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Weighted inequalities for commutators

of one-sided singular integrals

M. Lorente, M.S. Riveros

Abstract. We prove weighted inequalities for commutators of one-sided singular integrals
(given by a Calder�on-Zygmund kernel with support in (�1; 0)) with BMO functions. We
give the one-sided version of the results in [C. P�erez, Sharp estimates for commutators

of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier
Anal. Appl., vol. 3 (6), 1997, pages 743{756] and [C. P�erez, Endpoint estimates for

commutators of singular integral operators, J. Funct. Anal., vol 128 (1), 1995, pages
163-185]. We improve these results for one-sided singular integrals by putting in the
right hand side of the inequalities a smaller operator and a wider class of weights.

Keywords: one-sided weights, one-sided singular integrals

Classi�cation: Primary 42B25

1. Introduction

In this paper we obtain non standard weighted inequalities for commutators of
singular integral operators given by a Calder�on-Zygmund kernel K with support
in (�1; 0). This estimates will re
ect a higher degree of singularity compared
with the standard Calder�on-Zygmund singular integral operators.

Let T denote a Calder�on-Zygmund singular integral operator and M denote
the Hardy-Littlewood maximal operator. Coifman proved in [C] that T and M
satisfy

(1.1)

Z
Rn
jTf jpw � C

Z
Rn
jMf jpw;

for 0 < p <1, w 2 A1(Rn ) and f such that the left hand side is �nite. This is
a very important estimate in weighted theory since it implies the boundedness of
T from Lp(w) into Lp(w), for p > 1, when w 2 Ap.

Combining (1.1) with certain sharp two weighted inequalities for M one can
derive a two weighted estimate for T with no assumption on the weight w: If
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T is a Calder�on-Zygmund singular integral operator, P�erez [P1] proves that for
1 < p <1,

(1.2)

Z
Rn
jTf jpw � C

Z
Rn
jf jpM [p]+1w;

whereMk is the k-times iterated of the Hardy-Littlewood maximal operator. The
case 1 < p � 2 was �rst obtained in [W], but for singular integral operators with
much stronger conditions on the kernel, namely they must be of convolution type
with C1 kernel.

It is possible to generalize inequalities (1.1) and (1.2) for a large family of singu-
lar integral operators, i.e., the higher order commutators introduced by Coifman,
Rochberg and Weiss in [CRcW]. Let K be a Calder�on-Zygmund kernel. For ap-
propriate b and f we de�ne

T kb f(x) =

Z
Rn

(b(x)� b(y))kK(x� y)f(y) dy;

k = 0; 1; 2 : : : (in the principal value sense). For k = 1 the operator is usually
denoted by [Mb; T ] =Mb Æ T � T ÆMb, where Mb is the operator Mbf = bf , and
b is called the symbol of the operator. These generalizations were given by P�erez
in [P2]:

Theorem A ([P2]). Let 0 < p < 1, w 2 A1 and b 2 BMO. Then there exists

a constant C such thatZ
Rn
jT kb f j

pw � CkbkkpBMO

Z
Rn

�
Mk+1f

�p
w;

for all f such that the left hand side is �nite.

Theorem B ([P2]). Let 1 < p <1 and b 2 BMO. Then for each weight w there

exists a constant C such thatZ
Rn
jT kb f j

pw � CkbkkpBMO

Z
Rn
jf jpM [(k+1)p]+1w:

Recently, Aimar, Forzani and Mart��n-Reyes [AFM] have studied singular inte-
gral operators associated to a Calder�on-Zygmund kernel with support in (�1; 0)
or (0;1). They prove that the maximal operators which control these singular
integrals are the one-sided Hardy-Littlewood maximal operators M+ and M�

de�ned for locally integrable functions f by

M+f(x) = sup
h>0

1

h

Z x+h

x
jf j and M�f(x) = sup

h>0

1

h

Z x

x�h
jf j;
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and the good weights for these operators are the one-sided weights introduced by
Sawyer [S]. Their result improves (1.1) for singular integrals with kernel supported
in (�1; 0) in two ways, by putting in the right hand side a smaller operator and
by allowing a wider class of weights for which the inequality holds. More precisely,
they prove that if T is a singular integral operator given by a kernel with support
in (�1; 0) then there exists C such that

(1.3)

Z
R

jTf jpw � C

Z
R

jM+f jpw;

for 0 < p <1 and w 2 A+
1(R) (see [MPT] for the de�nition of A+

1(R)).
The aim of this paper is to study the results of C. P�erez for this kind of singular

integrals and to extend them in the double sense as in [AFM]. Our results are the
following:

Theorem 1. Let 0 < p < 1, k = 0; 1; : : : , w 2 A+
1 and b 2 BMO. Let K be

a Calder�on-Zygmund kernel with support in (�1; 0) and let T
+;k
b be de�ned

(in the principal value sense) by

T
+;k
b f(x) =

Z 1

x
(b(x) � b(y))kK(x� y)f(y) dy:

Then there exists C such thatZ
R

jT
+;k
b f jpw � Ckbk

kp
BMO

Z
R

�
(M+)k+1f

�p
w

for all bounded functions f with compact support.

