Γ are conjugate in Γ, then the primitive elements
associated to them in this way are conjugate and the powers coincide.

If g ∈ PΓ translates a unit speed geodesic σ in H in a > 0 (that is
gσ (t) = σ (t + a) for all t), then Γσ|[0,a] is a closed geodesic in S. This
induces a well defined map

Pi : PΓ/conj → P (S) /∼, Pi [g] =
[
Γσ|[0,a]

]

Let π̃ : G̃ → G be the universal covering of G and let ẽxp : g → G̃
be the exponential map. G̃ is diffeomorphic to R3 and its center is Z : =
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π̃−1 (e) = {ẽxp (2kπZ) | k ∈ Z} ≈ Z. Z is also the center of the group
Γ̃ := π̃−1 (Γ), which is the fundamental group of T 1S ≈ Γ\G ≈ Γ̃\G̃.

Lemma 5 Let f : Γ̃−Z → PΓ×N×Z be given by f (g) = (g0, p, q), where
π̃ (g) = gp

0 and q is the unique integer satisfying gσ̃ (0) = σ̃ (pa) ẽxp (2πqZ),
where σ̃ is any lift to G̃ of a geodesic σ in H translated by g0 in a. Then f is

well defined and can be pushed down to the quotients through f̃ :
(
Γ̃−Z

)
/conj

→ (PΓ/conj) ×N× Z.

Proof. If σ1 is another geodesic translated by g0 (in a > 0), then σ1 = g1σ
with g1 commuting with g0. Hence any lift σ̃1 of σ̇1 to G̃ satisfies σ̃1 = g̃σ̃
with g̃1 commuting with g. Therefore σ̃ (pa)−1 gσ̃ (0) depends only on g.
On the other hand, π̃

(
σ̃ (pa)−1 gσ̃ (0)

)
= e since π̃ is a homomorphism and

σ (pa) = gp
0σ (0). Hence q is well defined. The validity of the last assertion

follows from similar considerations. ¤

3 The length spectra of S and T 1S

We begin the section describing the geodesics in the unit tangent bundle of
the hyperbolic plane. If V is a smooth curve in T 1H, then V ′ will denote the
covariant derivative along the projection of V to H.

Proposition 6 (a) Let V be a geodesic in T 1H and let c = π ◦ V . Then
‖V ′‖ = const, ‖ċ‖=const =: λ and one of the following possibilities holds:

(i) If λ = 0, then V is a constant speed curve in the circle T 1
c(0)H.

(ii) If λ 6= 0, then the geodesic curvature κ of c with respect to the normal
iċ/λ is also constant and for t ∈ R

V (t) = e−2λκtizċ (t) , (2)

where z ∈ C is such that V (0) = zċ (0).

(b) Conversely, each curve V in T 1H which satisfies (i) or (ii) is a con-
stant speed geodesic. Moreover, given a constant speed curve c in H with
constant geodesic curvature, and V0 ∈ T 1

c(0)H, there is a unique geodesic V

in T 1H which projects to c and such that V (0) = V0.

(c) The norm of the vertical component of V̇ with respect to the submer-
sion T 1H → H is ‖V ′‖ = λ |κ|. Furthermore, V has unit speed if and only
if λ2 (1 + κ2) = 1.
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Proof. (cf. Corollary 5.3 of [B B B]). We recall Sasaki equations for
geodesics in the unit tangent bundle of a Riemannian manifold ([Sa]):

V ′′ = −‖V ′‖2
V and ċ′ = R (V ′, V ) ċ,

where R is the curvature tensor. Since ‖V ‖ ≡ 1 and dimH = 2, the first
equation may be replaced with ‖V ′‖ = const. Suppose λ and κ are constant.
Clearly V is a geodesic if V satisfies either (i) or (ii) with λ 6= 0 and κ = 0.
Let V be as in (2) with κ 6= 0. By definition of geodesic curvature we have
ċ′ (t) = λκiċ (t) , hence

V ′ (t) = ze−2λκti (ċ′ (t)− 2λκiċ (t)) = −λκiV (t)

Then ‖V ′‖ = λ |κ| is constant, and the second Sasaki equation is also sat-
isfied, since constant sectional curvature −1 implies R (V, iV ) W = iW for
all W. All geodesics are as in (i) or (ii) since one can show that any tangent
vector at T 1H is the initial velocity of a geodesic of either of the stated forms.
¤

From now on we consider the upper half plane model of the hyperbolic
plane (with the metric ds2 = (dx2 + dy2) /y2) and the canonical action of G
on it by Möbius transformations. The geodesic curvature of a regular curve c
in H or in some oriented quotient of H will be always computed with respect
to the normal iċ/ ‖ċ‖ and denoted by κ.

