Practico 5 de Algebra II/Algebra-2010

EI: ejercicio importante. VIE: Very important exercise La numeración de los ejercicios no es la usual. Descifrarla. :)

- 1) (VIE) Para cada una de las siguientes transformaciones lineales, caracterizar mediante ecuaciones el Nu T y la Imagen de T, dar sus dimension y una base de cada uno. Verificar que en todos los casos la dimension del nucleo mas la dimension de la imagen es igual a la dimension del espacio de salida. Decidir ademas cuales de los siguientes vectores estan en el nucleo o en la imagen: (-1, 1, 1), (1, 2, -1), (3, 1, 1), (1, 1, 2), (1, 1, -3).
- 1) $T_1: \mathbb{R}^2 \to \mathbb{R}^3$ dada por $T_1(x,y) = (x-y, x+y, 2x+3y)$.
- 2) $T_2: \mathbb{R}^3 \to \mathbb{R}^2$ dada por: $T_2(x, y, z) = (x y + z, -2x + 2y 2z)$
- 3) $T_3: \mathbb{R}^3 \to \mathbb{R}^3$ dada por: $T_3(x, y, z) = (-x + 2y + z, 2x 4y 2z, -3x + 6y + 3z)$
- 4) $T_4: \mathbb{R}^3 \to \mathbb{R}^3$ dada por: $T_4(x, y, z) = (3x 2y z, 7x 5y 3z, -x z)$.
- 5) $T_5: \mathbb{R}^3 \to \mathbb{R}^3$ dada por: $T_5(x, y, z) = (x y + 2z, 3x + y + 4z, 5x y + 8z)$.
- 6) $T_6: \mathbb{R}^4 \mapsto \mathbb{R}^3$ dada por: T(x,y,z,w) = (x+2y+3z+4w, 3x+2y+z+4w, x-2y-5z-4w)
- **2)** (EI) En cada caso, sea W el espacio de matrices generado por G. Describir explicitamente el espacio W, y hallar una base del mismo y su dimension. Ademas, de las matrices del conjunto test, decidir cuales de ellas estan en W.

$$a) \ G = \left\{ \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}; \begin{bmatrix} -1 & 2 \\ 3 & 1 \end{bmatrix}; \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix}; \begin{bmatrix} 1 & 1 \\ 1 & 6 \end{bmatrix} \right\}$$

$$test = \left\{ \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}; \begin{bmatrix} -1 & 5 \\ -2 & 3 \end{bmatrix}; \begin{bmatrix} 2 & -3 \\ -4 & 4 \end{bmatrix} \right\}$$

$$b) \ G = \left\{ \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}; \begin{bmatrix} -1 & 2 \\ -3 & 1 \end{bmatrix}; \begin{bmatrix} -1 & 3 \\ -3 & 1 \end{bmatrix}; \begin{bmatrix} 2 & 1 \\ 2 & 6 \end{bmatrix} \right\}$$

$$test = \left\{ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}; \begin{bmatrix} 2 & 3 \\ 1 & 10 \end{bmatrix}; \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}; \begin{bmatrix} 2 & 2^{35} \\ -5 & 10 \end{bmatrix} \right\}$$

$$c) \ G = \left\{ \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}; \begin{bmatrix} 3 & 8 \\ 1 & 7 \end{bmatrix}; \begin{bmatrix} 2 & 7 \\ -1 & 3 \end{bmatrix}; \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \right\}$$

$$test = \left\{ \begin{bmatrix} 5 & 7 \\ 8 & 5 \end{bmatrix}; \begin{bmatrix} 4 & 14 \\ -2 & 5 \end{bmatrix}; \begin{bmatrix} \pi & \frac{38}{15} \\ \frac{312456}{302178} & \int_0^1 \frac{1+e^x}{\ln(x^2+\sqrt{x})} dx \end{bmatrix} \right\}$$

3) (EI) Encuentre una base y caracterización para el espacio generado por los polinomios $x^2 + 2x - 1, 2x^2 + x + 2, 4x^2 + 5x, x^2 + 5x - 5.$