Corollary 1. Under the same hypotheses as in Theorem 1, if 1 < p < 1 and

w 2 A+
p then there exists C such thatZ

R

jT
+;k
b f jpw � Ckbk

kp
BMO

Z
R

jf jp w

for all bounded functions f with compact support.

We also give a weak type result that generalizes the result in [P3] for this kind
of singular integrals:

Theorem 2. Let w 2 A+
1, b 2 BMO and T

+;k
b be as in Theorem 1. Then there

exists C such that

w(fx : jT+;k
b f(x)j > �g)

� C�k(kbk
k
BMO)

Z
R

jf(x)j

�

�
1 + log+(jf(x)j=�)

�k
M�w(x) dx

for all bounded functions f with compact support, where �k(t) = t(1 + log+ t)k.
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Corollary 2. Under the same hypotheses as in Theorem 2, if w 2 A+
1 then there

exists C such that

w(fx : jT+;k
b f(x)j > �g)

� C�k(kbk
k
BMO)

Z
R

jf(x)j

�

�
1 + log+(jf(x)j=�)

�k
w(x) dx

for all bounded functions f with compact support.

Theorem 3. Let 1 < p <1, b 2 BMO and T+;k
b be as in Theorem 1. Then, for

each weight w there exists C such that

(1.4)

Z
R

jT+;k
b f jpw � CkbkkpBMO

Z
R

jf jp(M�)[(k+1)p]+1w

for all bounded functions f with compact support.

The case k = 0, i.e., the generalization of the result in [P1] for these singular
integrals, can be found in [RRoT].

Clearly, every theorem has its analogue reversing the orientation of R.

2. De�nitions and preliminaries

We introduce some de�nitions and tools that we need for proving the main
results.

De�nition 2.1. We shall say that a function K in L1loc(R n f0g) is a Calder�on-
Zygmund kernel if the following properties are satis�ed:

(a) there exists a �nite constant B1 such that�����
Z
�<jxj<N

K(x) dx

����� � B1;

for all � and all N with 0 < � < N and, furthermore,
lim�!0+

R
�<jxj<1K(x) dx exists;

(b) there exists a �nite constant B2 such that

jK(x)j �
B2

jxj

for all x 6= 0;
(c) there exists a �nite constant B3 such that

jK(x� y)�K(x)j � B3jyjjxj
�2

for all x and y with jxj > 2jyj.
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A one-sided singular integral T+ is a singular integral associated to a Calder�on-
Zygmund kernel with support in (�1; 0); therefore, in that case,

T+f(x) = lim
�!0+

Z 1

x+�
K(x� y)f(y) dy:

Examples of such kernels are given in [AFM].
F.J. Mart��n-Reyes and A. de la Torre introduced the one-sided sharp functions

in [MT].

De�nition 2.2. Let f be a locally integrable function. The one-sided sharp
maximal function is de�ned by

M+;#f(x) = sup
h>0

1

h

Z x+h

x

 
f(y)�

1

h

Z x+2h

x+h
f

!+
dy:

It is proved in [MT] that

M+;#f(x) � sup
h>0

inf
a2R

1

h

Z x+h

x
(f(y)�a)+ dy+

1

h

Z x+2h

x+h
(a�f(y))+dy � kfkBMO:

See [MT] for other results and de�nitions.
We shall also need the following maximal operators:

M+
� f(x) = (M+jf j�(x))1=� and M

+;#
Æ f(x) =

�
M+;#jf jÆ(x)

�1=Æ
:

Now we give de�nitions and results about Young functions. A function B :
[0;1) ! [0;1) is a Young function if it is continuous, convex and increasing
satisfying B(0) = 0 and B(t) ! 1 as t ! 1. The Luxemburg norm of a
function f associated to B is

kfkB = inf

�
� > 0 :

Z
B

�
jf j

�

�
� 1

�
;

and so the B-average of f over I is

kfkB;I = inf

�
� > 0 :