Lemma 7 Let c be a complete curve in H of constant geodesic curvature κ.
Given θ ∈ (0, π), let cθ be the curve in H defined by cθ (t) = eteiθ.

(a) If |κ| > 1, the image of c is a geodesic circle of radius |r| and length
|2π sinh r|, where coth r = κ (this implies that the length is 2π/

√
κ2 − 1).

(b) If |κ| = 1, the image of c is a horocycle.

(c) If κ = cos θ, the image of c is congruent to that of cθ.

(d) c is injective ⇔ c is not bounded ⇔ |κ| ≤ 1.

Proof. The lemma follows from straightforward computations, using
polar coordinates for (a) and standard coordinates in the upper half plane
for (b) and (c). (d) is an immediate consequence of the preceding items. ¤
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Now let S be as in the preliminaries an oriented surface of constant curva-
ture −1 and positive injectivity radius, and let Γ be its fundamental group.
A unit speed geodesic v in T 1S is said to be horizontal-like (vertical-like)
if |κ| < 1 (|κ| > 1 or πv is constant). By Proposition 6 (c) this is equiva-
lent to the fact that the (constant) norm of the vertical component of v̇ is
smaller (greater) than the norm of the horizontal component. We denote by
Ghor (T 1S) the set of all closed horizontal-like geodesics in T 1S. The defi-
nition of Gver (T 1S) is analogous. Every periodic geodesic in T 1S is either
horizontal-like or vertical-like, since curves with |κ| ≡ 1 lift to horocycles in
H (Lemma 7 (b)) and Γ contains no parabolic isometries.

Lemma 8 Let S be an oriented surface of constant curvature −1 and con-
sider on T 1S the canonical metric. Let v be a geodesic in T 1S such that
c = πv is not constant and has geodesic curvature κ. Then v is closed if and
only if c is periodic and pκ length (c) = −πq for some coprime integers p, q,
with p > 0. In this case, length (v) = p (length c)

√
1 + κ2.

Proof. By Proposition 6, v = ΓV with V as in (2). If v is closed, then
clearly so is c, and the period t0 of v is the least positive number t satisfying
simultaneously ċ (t) = ċ (0) and −2λκt ∈ 2πZ (notice that v̇ (0) = v̇ (s) if
ċ (s) = ċ (0) and v (0) = v (s)). Equivalently, λt0 = n length c, where n is
the least positive integer such that −nκ length c ∈ πZ. This proves the first
assertion. We continue the argument in order to compute the length of v.
Since p and q are coprime, then n = p and

length v = t0 ‖v̇‖ = p
λ

(length c)
∥∥∥V̇

∥∥∥ .

Now by definition of the Sasaki metric,
∥∥∥V̇

∥∥∥
2

= ‖ċ‖2 + ‖V ′‖2 = λ2 (1 + κ2)

by Lemma 6 (c) and the last assertion follows. ¤

Let φt be the isometry of H defined by φt (z) = etz. Given z ∈ H, let cz be
the curve in H defined by cz (t) = φt (z). If z = reiθ with 0 < θ < π, then by
Lemma 7 the curve cz has constant geodesic curvature κ = cos θ, since it is a
reparametrization of cθ defined in that lemma. Let Vz the unique unit speed
geodesic in T 1H which projects to an orientation preserving reparametriza-
tion of cz and such that Vz (0) is a positive multiple of ċz (0).

Now we describe the periodic horizontal-like geodesics in the unit tangent
bundle of a hyperbolic cylinder of positive injectivity radius.Given ` > 0, let
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Γ` be the subgroup {φm
` | m ∈ Z} and let S` the cylinder Γ`\H with the

induced Riemannian metric. Objects associated to S` are indicated with the
subscript `.