- 4) Encuentre la dimensión del espacio generado por los polinomios $x^3 + 2x^2 x$, $4x^3 + 8x^2 4x 3$, $x^2 + 3x + 4$, $2x^3 + 5x^2 + x + 4$
- 5) Sea $g \in C^1[0,1]$ y sea $T: C^1[0,1] \mapsto C[0,1]$ dada por T(f) = (fg)'.
- a) Probar que T es lineal y hallar el nucleo de T.
- b) Describir explicitamente el nucleo en los casos $g(x) = e^x$ y g(x) = x y hallar su dimensión. (nota: la dimensión es distinta en ambos casos)
- **6)** Sea T la transformación lineal en \mathbb{C}^3 tal que $T(e_1) = (1,0,i), \ T(e_2) = (0,1,1) \ T(e_3) = (i,1,0)$; Es T inversible?
- **30)** (EI) En el teórico probamos que si $A \sim B$ entonces un subconjunto de las filas de A es LI sii el correspondiente subconjunto de columnas de B lo es.
- a) Usar esto para extraer una base de cada conjunto generador. (la base debe estar formada por elementos del conjunto dado. El conjunto genera algun SEV).
 - i) $\{(1,1,2),(1,1,1),(1,1,4),(5,5,7),(1,2,3),(3,4,9)\}$
- ii) $\{1+x+2x^2+x^3,1-x+3x^2-x^3,1+3x+x^2+3x^3,2-x+x^2+x^3,5+2x+6x^2+4x^3,5x+2x^2+3x^3\}$
- b) Usar lo probado en el teórico para completar los siguientes conjuntos LI a una base del espacio dado:
 - $i)\{(1,0,-1,0),(1,1,1,1)\}\subseteq \mathbb{R}^4.$
 - ii) $\{1+x^2+x^3+x^5,1+x+2x^3+x^4-3x^5\}\subseteq \text{polinomios de grado} \leq 5$
- **31)** (EI) Para cada una de las siguientes transformaciones lineales, caracterizar mediante ecuaciones el Nu T y la Imagen de T, dar sus dimension y una base de cada uno. Verificar que en todos los casos la dimension del nucleo mas la dimension de la imagen es igual a la dimension del espacio de salida.
 - i) T:(polinomios de grado ≤ 2) $\mapsto C[0,1]$ dada por: $T(ax^2 + bx + c) = (b-a)e^x + (c-a)e^{2x} + (b-c)e^{3x}.$
 - ii) $T: I\!\!R^{2\times 2} \mapsto (\text{polinomios de grado} \leq 5)$ dada por

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a-b)x^5 + (c+d)x^4 + (a+b)x^3 + (c+d)x^2 + (a+2b+3c+3d)x + 7a - 8b + 5c + 5d$$

iii) $T: \mathbb{R}^{2\times 2} \mapsto \mathbb{R}^{2\times 2}$ dada por:

$$T\left(\begin{bmatrix}x&y\\z&w\end{bmatrix}\right) = \begin{bmatrix}-x+3y-2z+w&7x-6y+2z-w\\-2x+6y-4z+2w&-11x+13y-6z+3w\end{bmatrix}$$

- **32)** (EI) Sea $B = \{(1, -2, 1); (2, -3, 3); (-2, 2, -3)\}$
 - a) Probar que B es una base de \mathbb{R}^3 .
 - b) Hallar la matriz de cambio de base de \mathcal{C} (la base canonica) a \mathcal{B} .
 - d) Hallar las coordenadas, respecto de \mathcal{B} , de los vectores (1,0,1) y (-1,2,1).

33) (EI) Sea
$$B = \left\{ \begin{bmatrix} 0 & 2 \\ -3 & 3 \end{bmatrix}; \begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix}; \begin{bmatrix} 2 & 1 \\ -2 & 1 \end{bmatrix}; \begin{bmatrix} 4 & -2 \\ 2 & -3 \end{bmatrix} \right\}$$