1

jI j

Z
I
B

�
jf j

�

�
� 1

�
:

We will denote by B the complementary function associated to B (see [BS]). Then
the generalized H�older's inequality

1

jI j

Z
I
jf gj � kfkB;IkgkB;I ;

holds. There is a further generalization that turns out to be useful for our purposes
(see [O]). If A;B;C are Young functions such that

A�1(t)B�1(t) � C�1(t);

then
kfgkC;I � 2kfkA;IkgkB;I :
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De�nition 2.3. For each locally integrable function f , the one-sided maximal
operators associated to the Young function B are de�ned by

M+
B f(x) = sup

x<b
kfkB;(x;b) and M�

B f(x) = sup
a<x

kfkB;(a;x):

De�nition 2.4. Let B be a Young function. We say that B satis�es the Bp

condition, or that B 2 Bp, p > 1, if there exists c > 0 such that

Z 1

c

B(t)

tp
dt

t
�

Z 1

c

 
tp
0

B(t)

!p�1
dt

t
<1:

The Bp condition appears for the �rst time in [P4]. The point of De�nition 2.4

is that it implies the boundedness of M+
B from Lp(R) into Lp(R) for 1 < p <1.

In fact one has

Theorem C ([RRoT]). Let 1 < p < 1, w be a weight and B be a Young

function. Then the following statements are equivalent:

(a) B 2 Bp;

(b) there exists C such that

Z
(M+

B f)
pw � C

Z
jf jpM�w.

We will be working most of the time with B(t) = t(1 + log+ t)k, k � 0 and for
this B, it is proved in [RRoT] that

(2.1) M+
B f � (M+)k+1f:

3. Proofs

To prove Theorem 1 we need the following lemma:

Lemma 1. Let 0 < Æ < 1. Then

(a) there exists C = CÆ > 0 such that

M
+;#
Æ

�
T+f

�
(x) � CM+f(x);

(b) for each b 2 BMO, Æ < � < 1 and k = 1; 2; : : : , there exists C = CÆ;� > 0
such that

M
+;#
Æ

�
T
+;k
b f

�
(x) � C

k�1X
j=0

kbk
k�j
BMOM

+
� (T

+;j
b f)(x) + CkbkkBMO(M

+)k+1f(x):
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Proof: We start by proving (b). Let � be an arbitrary constant. Then b(x) �
b(y) = (b(x)� �)� (b(y)� �) and

T+;k
b f(x) =

Z
R

(b(x)� b(y))kK(x� y)f(y) dy

(3.1)

=

kX
j=0

Cj;k(b(x)� �)j
Z
R

(b(y)� �)k�jK(x� y)f(y) dy

= T+((b� �)kf)(x)

+
kX

j=1

Cj;k(b(x)� �)j
Z
R

(b(y)� �)k�jK(x� y)f(y) dy

= T+((b� �)kf)(x)

+

kX
j=1

k�jX
s=0

Cj;k;s(b(x)� �)s+j
Z
R

(b(x)� b(y))k�j�sK(x� y)f(y) dy

= T+((b� �)kf)(x)

+

k�1X
m=0

Ck;m(b(x)� �)k�mT
+;m
b f(x);

where m = k � j � s. Let us �x x and h > 0 and let I = [x; x + 8h]. Then we
write f = f1 + f2 where f1 = f�I . Taking into account (3.1), for all a 2 R, we
have the following:

 
1

h

Z x+h

x

���jT+;k
b f(y)jÆ � jajÆ

��� dy
! 1

Æ

+

 
1

h

Z x+2h

x+h

���jT+;k
b f(y)jÆ � jajÆ

��� dy
!1

Æ

(3.2)

�

 
1

h

Z x+h

x
jT+;k
b f(y)� ajÆ dy

!1
Æ

+

 
1

h

Z x+2h

x+h
jT+;k
b f(y)� ajÆ dy

! 1
Æ

� C

2
4 k�1X
m=0

 
1

h

Z x+2h

x
jb(y)� �j(k�m)Æ jT+;m

b f(y)jÆ dy

!1
Æ

+

 
1

h

Z x+2h

x
jT+((b� �)kf)(y)� ajÆ dy

!1
Æ

3
5
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� C

2
4 k�1X
m=0

 
1

h

Z x+2h

x
jb(y)� �j(k�m)Æ jT+;m

b f(y)jÆ dy

!1
Æ

+

 
1

h

Z x+2h

x
jT+((b� �)kf1)(y)j

Æ dy

!1
Æ

+

 
1

h

Z x+2h

x
jT+((b� �)kf2)(y)� ajÆ dy

! 1
Æ

3
5

= (I) + (II) + (III):