Lemma 9 (a) Γ`cz is a periodic curve in S` of length `/
√

1− κ2.

(b) Γ`Vz is periodic in T 1S` if and only if `κ/π
√

1− κ2 ∈ Q, say

−qπ
√

1− κ2 = `κp (3)

for some coprime integers p and q, with p > 0. In this case we have that

(i) length (Γ`Vz) =
√

2π2q2 + `2p2 =: L

(ii) f̃` ◦ i`
[
Γ`Vz|[0,L]

]
`
= ([φ`]` , p, q).

(c) If v is a unit speed horizontal-like periodic geodesic in T 1S`, then
v = uΓ`Vz for some z ∈ H and u ∈ S1.

Proof. Clearly Γ`cz is a periodic curve of period `. Hence length (Γ`cz) =
` ‖ċz (0)‖, since ‖ċz‖ is constant. Thus (a) follows from the following compu-
tation.

‖ċz (0)‖ = |ċz (0)| /Im cz (0) =
∣∣reiθ

∣∣ /r sin θ = 1/ sin θ = 1/
√

1− κ2 (4)

The first assertion of (b) is an immediate consequence of (a) and Lemma
8. Solving in (3) for κ in terms of q/p and substituting in (a), we obtain (i)
by the expression for length (v) in Lemma 8.

Now we prove (ii). By Proposition 6, Vz (t) = 1
λ
e−2λκtiĊz (t), where

Cz (t) = cz (at),
∥∥∥Ċz

∥∥∥ ≡ λ and λ2 (1 + κ2) = 1, for some a ∈ R. Clearly

Ċz (t) = (φat)∗ Ċz (0). Suppose that 1
λ
Ċz (0) = Φ (g) with g ∈ G (we recall

that Φ identifies G with T 1H). Since φs is the Möbius transformation asso-
ciated to exp (sX1), and multiplication by esi in T 1H corresponds to right
multiplication by exp (sZ) in G, we have that

Vz (t) = Φ (exp (atX1) g exp (−2λκtZ))

Hence Vz (t) = π̃ (γ (t)), where γ (t) = ẽxp (atX1) g̃ ẽxp (−2λκtZ), with
π̃g̃ = g. We obtain from Lemma 8 that −2λκL = 2πq, since by its proof
p length (c) = λL. Furthermore, replacing length (c) in the expression for
length (v) in Lemma 8, with its value given in (a), we have that aL = `p,
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since a straightforward computation using (4) yields a =
√

1− κ2/
√

1 + κ2.
Therefore

i`

[
Γ` Vz|[0,L]

]
=

[
γ (L) γ (0)−1] = [ẽxp (p`X1) ẽxp (2πqZ)]

(notice that ẽxp (2πqZ) lies in the center of G̃). Thus (ii) follows from the
fact that exp (p`X1) = φp

` and φ` is primitive in Γ`.
Now we prove (c). Suppose that v is a unit speed periodic geodesic in T 1S`

of period L, that projects to a periodic curve c of constant geodesic curvature
κ, with |κ| < 1. Let V be a lift of v to T 1H and let C be its projection to H.
Then C is a lift of c and there exists m ∈ Z such that (dφm

` ) Ċ (0) = Ċ (L).
But by Lemma 7 there exists a unique constant speed curve C1 in H with
constat geodesic curvature and Ċ1 (0) = Ċ (0) and C1 (L) = φm

` C (0) and it
must be a reparametrization of t 7→ φtC (0) = cC(0) (t). Hence V = uVC(0)

for some u ∈ S1 and the assertion follows.

Lemma 10 All horizontal-like closed geodesics in a free homotopy class have
the same length. Thus length is well defined on Ghor (T 1S) /∼.

Proof. Let vj (j = 1, 2) be free homotopic horizontal-like unit speed
closed geodesics in T 1S, defined on the interval [0, Lj], and suppose that
i [vj] = [g̃] with g̃ ∈ G̃ and f̃ [g̃] = ([g0] , p, q). By conjugating Γ in G we may
suppose that g0 = φ` for some ` > 0. By lifting the free homotopy, we can get
lifts γj of vj to G̃ such that gp

0 γ̇j (0) = γ̇j (Lj). Denoting by Vj the projection
of γj to T 1H, we have then that gp

0V̇j (0) = V̇j (Lj). Hence Γ`Vj are free
homotopic (horizontal-like) closed geodesics in T 1S`, which project to vj on
T 1 (Γ\H) and whose (common) image under f̃` ◦ i` is ([g0] , p, q). Now it is
easy to see that the formula in Lemma 9 for the length of a closed geodesic in
T 1S` in terms of p and q holds even if this numbers are not coprime. Hence
L1 = L2.