- a) Probar que \hat{B} es una base de $M_{2\times 2}(\mathbb{R})$
- b) Sea $C = \{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \}$. Hallar la matriz de cambio de base de \mathcal{B} a C.
 - c) Hallar la matriz de cambio de base de \mathcal{C} a \mathcal{B} .
 - d) Hallar las coordenadas, respecto de \mathcal{B} , de las matrices $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ y $\begin{bmatrix} -1 & 2 \\ 1 & 1 \end{bmatrix}$.
- **34)** (EI) a) Para cada una de las transformaciones lineales del ejercicio 1), dar su matriz respecto de las bases canonicas de los \mathbb{R}^n que correspondan.
- b) Repetir pero ahora tomando las bases ordenadas $\{(1,1,0),(0,1,1),(1,1,0)\}$ de \mathbb{R}^3 , y cuando corresponda, la base ordenada $\{(1,1),(1,2)\}$ de \mathbb{R}^2 .
- **35)** (EI) Sea T la transformación de los polinomios de grado ≤ 2 en los polinomios de grado ≤ 1 definida por $T(ax^2 + bx + c) = (a+b)x + 2c a$.
- a) Si $\mathcal{B} = \{x^2, x, 1\}$ (en ese orden) y $\mathcal{B}' = \{x, 1\}$ (en ese orden), ¿Cuál es la matriz respecto del par $\mathcal{B}, \mathcal{B}'$?.
- b) Si $\mathcal{B} = \{x^2 + 1, x^2 + x + 1, x^2\}$ (en ese orden) y $\mathcal{B}' = \{1, x\}$ (en ese orden) ¿Cuál es la matriz respecto de las bases ordenadas $\mathcal{B}, \mathcal{B}'$?
- **36)** Sea T una transformación lineal en \mathbb{C}^2 definida como $T(x_1, x_2) = (x_1, 0)$. Sea \mathcal{B} la base canónica de \mathbb{C}^2 , y \mathcal{B}' la base ordenada $\{(1, i), (-i, 2)\}$
 - a) ¿Cuál es la matriz de T respecto del par $\mathcal{B}, \mathcal{B}'$?
 - b) ¿Cuál es la matriz de T respecto del par $\mathcal{B}', \mathcal{B}$?
 - c) ¿Cuál es la matriz de T respecto de \mathcal{B}' ?
 - d) ¿Cuál es la matriz de T respecto de \mathcal{B} ?

- **20)** (EI) Probar que el siguiente operador lineal T en \mathbb{R}^3 es un isomorfismo y calcular su inversa: T(x, y, z) = (4z y, 3x + y z, 2x + y z).
- **21)** Sea V un espacio vectorial sobre un cuerpo $I\!\!K$, S un conjunto no vacio y $W=V^S$. Ud. probó en el ejercicio 4 del practico 3 que W es un espacio vectorial.
 - a) Sea $x_0 \in S$ y sea $T: W \mapsto V$ dada por $T(f) = f(x_0)$. Probar que T es lineal.
 - b) Sea $v \in V$ y sea $T : \mathbb{K} \mapsto V$ dada por T(k) = kv. Probar que T es lineal.
 - c) Sea $x_0 \in S$, $v \in V$ y $T : \mathbb{K}^S \mapsto V$ dada por $T(f) = f(x_0)v$. Probar que T es lineal.
- **22)** (EI) Sea V el subespacio vectorial de $C(I\!\!R)$ dado por todas los funciones polinomicas de grado menor o igual a 2. Sea $T:V\mapsto V$ dada por:

$$T(p(x)) = p(1) + p(0)x + p(-1)x^2 - 2[(2+x)p(x)]'.$$

- a) Probar que T es lineal. (en un par de lineas. ayuda: ejercicio anterior).
- b) Dar la matriz $[T]_{\mathcal{B}}$ donde \mathcal{B} es la base ordenada $\{1, x, x^2\}$.
- c) Caracterizar mediante ecuaciones, dar una base y la dimensión del nucleo de T.
- d) Idem con la Imagen de T.
- e) Dar la matriz de T con respecto a la base ordenada $\{1+x,1+x^2,3+x+x^2\}$
- **23)** (EI) Dar una transformación lineal T de \mathbb{R}^3 en \mathbb{R}^3 tal que su imagen sea al subespacio generado por (1,0,-1) y (1,2,2). Hallar T(x,y,z).
- **24)** (EI) Definir una transformación lineal T de \mathbb{R}^4 en \mathbb{R}^2 , tal que T(1, -1, 1, 1) = (1, 0) y T(1, 1, 1, 1) = (0, 1) y hallar T(x, y, z, w). (ayuda: extender $\{(1, -1, 1, 1), (1, 1, 1, 1)\}$ a una base de \mathbb{R}^4)
- **25)** (EI) a) Definir una transformacion lineal $T: \mathbb{R}^3 \mapsto \mathbb{R}^{2 \times 2}$ tal que su imagen sea $\left\{ \begin{bmatrix} x & y \\ z & w \end{bmatrix} \mid y = x z \text{ y } w = x + z \right\}$ y su nucleo sea $\{(x,y,z) : z = 2x = y\}$ y hallar T(x,y,z).
- b) Probar que no existe una transformacion lineal $T: \mathbb{R}^3 \mapsto \mathbb{R}^{2 \times 2}$ tal que su imagen sea $\left\{ \begin{bmatrix} x & y \\ z & w \end{bmatrix} \mid y = x z \text{ y } w = x + z \right\}$ y su nucleo sea $\{(x,y,z): z = 2x y\}$.
- **26)** En el ejercicio 1), en los casos $T = T_3$, $T = T_4$ y $T = T_5$ ¿es cierto que $\mathbb{R}^3 = \text{Nu}T \oplus \text{Im}T$? (en al menos uno de los 3 casos la respuesta es si, y en al menos un caso la respuesta es no).