Let � = bI = 1
8h

R x+8h
x b(y) dy. Since 0 < Æ < � < 1, we can choose q such that

1 < q < �
Æ . Then, using H�older's inequality for q and q0, we get

(I) � C

k�1X
m=0

 
1

h

Z x+2h

x
jb(y)� bI j

(k�m)Æq0 dy

! 1
Æq0

�

�

 
1

h

Z x+2h

x
jT

+;m
b f(y)jÆq dy

! 1
Æq

(3.3)

� C

k�1X
m=0

2
4
 
1

h

Z x+8h

x
jb(y)� bI j

(k�m)Æq0 dy

! 1
Æq0(k�m)

3
5
k�m

�

�

 
1

h

Z x+2h

x
jT+;m
b f(y)jÆq dy

! 1
Æq

� C
k�1X
m=0

kbkk�mBMOM
+
Æq(T

+;m
b f)(x)

� C

k�1X
m=0

kbkk�mBMOM
+
� (T

+;m
b f)(x):

Using that T+ is of weak type (1,1), Kolmogorov's inequality gives that

(II) � C
1

h

Z x+2h

x
jb� bI j

kjf j�I(y) dy:

And by the generalized H�older's inequality for B(t) = t(1 + log+ t)k and B(t) �

et
1=k

we get,
(II) � Ckb� bIkB;Ikf�IkB;I :
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Now if D(t) = et, using the John-Nirenberg's inequality, we have

(3.4) (II) � Ckb� bIk
k
D;Ikf�IkB;I � CkbkkBMOM

+
B f(x)

� CkbkkBMO(M
+)k+1f(x):

For (III) we take a = T+((b� bI)
kf2)(x + 2h). Then, by Jensen's inequality,

(3.5) (III) � C
1

h

Z x+2h

x
jT+((b� bI)

kf2)(y)� T+((b� bI)
kf2)(x + 2h)j dy:

For j � 3, let Ij = [x+2jh; x+2j+1h] and ~Ij = [x; x+2j+1h]. Using property (c)
of the kernel K, for every y 2 [x; x+ 2h], we have

(3.6)

jT+((b� bI)
kf2)(y)� T+((b� bI)

kf2)(x + 2h)j

�

Z 1

x+8h

x+ 2h� y

(t� (x+ 2h))2
jb(t)� bI j

kjf(t)j dt

� Ch

1X
j=3

Z x+2j+1h

x+2jh

jb(t)� bI j
k

(t� (x+ 2h))2
jf(t)j dt

� Ch

1X
j=3

2j+1

(2j � 2)2h

1

2j+1h

Z
~Ij

jb(t)� bI j
kjf(t)j dt:

Observe that by the generalized H�older's inequality and using again the John-
Nirenberg's inequality, we obtain

(3.7)

1

2j+1h

Z
~Ij

jb(t)� bI j
kjf(t)j dt

�
C

2j+1h
jb ~Ij

� bI j
k
Z
~Ij

jf(t)j dt+
C

2j+1h

Z
~Ij

jb(t)� b ~Ij
jkjf(t)j dt

� C(2j)kkbkkBMOM
+f(x) + Ckb� b ~Ij

kB; ~Ij
kf� ~Ij

kB; ~Ij

� C(2j)kkbkkBMOM
+f(x) + CkbkkBMO(M

+)k+1f(x):

So inequalities (3.5), (3.6) and (3.7) give

(3.8)

(III) � C

1X
j=3

2j+1

(2j � 2)2
(2j)kkbkkBMOM

+f(x)

+ C

1X
j=3

2j+1

(2j � 2)2
kbkkBMO(M

+)k+1f(x)

� CkbkkBMO(M
+)k+1f(x):
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Putting together inequalities (3.2), (3.3), (3.4) and (3.8), we obtain that

M
+;#
Æ

�
T
+;k
b f

�
(x) � CkbkkBMO(M

+)k+1f(x) + C

k�1X
m=0

kbkk�mBMOM
+
� (T

+;m
b f)(x):

The proof of part (a) follows the same pattern as the proof of (b) but it is
easier and therefore we omit it. �

We will now prove Theorem 1.