We observe that in fact v1 (t) = uv2 (t + t0) for some u ∈ S1, t0 ∈ R and
all t ∈ R, but we do not need this in the following. ¤

Theorem 11 (a) No horizontal-like closed geodesic in T 1S is free homotopic
to a vertical-like one.
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(b) There is a bijection Fhor such that the following diagram commutes.

(P (S) /∼)×N× Z
Fhor−→ Ghor (T 1S) /∼

length S × id ↓ ↓ length T 1S

R×N× Z
L−→ R

where L (`, p, q) =
√

2π2q2 + `2p2.

(c) The map Fver : G (T 1H) /∼ −→ Gver (T 1S) /∼, Fver [V ] = [ΓV ],
is a well defined bijection which preserves the collection of lengths of closed
geodesics in free homotopy classes.

Proof. (a) Let v : [0, a] → T 1S be a closed geodesic and let γ be a lift of v
to G̃. Suppose that πv is not constant and denote by c the periodic extension
of the projection of γ to H. There exists g̃ ∈ Γ̃ satisfying g̃γ̇ (0) = γ̇ (a). Its
projection g = π̃ (g̃) ∈ Γ translates c in a. If v is vertical-like, by Lemma
7, the image of c is a geodesic circle in H whose center is fixed by g. Hence
g = e (since Γ contains no elliptic isometries) and thus i [v] ∈ Z/conj. The
same holds clearly if πv is constant. If v is horizontal-like, then c is injective
by Lemma 7. Thus g 6= e and i ([v]) /∈ Z/conj.

(b) Let σ be a primitive closed geodesic in S of length `. Let σ̃ be a lift
of σ to H and let g be the unique element of PΓ which translates σ̃ in `.
There exists h ∈ G such that g = hφ`h

−1. The group Γh = h−1Γh contains
Γ`. Let p, q integers with p > 0 and let κ be the unique number (|κ| < 1)
satisfying (3). Setting L = L (`, p, q) and z = eiθ, with cos θ = κ, we have
that ΓhVz|[0,L] is a closed geodesic in T 1S since it corresponds via the obvious
isometry Γ\H → Γh\H to a geodesic in T 1 (Γh\H) that lifts to Γ`Vz, which
is a closed geodesic in T 1S` by Lemma 9. Now

Fhor ([σ] , p, q) =
[
ΓhVz|[0,L]

]
(5)

is well defined, since if σ̃1 is another lift of σ to H, then the unique element
g1 ∈ PΓ which translates σ̃1 in ` is conjugate to g in Γ by h1 ∈ Γh.

First we prove that Fhor is onto. Let v be a horizontal-like closed geodesic
in T 1S defined on the interval [0, L]. Since L (`,mp,mq) = mL (`, p, q) for
all m ∈ N, we may suppose that L is the period of v. Let V be a lift of v to
G ≈ T 1H and let c its projection to H. c has constant geodesic curvature,
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say κ, with |κ| < 1 and Γc is closed in S of period L/p for some p ∈ N. Hence
there exists g ∈ PΓ such that gc (t) = c (t + L/p) for all t. Now g translates
a geodesic σ in H in some positive number, say `. On the other hand, by
Lemma 7 and Proposition 6 (b) there exist h ∈ G such that c = hcθ and
u ∈ S1 such that V = uhVz. Hence g = hφ`h

−1 and Γ`Vz is periodic in T 1S`

with period L. Thus we have by the proof of Lemma 8 and Lemma 9 that (3)
holds for some integer q coprime with p. By the way in which σ, h, p and q
were introduced and the definition of Fhor, we have that L =

√
2π2q2 + `2p2,

that (5) holds, and moreover the free homotopy class of ΓhVz|[0,L] contains
v.