- **60)** Sea V un espacio vectorial y sea T una transformación lineal de V en V.
 - a) Probar que $Nu(T) \subseteq Nu(T^2)$.
 - b) Probar que $\mathrm{Nu}(T)=\mathrm{Nu}(T^2)$ si y solo si $\mathrm{Nu}(T)\cap\mathrm{Im}(T)=\{0\}$
- **61)** (EI) Dar la base dual de la base $\{(1,0,-1),(1,1,1),(2,2,0)\}\$ de \mathbb{R}^3 .
- **62)** Sean $\alpha_i \in \mathbb{R}^3$ dados por: $\alpha_1 = (1, 0, 1), \alpha_2 = (0, 1, -2), \alpha_3 = (-1, -1, 0).$
 - a) Sea $f \in (\mathbb{R}^3)^*$ tal que $f(\alpha_1) = f(\alpha_2) = 0, f(\alpha_3) = 1$. Hallar f(a, b, c).
 - b) Dar la base dual de $\{\alpha_1, \alpha_2, \alpha_3\}$
 - c) Repetir a) pero ahora con una f tal que $f(\alpha_1) = 1, f(\alpha_2) = -1, f(\alpha_3) = 3.$
- **63)** (EI) a) Sea $T: \mathbb{R}^3 \to \mathbb{R}^2$ dada por T(x, y, z) = (x y, x + z) y $f \in (\mathbb{R}^2)^*$ dada por f(x, y) = 2x 3y. Sea $g \in (\mathbb{R}^3)^*$ dada por $g = T^t f$. Hallar g(x, y, z).
 - b) Repetir tomando ahora T(x, y, z) = (x, 0) y f(x, y) = x + y.

Mas ejercicios

- 64) En el ejercicio 1), hallar la composicion $T_2 \circ T_1$. Verificar que la matriz de $T_2 \circ T_1$ respecto de las bases canonicas es el producto de las matrices de T_1 y T_2 . Repetir con $T_1 \circ T_2$, $T_4 \circ T_3$ y con las otras que quiera y pueda hasta que se canse. Haga al menos uno con respecto a una base no canonica.
- **65)** Sea $V = \mathbb{R}^{n \times n}$ y sea $A \in V$ una matriz fija. Sean L_A y T_A las aplicaciones de V en V definidas por $L_A(B) = AB$ y $T_A(B) = AB BA$. Se vio en el teórico que ambas son transformaciones lineales.
 - a) Demostrar que $Nu(L_A) = V$ si y sólo si A = 0.
 - b) ¿Es cierto a) para la transformación T_A ?
- c) Hallar $\{A \in V : I \in \text{Im}(L_A)\}$ y $\{A \in V : I \in \text{Im}(T_A)\}$ (nota: el primero es fácil, el segundo requiere pensar y algunos pueden decir que es engañoso).
- 66) En los siguientes items, escriba (x, y, z) en terminos de la base ordenada dada: a) $\{(1, 0, -1); (-1, 1, 0); (0, 1, 1)\}$ b) $\{(2, 1, 3); (-1, 4, 5); (3, -2, -4)\}$
- **40)** Sea V un espacio vectorial de dimensión n y sea T una transformación lineal de V

en V. Probar que si n es impar entonces $\operatorname{Nu}T \neq \operatorname{Im}T$. Dar un ejemplo (con n par, obvio) de una $T:V\mapsto V$ tal que $\operatorname{Nu}T=\operatorname{Im}T$. ¿Es capaz de dar, para cada espacio vectorial de dimension par, un ejemplo?