Proof of Theorem 1: Observe that the case k = 0 is the inequality for singular
integrals with support in (�1; 0) (see [AFM]). We will proceed by induction on
k. So assume that the theorem is true for all j � k and let us see how it follows
the case k + 1. Since w 2 A+

1, there exists r > 1 such that w 2 A+
r . Observe

that for all Æ > 0 small enough, we have that r < p
Æ and thus, w 2 A+

p
Æ

. To apply

Theorem 4 in [MT] we need kM+
Æ (T

+;k+1
b f)kLp(w) to be �nite. Suppose this for

the moment. Then, by Lemma 1, for all � with Æ < � < 1, we have

kT
+;k+1
b fkLp(w) � kM+

Æ (T
+;k+1
b f)kLp(w)

� CkM+;#
Æ (T+;k+1

b f)kLp(w)

� C

kX
j=0

kbk
k+1�j
BMO kM+

� (T
+;j
b f)kLp(w)

+ Ckbkk+1BMOk(M
+)k+2fkLp(w):

We choose � > 0 such that r < p
� . Then w 2 A+

p
�

and we obtain

kM+
� (T

+;j
b f)k

p
Lp(w)

=

Z
R

(M+(jT
+;j
b f j�)

p
�w

� C

Z
R

(jT
+;j
b f j�)

p
�w = CkT

+;j
b fk

p
Lp(w)

:

Then, by recurrence

kT+;k+1
b fkLp(w) � C

kX
j=0

kbkk+1�jBMO kT+;j
b fkLp(w)

+ Ckbkk+1BMOk(M
+)k+2fkLp(w)

� C

kX
j=0

kbkk+1�jBMO kbkjBMOk(M
+)j+1fkLp(w)

+ Ckbkk+1BMOk(M
+)k+2fkLp(w)

� Ckbkk+1BMOk(M
+)k+2fkLp(w):
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If w is bounded, then

kM+
Æ (T

+;k+1
b f)kLp(w) � CkM+

Æ (T
+;k+1
b f)kLp(dx)

� CkT+;k+1
b fkLp(dx) � Ckbkk+1BMOkfkLp(dx) <1:

Then the theorem is proved if w is bounded. For the general case, we consider
wN = minfw;Ng. It is not hard to prove that wN 2 A+

1 (A+
p is a lattice) with

constant independent of N . Therefore, we haveZ
R

jT+;k
b f jpwN � CkbkkpBMO

Z
R

�
(M+)k+1f

�p
wN :

Now, we obtain the desired result after applying the monotone convergence the-
orem.

�

To prove Theorem 2 we need the following two lemmas.

Lemma 2. Let f 2 L1loc(R) and � > 0. Then for every weight w there exists

C > 0 such that

w(fx 2 R : (M+)k+1f(x) > �g) � C

Z
R

jf(y)j

�

�
1 + log+

jf(y)j

�

�k
M�w(y) dy:

Proof: This lemma is a consequence of (2.1) and Theorem 2.5 in [RRoT] with

B(t) = t(1 + log+ t)k, since (w;M�w) 2 A+
1 . �

Lemma 3. Let �k(t) = t(1 + log+ t)k, k = 0; 1; : : : , b 2 BMO and w 2 A+
1.

Then there exists C > 0 such that

sup
t>0

1

�k(
1
t )
w(fx 2 R : jT+;k

b f(x)j > tg)

� C�k(kbk
k
BMO) sup

t>0

1

�k(
1
t )
w(fx 2 R : (M+)k+1f(x) > tg)

for all bounded functions f with compact support.

Proof: We �rst suppose that kbkBMO = 1. We shall prove the following,

sup
t>0

1

�k(
1
t )
w(fx 2 R : jT+;k

b f(x)j > tg)

� C sup
t>0

1

�k(
1
t )
w(fx 2 R : (M+)k+1f(x) > tg):
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Now, set bm = b if �m � b � m, bm = m if b � m and bm = �m if b � �m.
Also, set wN = inffw;Ng. As we have said before, wN 2 A+

1 with constant
independent of N . On the other hand kbmkBMO � C 0kbkBMO = C 0 with C 0

independent of m. In order to simplify notation, rename b = bm and w = wN .
Observe that for all Æ > 0 we have

w(fx 2 R : jT+;k
b f(x)j > tg) � w(fx 2 R :M+

Æ (T+;k
b f)(x) > tg):

Let us consider the functional

Lb;w;�k;Æ(f) = LÆ(f) = sup
t>0

1

�k(
1
t )
w(fx 2 R :M+

Æ (T
+;k
b f)(x) > tg):

We claim that for some 
 > 0 and every 0 < � < 1 we have

(3.9) LÆ(f) � �
CLÆ(f) + C sup
t>0

1

�k(
1
t )
w(fx 2 R : (M+)k+1f(x) > tg):

If LÆ(f) <1 then the result (for bm and wN ) follows from (3.9), choosing � small
enough.