Now we prove that the composition of the following maps yields the iden-
tity in (P (S) /∼)×N× Z, hence Fhor is injective.

(P (S) /∼)×N× Z
Fhor−→ Ghor (T 1S) /∼ ihor−→

(
Γ̃−Z

)
/conj

(Pi×id)◦f̃−→ (P (S) /∼)×N× Z

Let σ, g, `, etc. be as in the definition of Fhor and let γ be a lift of hVz|[0,L]

to G̃. We have to show that f̃
[
γ (L) γ (0)−1] = ([g] , p, q). By conjugating Γ

in G we may suppose that g = φ`. In this case we can take h = e and the
identity follows from Lemma 9 (b) (ii).

(c) Let V : [0, a] → T 1H be a closed geodesic. Its projection c to H
is either constant or closed. If it is not constant, then by Lemma 7 it has
constant geodesic curvature κ with |κ| > 1. Hence V and v = ΓV are
vertical-like. Next we show that Fver is onto. Let v : [0, a] → T 1S be a
vertical-like closed geodesic. With the notation of (a) we have that g̃ ∈ Z,
hence V = Zγ is a vertical-like closed geodesic in T 1H ≈ Z\G̃ such that
Fver [V ] = [v]. Now Fver is injective since the conjugacy class in Γ of g̃ ∈ Z
consists only of g̃ itself. The last assertion follows from the facts that V and
ΓV have clearly the same length, and the same happens for v and V = Zγ
as above. ¤

Proof of Theorem 2. (a) is just a reformulation of Theorem 11. Now
we prove (b). Let m1 = mT 1S − mT 1H and define inductively `k = min
supp (mk) and mk+1 = mk −mk (`k)X`k

. Since X`k
(`k) = 1 and X` (`k) = 0

if ` > `k, we have that PmS (`k) = mk (`k) and PmS (`) = 0 if ` 6= `k, for
all k. Thus we obtain the primitive length spectrum of S, from which the
length spectrum can be easily computed. ¤
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Proof of Theorem 3. By Theorem 11 Lhor is the collection of lengths of
horizontal-like closed geodesics in T 1S. By (a) and (c) of the same theorem
it remains only to show that Lver is the weak length spectrum of T 1H. Let V
be a vertical-like periodic geodesic in T 1H and let c = πV be its projection
to H. If c is constant, then length (V ) = 2π, which belongs to Lver (taking
q = 2p = 2). Otherwise c is periodic and by Lemmas 6 and 7 it has constant
geodesic curvature, say κ, with |κ| > 1, and length 2π/

√
κ2 − 1. Replacing

length (c) with this value in Lemma 8, we obtain that

2pκ/
√

κ2 − 1 = −q (6)

for some coprime integers p, q with p > 0, and that

length (V ) = 2πp
√

κ2 + 1/
√

κ2 − 1 (7)

Now, solving in (6) for κ in terms of q/p and substituting in (7), we have
that length (V ) = π

√
2q2 − 4p2. If we take a closed geodesic with periodic

extension V , then its length is an integral multiple of length (V ), which is
also of the required form for some p, q (not necessarily coprime). To show the
remaining inclusion we may suppose that p, q are coprime integers satisfying
q ≥ 2p > 0. If q = 2p, then p = 1, q = 2 and so Lver contains the number
2π, which is the length of a geodesic V in T 1H with c = constant. If q > 2p,
by a similar argument we get that any geodesic in T 1H whose projection to
H runs p times along a geodesic circle in H of constant geodesic curvature κ
satisfying (6), is closed and its length is π

√
2q2 − 4p2. ¤

4 The Laplace spectra of Γ\H and Γ\G
Let M be a compact connected Riemannian manifold of dimension n. For
f ∈ C∞ (M) and p ∈ M , the Laplacian of f at p is defined by

(∆f) (p) = −
n∑

i=1

d2

dt2

∣∣∣∣
0

f (ci (t)) ,

where ci is the geodesic in M with initial velocity Xi, and {X1, . . . , Xn} is
an arbitrary orthonormal basis of TpM . As usual we denote also by ∆ the
unique self-adjoint extension to L2 (M).
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In order to prove Theorem 4, we recall from [L] some well known facts
about unitary representations of G = PSl (2,R). Let Ĝ be the set of equiva-
lence classes of nontrivial irreducible unitary representations of G. Ĝ consists
of the principal and complementary series Hν with ν ∈ iR+ ∪ [0, 1), and the
discrete series Hν , with ν varying among the odd integers. The Casimir op-
erator C = X2

1 +X2
2−Z2 acts on Hν by multiplication by λ (ν) = (ν2 − 1) /4.