- **41)** Sean V y W espacios vectoriales sobre un cuerpo $I\!\!K$ y sea U un isomorfismo de V en W. Probar que $L:L(V,V)\mapsto L(W,W)$ dada por $L(T)=UTU^{-1}$ es un isomorfismo.
- **42)** Sea $B = \{(0, 1, -2, 0); (1, -1, 2, 1); (0, -2, 3, 3); (2, 2, -2, -3)\}$
 - a) Probar que B es una base de \mathbb{R}^4 .
- b) Hallar la matriz de cambio de base de \mathcal{B} (mirada como base ordenada) a la base canonica \mathcal{C} .
 - c) Hallar la matriz de cambio de base de \mathcal{C} a \mathcal{B} .
 - d) Hallar las coordenadas, respecto de \mathcal{B} , de los vectores (1,1,1,1) y (-1,0,1,0).
- **43)** Escriba el polinomio $2x^3 + 5x^2 x + 6$ como combinacion lineal de los polinomios: $x^3 x^2 + x$; $2x^3 + 3x^2 + 1$; $-x^2 + x$; -2x + 4.
- **44)** Definir una transformación lineal $T: \mathbb{R}^{2\times 2} \mapsto C[0,1]$ tal que : $T\left(\begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}\right) = e^x$, $T\left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}\right) = \cos x$, $T\left(\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}\right) = \int_0^x e^{t^2} dt$ y hallar $T\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)$.
- **45)** a) Sea V un E.V. de dimensión **finita** y sea T un operador lineal en V. Probar que si dim(Im (T^2)) =dim(Im(T)) entonces $V = \text{Nu}T \oplus \text{Im}T$.
 - b) Dar un contraejemplo cuando V no es de dimension finita.
- **46)** Sean V, W, U espacios vectoriales de dimensión finita tales que existen transformaciones lineales $T: V \mapsto W$ no singular y $L: W \mapsto U$ survectiva tales que $\operatorname{Im}(T) = \operatorname{Nu}(L)$. Probar que $W \simeq V \times U$ (Ayuda: Rango-nulidad).
- **50)** Sean V y W espacios vectoriales de dimension finita. Probar que si $T:V\mapsto W$ es un isomorfismo, entonces $T^t:W^*\mapsto V^*$ es un isomorfismo
- **51)** Sea $T: \mathbb{R}^2 \to \mathbb{R}^3$ dada por T(x,y) = (x-y,0,x+y) y $f \in (\mathbb{R}^3)^*$ dada por f(x,y,z) = 2x 3y z. Sea $g \in (\mathbb{R}^2)^*$ dada por $g = T^t f$. Hallar g(x,y).

- **52)** Sea V el conjunto de las funciones polinomicas de \mathbb{R} en \mathbb{R} de grado ≤ 2 . Sean $f_i \in V^*$ dadas por $f_i(p) = \int_0^i p(x) dx$. Probar que $\{f_1, f_2, f_{-1}\}$ es una base de V^* .
- **53)** Sea V un espacio vectorial sobre \mathbb{R} y sean $f, g \in V^*$ tales que $fg \in V^*$. Probar que f = 0 o g = 0.
- **54)** En el ejercicio 2)e) del practico 3 se vio que el conjunto $V = \mathbb{R}^3$ con las operaciones: $(x,y,z) \oplus (x',y',z') = (x+x',y+y'-1,z+z')$ y $c \odot (x,y,z) = (cx,cy+1-c,cz)$ es un espacio vectorial, y en el ejercicio XIX del practico 4) se vio que $\{(1,0,0),(0,0,0),(0,0,1)\}$ es una base de V.
 - a) Dado un vector $(x, y, z) \in V$, dar sus coordenadas respecto de esa base.
- b) Sea $T: \mathbb{R}^3 \to V$ dada por T(x, y, z) = (x + y z, 3x z + 1, 5x y z). Probarque T es una transformación lineal. (\mathbb{R}^3 con la estructura usual).
 - c) Caracterizar el NuT e ImT, dar una base de cada uno y sus dimensiones.
 - d) ¿Es $I: \mathbb{R}^3 \mapsto V$ lineal?
- **55)** En el ejercicio XI) del practico 4) definimos un cuerpo $I\!\!K_4$. Sea $T:I\!\!K_4^{2\times 2}\mapsto I\!\!K_4^{3\times 1}$ dada por:

$$T\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} \spadesuit x + \diamondsuit y + \heartsuit z + \spadesuit w \\ \diamondsuit x + \heartsuit y + \spadesuit z + \diamondsuit w \\ \diamondsuit x + \spadesuit y + \clubsuit z + \spadesuit w \end{bmatrix}$$

Caracterizar el nucleo e imagen de T por ecuaciones, y dar una base y dimensiones de ambos.

56) Sea $V = \mathbb{K}^{n \times n}$ y sea $W = \{ f \in V^* : f(AB) = f(BA) \forall A, B \in V \}$. Probar que $W \simeq \mathbb{K}$.