In what follows we prove that LÆ(f) < 1. In [MT] it was proved that if
w 2 A+

1 and M+f 2 Lp0(w) for some p0, then

(3.10) w(fx 2 R :M+f(x) > t;M+;#f(x) � t�g)

� C�
w(fx 2 R :M+f(x) >
t

2
g)

for some 
 > 0. Observe that we have M+
Æ (T

+;k
b f) 2 Lp0(w) for some p0 since f

is bounded with compact support, w � N and jbj � m. Then

(3.11)

w(fx 2 R :M+
Æ (T

+;k
b f)(x) > tg)

= w(fx 2 R :M+(jT
+;k
b f jÆ)(x) > tÆ ;M+;#(jT

+;k
b f jÆ)(x) � tÆ�g)

+ w(fx 2 R :M+(jT
+;k
b f jÆ)(x) > tÆ ;M+;#(jT

+;k
b f jÆ)(x) > tÆ�g)

� C�
w(fx 2 R :M+
Æ (T

+;k
b f)(x) � t=2

1
Æ g)

+ w(fx 2 R :M
+;#
Æ (T

+;k
b f)(x) > t�1=Æg)

= I + II:

Using Lemma 1 for � = Ær and 1 < r < 1
Æ , we have

(3.12)

II � w(fx 2 R :

k�1X
j=0

(C 0)k�jM+
Ær(T

+;j
b f)(x) >

t�
1
Æ

2C
g)

+w(fx 2 R : (M+)k+1f(x) >
t�

1
Æ

2C(C 0)k
g):
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Bearing in mind (3.11) and (3.12) we obtain

(3.13)

1

�k(
1
t )
w(fx 2 R :M+

Æ (T
+;k
b f)(x) > tg)

�
C�


�k(
1
t )
w(fx 2 R :M+

Æ (T
+;k
b )f(x) >

t

2
1
Æ

g)

+

k�1X
j=0

1

�k(
1
t )
w(fx 2 R :M+

Ær(T
+;j
b f)(x) >

t�
1
Æ

2Ck(C 0)k�j
g)

+
1

�k(
1
t )
w(fx 2 R : (M+)k+1f(x) >

t�
1
Æ

2C(C 0)k
g)

= I 0 + II 0 + III 0:

Observe that there exists C such that �k(2t) � C�k(t) for all t > 0 (i.e. �k is

doubling). Let l 2 N be such that 2
1
Æ < 2l. Using that �k is non-decreasing, we

get

�k

 
2
1
Æ

t

!
� �k

 
2l

t

!
� C�k

�
1

t

�
:

Then

I 0 �
C�


�k(
2
1
Æ

t )

w(fx 2 R :M+
Æ (T

+;k
b f)(x) >

t

2
1
Æ

g) � C�
LÆ(f):

Now let aj =
2Ck(C0)k�j

�
1
Æ

and h 2 Z be such that aj � 2h, for all j. Therefore

�k

�aj
t

�
� �k

 
2h

t

!
� C�k

�
1

t

�
:

As a consequence,

(3.14)

II 0 � C

k�1X
j=0

1

�k(
aj
t )

w(fx 2 R :M+
Ær(T

+;j
b f)(x) >

t

aj
g)

� C
k�1X
j=0

sup
t>0

1

�k(
1
t )
w(fx 2 R :M+

Ær(T
+;j
b f)(x) > tg):

Now for each j = 0; 1 : : : ; k � 1, let us estimate supt>0
1

�k(
1
t
)
w(fx 2 R :

M+
Ær(T

+;j
b f)(x) > tg).
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Using that �k is doubling and non-decreasing, it follows from (3.10) and
Lemma 1(a) that, for all 0 < � < 1,

sup
t>0

1

�k(
1
t )
w(fx :M+

� (T+f)(x) > tg) � sup
t>0

1

�k(
1
t )
w(fx :M+;#

� (T+f)(x) > tg)

� C sup
t>0

1

�k(
1
t )
w(fx :M+f(x) > tg)

� C sup
t>0

1

�k(
1
t )
w(fx : (M+)k+1f(x) > tg):

Fix J < k � 1 and suppose that, for every 0 � j � J and for all 0 < � < 1, there
exists C such that

(3.15) sup
t>0

1

�k(
1
t )
w(fx 2 R :M+

� (T+;j
b f)(x) > tg)

� C sup
t>0

1

�k(
1
t )
w(fx 2 R : (M+)k+1f(x) > tg):