Furthermore, Hν decomposes under the action of SO (2) into irreducibles as
follows:

Hν = ⊕̂k∈ZHν
2k if ν ∈ iR+ ∪ [0, 1)

Hν = ⊕̂k≥mHν
2k and H−ν = ⊕̂k≤−mH−ν

2k if ν = 2m− 1, m ∈ N

One has that Hν
2k ≈ C and that Z2 acts on it by multiplication by −k2.

Let
L2 (Γ\G) = C 1 ⊕ ⊕̂ν∈Ĝ nΓ (ν) Hν

be the decomposition of L2 (Γ\G) associated to the quasi-regular represen-
tation of G. Now

L2 (Γ\H) = L2 (Γ\G)K = C 1⊕⊕̂ν∈Ĝ nΓ (ν) (Hν)K = C 1⊕⊕̂ν∈iR+∪[0,1) nΓ (ν) Hν
0

This corresponds to identifying functions f on Γ\H with functions f̃ on Γ\G
which are constant on the fibers of Γ\G → Γ\H. Under this identification,

∆Γ\H (f) = −C
(
f̃
)

(8)

Given X ∈ m, the curve V (t) = Φ (exp tX) is the parallel transport of X1

along the geodesic c (t) = exp (tX) K in H. On the other hand, Φ (exp tZ)
is a constant speed curve in the circle T 1

eKH. Hence by Proposition 6, t 7→
exp (tX) is a geodesic in G for X ∈ m ∪ k, ‖X‖ = 1. Therefore by the
G-invariance of the metric, we have for f ∈ C∞ (Γ\G) that

(
∆Γ/Gf

)
(Γg) = −∑2

i=1
d2

dt2

∣∣∣
0
f (Γg exp tXi)− d2

dt2

∣∣∣
0
f (Γg exp tZ)

= −C (f) (Γg)− Z2
Γg (f)

(9)

Proof of Theorem 4. (a) Let us consider first the Laplacian restricted
to the subspace of L2 (Γ\G) associated to the principal and complementary
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series. Suppose ν ∈ iR+ ∪ [0, 1), then (1− ν2) /4 is an eigenvalue of the
Laplacian on Γ\H whit multiplicity nΓ (ν). By (8), (9) and the description
of the action of Z2, the numbers λ (ν) + k2, with k ∈ N ∪ {0}, are Laplace
eigenvalues with multiplicities nΓ (ν) = µΓ\H (λ (ν)) if k = 0, and 2nΓ (ν) =
2µΓ\H (λ (ν)) if k 6= 0. Now, arguing similarly for the Laplacian restricted
to the subspace of L2 (Γ\G) associated to the discrete series, we obtain that
if m ∈ N and ν = 2m − 1, then the numbers λ (ν) + k2 with k ≥ m are
eigenvalues with multiplicities 2nΓ (ν). The formula follows now from the
facts that λ : iR+∪ [0, 1) → R+ is a bijection and that if ν is an odd integer,
nΓ (ν) equals g (Γ\H) if |ν| = 1 and |ν| (g (Γ\H)− 1) if |ν| 6= 1 (see for
example [H P]).

(b) If µΓ\G is given, we can compute from it the volume of Γ\G and hence
we know area (Γ\H) = vol (Γ\G) /2π and from this the genus of Γ\H. Thus
we must obtain µΓ\H in terms of the second term

∑
λ>0 µS (λ) (δλ + 2ζλ) of

the expression for µΓ\G given in (a). Let µ1 denote this second term and
let λ1 = min supp (µ1), which is a positive number. Clearly µΓ\H (λ) = 0
if 0 < λ < λ1. Hence we have that µΓ\H (λ1) = µ1 (λ1), since ζλ1 (λ1) = 1
and ζλ (λ1) = 0 if λ > λ1. We define recursively λn = min supp (µn) and
µn+1 = µn − µn (λn) (δλn + 2ζλn) and obtain by the same argument that
µΓ\H (λn) = µn (λn) and µΓ\H (λ) = 0 if 0 6= λ 6= λn, for all n.

