Práctico 1

- 1. Demostrar lo siguiente.
 - (a) Si ax = a para algún número $a \neq 0$, entonces x = 1.
 - (b) $x^2 y^2 = (x y)(x + y)$.
 - (b) $x^2 y^2 = (x y)(x + y)$. (c) Si $x^2 = y^2$, entonces $x = y \lor x = -y$.
 - (d) $(ab)^{-1} = a^{-1}b^{-1}$, si $a, b \neq 0$.
- 2. ¿Dónde está el error de la siguiente "demostración"? Supongamos x = y. Entonces

$$x^{2} = xy,$$

$$x^{2} - y^{2} = xy - y^{2},$$

$$(x+y)(x-y) = y(x-y),$$

$$x+y=y,$$

$$2y = y,$$

$$2 = 1.$$

- **3.** Sean a, b, c números reales. Demostrar.
 - (a) Si a < b, entonces a + c < b + c.
 - (b) Si $a < b \ y \ c > 0$, entonces ac < bc.
 - (c) Si a < b y c < 0, entonces ac > bc.
 - (d) Si a > 1, entonces $a < a^2$. Si 0 < a < 1, entonces $a^2 < a$.
 - (e) $ab > 0 \iff (a > 0 \ y \ b > 0)$ o $(a < 0 \ y \ b < 0)$.
 - (f) Si $a^2 < b^2$ y a > 0, entonces b > a o b < -a.
- 4. Encontrar todos los números reales x que satisfacen las siguientes desigualdades y graficar el resultado en la recta real.

(a)
$$4 - x < 3 - 3x$$

(b)
$$5 - x^2 < 8$$
.

(c)
$$x^2 > 9$$

(a)
$$4 - x < 3 - 3x$$
.
(b) $5 - x^2 < 8$.
(c) $x^2 > 9$.
(d) $(x - 1)(x - 3) > 0$.
(e) $x^2 - x + 10 > 16$.
(f) $x + 1 > x$.

(e)
$$x^2 - x + 10 > 16$$

(f)
$$x + 1 > x$$
.

(g)
$$x - 1 > x$$
.

(h)
$$-3/x > 1$$
.

(i)
$$(x-1)/(x+1) > 0$$
.

- 5. El área de un rectángulo es 4 m². Queremos conocer las dimensiones del rectángulo, sabiendo que si a la longitud de la base la incrementamos en una unidad y a la altura la disminuimos en dos unidades, entonces el área del nuevo rectángulo sigue siendo $4 \,\mathrm{m}^2$.
- **6.** Diga si es verdadero o falso, y justifique.
 - (a) Si a < b y c < d entonces a c < b d.
 - (b) Si a < b y c no es negativo, entonces ac < bc.
 - (c) Si 0 < a, b, entonces $\sqrt{ab} < (a+b)/2$.
- 7. Resolver las siguientes inecuaciones, interpretarlas en términos de distancias, y graficar el conjunto de soluciones.

(a)
$$|x-3| < 8$$
.

(b)
$$|x-3| \ge 8$$
.

(a)
$$|x-3| < 8$$
. (b) $|x-3| \ge 8$. (c) $|x-3| < 0$. (d) $|2x-3| > 1$.

(d)
$$|2r - 3| > 1$$

8. Resolver las siguientes ecuaciones.

(a)
$$|x-3| = c$$
. $(c \in \mathbb{R})$ (b) $|x-1||x+2| = 3$. (c) $|x-1| + |x+2| = 3$.

(b)
$$|x-1||x+2|=3$$

(c)
$$|x-1| + |x+2| = 3$$

9. Probar que si a > 0 y $b^2 - 4ac < 0$, entonces $ax^2 + bx + c > 0$ para todo $x \in \mathbb{R}$.

10. Probar los siguientes ítems para todo $x, y \in \mathbb{R}$.

(a)
$$|x - y| \le |x| + |y|$$

(b)
$$|x - y| \ge |x| - |y|$$
.

(a)
$$|x - y| \le |x| + |y|$$
. (b) $|x - y| \ge |x| - |y|$. (c) $|x - y| \ge ||x| - |y||$.

11. Decidir cuáles de los siguientes subconjuntos de números reales tiene supremo, ínfimo, máximo o mínimo.

(a) [3, 8).

(b) $(-\infty, \pi)$.

(c) $\{6k \mid k \in \mathbb{Z}\}.$

(d) $\{\frac{1}{n} \mid n \in \mathbb{Z}, n \neq 0\}$. (e) $\{3 - \frac{1}{n} \mid n \in \mathbb{N}\}$. (f) $\{x \in \mathbb{Q} \mid -\frac{3}{4} \le x \le 0\}$.

(g) $\{x \in \mathbb{N} \mid 0 < x < \sqrt{2}\}\$. (h) $\{x \in \mathbb{Q} \mid 0 < x < \sqrt{2}\}\$. (i) $\{x \in \mathbb{Q} \mid 0 \le x \le \sqrt{2}\}\$.

- 12. Probar que si A y B son subconjuntos de $\mathbb R$ acotados superiormente, entonces $A \cup B$ es acotado superiormente.
- **13.** Sean A y B subconjuntos no vacíos de \mathbb{R} tales que $x \leq y$ para todo $x \in A, y \in B$. Demostrar que:
 - (a) $\sup A \leq y$ para todo $y \in B$.
 - (b) $\sup A \leq \inf B$.
- 14. Determinar si los siguientes subconjuntos de \mathbb{R} son densos.

(a)
$$\mathbb{R} \setminus \mathbb{Q}$$
.

(b)
$$\mathbb{R} \setminus (0, 10^{-5})$$
.

(c)
$$\mathbb{Q} \setminus \mathbb{Z}$$
.

- 15. Diga si es verdadero o falso, y justifique.
 - (a) Si sup $A \leq \inf B$, entonces $A \cap B = \emptyset$.
 - (b) $\max\{x, -x\} = |x|$ para todo $x \in \mathbb{R}$.
 - (c) Un conjunto formado por todos los números reales salvo un número finito de ellos es denso.