We will prove, that (3.15) holds for j = J + 1. Using again that �k is doubling,
non-decreasing, (3.10) and Lemma 1(b) we obtain

sup
t>0

1

�k(
1
t )
w(fx : M+

� (T+;J+1
b f)(x) > tg)

� C sup
t>0

1

�k(
1
t )
w(fx : M+;#

� (T+;J+1
b f)(x) > tg)

� C

"
JX
i=0

sup
t>0

1

�k(
1
t )
w(fx :M+

�0 (T
+;i
b f)(x) > tg) + w(fx : (M+)J+1f(x) > tg)

#

� C
JX
i=0

sup
t>0

1

�k(
1
t )
w(fx : (M+)k+1f(x) > tg)

+ C sup
t>0

1

�k(
1
t )
w(fx : (M+)J+1f(x) > tg)

� C sup
t>0

1

�k(
1
t )
w(fx : (M+)k+1f(x) > tg);

where � < �0 < 1. As a consequence, for � = Ær, (3.15) together with (3.14) gives

II 0 � C sup
t>0

1

�k(
1
t )
w(fx 2 R : (M+)k+1f(x) > tg):
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Finally, let a = �
1
Æ

2C(C0)k
. Then

III 0 �
C

�k(
1
at )

w(fx 2 R : (M+)k+1f(x) > atg)

� C sup
t>0

1

�k(
1
t )
w(fx 2 R : (M+)k+1f(x) > tg):

Putting all these estimates together we get (3.9).
Therefore if we prove that Lb;w;�k;Æf <1, using (3.9) we obtain

Lb;w;�k;Æ(f) � C sup
t>0

1

�k(
1
t )
w(fx 2 R : (M+)k+1f(x) > tg):

Assume now that supp f � (�R;R), for some R > 0. Then for x � �2R we have

jT+;k
b f(x)j � C

Z R

�R

jb(x)� b(y)jk

jx� yj
jf(y)j dy(3.16)

�
2Cmk

jxj

Z R

x
jf(y)j dy

� CmkM+f(x):

Using that 0 < Æ < 1, the fact that M+ is of weak type (1; 1) with respect to the

pair (w;M�w) 2 A+
1 , Lemma 2 and (3.16), we get

1

�k(
1
t )
w(fx 2 R :M+

Æ (T
+;k
b f)(x) > tg)

�
1

�k(
1
t )
w(fx 2 R : M+

Æ (�(�2R;2R)T
+;k
b f)(x) > t=2g)

+
1

�k(
1
t )
w(fx 2 R :M+

Æ (�(�1;�2R)T
+;k
b f)(x) > t=2g)

�
1

�k(
1
t )

C

t

Z 2R

�2R
jT

+;k
b f(x)jM�w(x) dx

+
1

�k(
1
t )
w(fx 2 R : (M+)k+1f(x) > Cmtg)

� C4NR

 
1

4R

Z 2R

�2R
jT+;k
b f(x)j2 dx

! 1
2

+
C

�k(
1
t )

Z
R

�k

�
jf(x)j

Cmt

�
M�w(x) dx

� C4NR

 
1

4R

Z R

�R
jf(x)j2 dx

! 1
2

+ CN

Z R

�R
�k(jf(x)j) dx:
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Since f is bounded and with compact support the last expression is �nite.
Then, we have obtained the following:

sup
t>0

1

�k(
1
t )
wN (fx 2 R : jT+;k

bm
f(x)j > tg)

� C sup
t>0

1

�k(
1
t )
wN (fx 2 R : (M+)k+1f(x) > tg):

Observe that
n
bjmf

o
converges to bjf in L1(dx), since f is bounded with compact

support and b 2 BMO implies that b is locally in Lp(dx) for all p � 1. Then,
taking into account that T+ is of weak type (1,1) with respect to the Lebesgue

measure, we obtain that
n
T+(b

j
mf)

o
converges to T+(bjf) in measure. This

implies that, for a subsequence, we have almost everywhere convergence. On the

other hand,
n
b
j
mT

+f
o
converges to bjT+f almost everywhere. As a consequence,

a subsequence of
n
jT+;k
bm

f j
o
converges to jT+;k

b f j almost everywhere. We shall

continue denoting this subsequence by
n
jT+;k
bm

f j
o
. Then, by Fatou's lemma,

sup
t>0

1

�k(
1
t )
wN (fx 2 R : jT+;k

b f(x)j > tg)

= sup
t>0

1

�k(
1
t )