5 Isometry classes and genericity in U
Remark 12 (a) No manifold in the family U of unit tangent bundles of
compact hyperbolic Riemann surfaces is generic in the sense of Y. Colin de
Verdière.

(b) Let S1 and S2 be two compact hyperbolic Riemann surfaces and sup-
pose that T 1S1 and T 1S2 are isometric. Then S1 and S2 are isometric. In
particular the family U contains non isometric isospectral manifolds.

Proof. (a) Consider in Γ\G ≈ T 1 (Γ\H) the closed geodesic v (t) =
Γ exp (tZ), t ∈ [0, 2π], whose image is the circle T 1

eKH. From the proof of
Theorem 3 we see that the only closed geodesics in T 1 (Γ\H) free homotopic
to v with length 2π are Γg exp (tZ), with t ∈ [0, 2π] and g ∈ G. All geodesics
of this type in a neighborhood of v can be obtained as a one-parameter group
of local isometries of T 1 (Γ\H) applied to v. Hence the connected critical
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submanifold in the loop space of energy 4π2 containing v has dimension less

than or equal to 4, the dimension of Isom0

(
G̃

)
≈ G̃×R (see [Sc]).

On the other hand, using the method in [Z], we obtain that the di-
mension of periodic Jacobi vector fields along the periodic extension of v
is greater or equal to 5. Hence there is a periodic Jacobi field that is not
the restriction of a Killing field. Therefore the critical submanifold of en-
ergy 4π2 in the loop space is degenerate and thus T 1 (Γ\H) is not generic
in the sense of [C de V] (see also [B]). Now we follow [Z] to show that
the linearized Poincaré map of the periodic geodesic γ : R → G, γ (t) =
exp (tZ), is the identity. The product G × K acts on the left on G by
isometries as follows: (g, k) .g1 = gg1k

−1, with isotropy group the diagonal
∆ (K) = {(k, k) | k ∈ K}. Let h = {(Y, Y ) | Y ∈ k} be the Lie algebra of
∆ (K) and let p = {(X + Y, 2Y ) | X ∈ m and Y ∈ k}. One verifies easily
that h ⊕ p is a naturally reductive decomposition for G expressed as the
quotient (G×K) /∆ (K). Identifying p ≈ TeG in the usual way, we have in
the notation of [Z] that v = γ̇ (0) = (Z, Z) and E = v⊥ = {(X, 0) | X ∈ m}.
Given U = (X, 0) ∈ E we compute [v, U ] = (iX, 0) = [v, U ]p and hence
[v, U ]h = 0. Therefore in the notation of [Z] we have E1 = E2 = 0 and hence
E ⊕ E = V1 ⊕ V4. Since exp (2πZ) = e we have that the linear isometry A
is the identity on p. Consequently the linearized Poincaré map for γ is the
identity. Moreover, since the geodesic spray of γ is a periodic Jacobi field,
we obtain finally that the dimension of periodic Jacobi fields along γ is at
least 1+ dim (E ⊕ E) = 5.

(b) For j = 1, 2 and for each v ∈ T 1Sj there are exactly two unit vectors
±ξ ∈ Tv (T 1Sj) where Ricci v attains its maximum (see [M]). The maximal
connected leaves of the one-dimensional distribution Dj (v) = Rξv defined
on T 1Sj are the fibers of the bundle T 1Sj → Sj. If F : T 1S1 → T 1S2 is an
isometry, then F∗ preserves the distributions and hence the leaves. Moreover
the function f : S1 → S2 which lifts to F is an isometry since the projection
T 1S → S is a Riemannian submersion. The last assertion follows from the
fact that there exist non isometric isospectral compact hyperbolic Riemann
surfaces (see [V]).
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Riemannian manifolds, Tôhoku Math. J. 10 (1958), 338-354.

[Sc] Scott, P.: The geometries of 3-manifolds, Bull. London Math.
Soc. 15 Nr. 56 (1983), 401-487.

17
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