Z
R

lim
m!1

wN (x)�
fx2R:jT+;kbm

f(x)j>tg
dx

� sup
t>0

1

�k(
1
t )

lim inf
m!1

wN (fx 2 R : jT
+;k
bm

f(x)j > tg)

� C sup
t>0

1

�k(
1
t )
wN (fx 2 R : (M+)k+1f(x) > tg):

Letting N go to in�nity we obtain the desired result.
Now, for general b 2 BMO (kbkBMO > 0), we consider h = b

kbkBMO
. Then,

since T
+;k
h f = 1

kbkkBMO
T
+;k
b f and taking into account that �k is submultiplicative,

we have

sup
t>0

1

�k(
1
t )
w(fx 2 R : jT

+;k
b f(x)j > tg)

= sup
t>0

1

�k(
1
t )
w(fx 2 R : jT+;k

h f(x)j >
t

kbkkBMO

g)

� �k(kbk
k
BMO) sup

t>0

1

�k

�
kbkkBMO

t

�w(fx 2 R : T+;k
h f(x) >

t

kbkkBMO

g)



Weighted inequalities for commutators of one-sided singular integrals 99

� C�k(kbk
k
BMO) sup

t>0

1

�k(
1
t )
w(fx 2 R :Mk+1f(x) > tg):

�

Proof of Theorem 2: It suÆces to consider the case � = 1. (For � > 0 the

result follows by considering f
� ). By Lemma 3, the fact that �k is submultiplicative

and by Lemma 2 we get,

w(fx 2 R : jT
+;k
b f(x)j > 1g) � sup

t>0

1

�k(
1
t )
w(fx 2 R : jT

+;k
b f(x)j > tg)

� C�k(kbk
k
BMO) sup

t>0

1

�k(
1
t )
w(fx 2 R : (M+)k+1f(x) > tg)

� C�k(kbk
k
BMO) sup

t>0

1

�k(
1
t )
�k(

1

t
)

Z
R

�k(jf(x)j)M
�w(x) dx

= C�k(kbk
k
BMO)

Z
R

jf(x)j(1 + log+ jf(x)j)kM�w(x) dx:

�

Proof of Theorem 3: By duality, (1.4) is equivalent toZ
R

jT�;kb f jp
0

((M�)[(k+1)p]+1w)1�p
0

� C

Z
R

jf jp
0

w1�p0 :

Observe that ((M�)[(k+1)p]+1w)1�p
0

2 A�1, and by Theorem 1, we getZ
R

jT�;kb f jp
0

((M�)[(k+1)p]+1w)1�p
0

� C

Z
R

((M�)k+1f)p
0

((M�)[(k+1)p]+1w)1�p
0

:

Therefore it suÆces to prove that

(3.17)

Z
R

((M�)k+1f)p
0

((M�)[(k+1)p]+1w)1�p
0

� C

Z
R

jf jp
0

w1�p0 :

Now observe that proving (3.17) is equivalent to

(3.18)

Z
R

((M�)k+1(fw
1
p ))p

0

((M�)[(k+1)p]+1w)1�p
0

� C

Z
R

jf jp
0

:

If �k(t) = t(1 + log+ t)k, then (3.18) is equivalent to

(3.19)

Z
R

((M�
�k
)(fw

1
p ))p

0

((M�)[(k+1)p]+1w)1�p
0

� C

Z
R

jf jp
0

:
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For large t, ��1k (t) �
t

log(t)k
. Then, for � > 0,

��1k (t) �
t
1
p

log(t)
k+ p�1+�

p

� t
1
p0 log(t)

p�1+�
p = A�1(t)�B�1(t);

where A(t) � tp log(t)(k+1)p�1+� and B(t) �
tp
0

log(t)1+(p
0�1)�

. Then, by the

generalized H�older's inequality, we have

(M�
�k
)(fw

1
p ) � CM�

B (f)M�
A (w

1
p ) � CM�

B (f)(M�
D (w))

1
p ;

whereD(t) = t(log t)(k+1)p�1+�. We choose � such that (k+1)p�1+� = [(k+1)p].
ThenZ

R

((M�
�k
)(fw

1
p ))p

0

((M�)[(k+1)p]+1w)1�p
0

� C

Z
R

(M�
B (f))p

0

((M�
D (w))

p0

p ((M�)[(k+1)p]+1w)1�p
0

� C

Z
R

(M�
B (f))p

0

((M�
D (w))p

0�1((M�
D (w))1�p

0

� C

Z
R

jf jp
0

;

where the last inequality follows from Theorem C, since B 2 Bp0 . �
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