
NORM INEQUALITIES RELATING ONE-SIDED SINGULAR

INTEGRALS AND THE ONE-SIDED MAXIMAL FUNCTION

M. S. Riveros and A. de la Torre

Abstract. In this paper we prove that if a weight w satisfies the C+
q condition,

then the Lp(w) norm of a one-sided singular integral is bounded by the Lp(w) norm
of the one-sided Hardy-Littlewood maximal function, for 1 < p < q <∞.

1. Introduction

One-sided singular integrals were defined by Aimar, Forzani and Mart́ın-Reyes
in [AFM] as singular integrals T+f whose kernel has support on (−∞, 0). In the
same paper they proved that a weight w satisfies

∫ |T+f |pw ≤ C ∫ |f |pw, for all f ∈
Lp(w) if, the weight satisfies the one-sided A+

p condition, introduced by Sawyer [S1],
that characterizes the boundedness of the one-sided Hardy-Littlewood maximal
operator M+f (x) = suph>0 h

−1
∫ x+h

x
|f |.

A crucial step in the proof, is the fact that if w ∈ A+
∞, then

(1.1)
∫
|T+f |rw ≤ C

∫
[M+f ]rw,

for any 1 < r. We recall de definitions of the A+
p classes. w ∈ A+

p , 1 < p if there
exists a constant C such that for all a < b < c

(A+
p )

∫ b

a

w

(∫ c

b

w1−p′
)p−1

≤ C(c− a)p

where p + p′ = pp′. A weight w is in A+
∞ if there exist positive constants C and ε

such that for any a < b < c and any measurable set E ⊂ (a, b),

(A+
∞)

∫
E
w∫ c

a
w
≤ C

( |E|
c− b

)ε

These definitions and many properties of A+
p and A+

∞ can be found in [MPT]. A
natural question arises. Can we find conditions weaker than A+

∞ that are sufficient
for (1.1). In [S2] Sawyer considered the following conditon, introduced first by
Muckenhoupt in [Mu].
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There exists two positive constants C and ε such that for every interval I ∈ R
and every measurable subset E ⊂ I we have

(Cp)
∫

E

w ≤ C
( |E|
|I|
)ε ∫

[MχI ]pw <∞,

where M is the Hardy-Littlewood maximal operator. Sawyer proved that for a
standard singular integral Tf , Cq is suficient for

(1.2)
∫
|Tf |pw ≤ C

∫
[Mf ]pw

provided q > p. He does not require
∫

[MχI ]pw <∞. Observe that if
∫

[MχI ]qw =
∞ for some I, then

∫
[MχJ ]qw =∞ for every interval J . Then for every f ≥ 0 and

p ≤ q we have that
∫

[Mf ]pw =∞. In this paper we introduce a one-sided version
of this condition C+

p , and prove that if q > p, then

∫
|T+f |pw ≤ C

∫
[M+f ]pw.

The definition of C+
p is as follows.

Definition. A weight w satisfies C+
p if there exist ε > 0 and C > 0, so that for

any a < b < c, with c− b < b− a, and any measurable set E ⊆ (a, b), the following
holds:

(C+
p )

∫

E

w ≤ C
( |E|

(c− b)
)ε ∫

R
[M+χ(a,c)]pw <∞.

Observe that if w ∈ A+
∞ then w ∈ ∩p>1C

+
p . We give examples of weights that

satisfy C+
p condition for all p > 1 but they do not satisfy A+

∞ condition.
The class of one-sided singular integrals is a subclass of the standard singular

integrals and our theorem says that for this subclass we can obtain a more precise
result. On one hand, we obtain a smaller right hand side, with M+f instead of
Mf . On the other hand, the condition C+

p is different from Cp. These facts make
the proof more complicated than in the standard case although it follows the same
lines as the paper by Sawyer.

Now we recall the definition of one-sided singular integrals studied in [AFM].
We say that a function k in L1

loc(R − {0}) is a Calderón–Zygmund kernel if the
following properties are satisfied:

(a) There exists a finite constant B1 such that
∣∣∣∣∣
∫

ε<|x|<N
k(x) dx

∣∣∣∣∣ ≤ B1

for all ε and all N with 0 < ε < N. Furthermore limε→0+

∫
ε<|x|<N k(x) dx exists.

(b) There exists a finite constant B2 such that

|k(x)| ≤ B2

|x|
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for all x 6= 0.
(c) There exists a finite constant B3 such that

|k(x− y)− k(x)| ≤ B3|y||x|−2

for all x and y with |x| > 2|y| > 0.
A one-sided singular integral is

T+f(x) = lim
ε→0

∫ ∞
x+ε

k(x− y)f(y) dy,

where k is a Calderón–Zygmund kernel, with support in R−. We also define

T ∗+f(x) = sup
ε>0

∣∣∣∣
∫ ∞
x+ε

k(x− y)f(y) dy,
∣∣∣∣ .

Examples of such kernels are given in [AFM].
We end this section with some notation. A weight w is a non-negative, locally

integrable function. If E is a measurable set, w(E) denotes the integral of w over E.
Throughout the paper the letter C represents a positive constant that may change
from time to time.

2. Statement and proof of the result

Theorem 1. Let T+f be a one-sided singular integral, 1 < p < q <∞ and assume
that w satisfies C+

q , then

∫

R
|T+f |pw ≤ C

∫

R
[M+f ]pw

for all f such that the right hand side is finite.

Remark. If w(x) = ex then w ∈ A+
1 ⊂ A+

∞ ⊂ C+
p , p > 1. But

∫
[MχI ]pw =∞, and

therefore w /∈ Cp, p > 1.
The proof is based on a series of lemmas that we now state and prove.

Lemma 1. Let us assume that w satisfies C+
q , 1 < q < ∞, then for any δ > 0

there exists C(δ) such that for any disjoint family of intervals {Jj} contained in
I = (a, b) we have:

(i)
∫

I

∑

j

[M+χJj ]
qw ≤ C(δ)w(I) + δ

∫

R
[M+χI ]qw

and

(ii)
∫

R

∑

j

[M+χJj ]
qw ≤ C

∫

R
[M+χI ]qw.
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Proof. First, we claim that (i) implies (ii). Indeed,

∫

R


∑

j

[M+χJj ]
q


w =

∫

I


∑

j

[M+χJj ]
q


w +

∫

(−∞,a)


∑

j

[M+χJj ]
q


w

≤ C(δ)w(I) + δ

∫

R
[M+χI ]qw +

∫

(−∞,a)

∑
j |Jj |q

(b− x)q
w

≤ C(δ)w(I) + δ

∫

R
[M+χI ]qw +

∫

(−∞,a)

|I|q
(b− x)q

w

≤ C(δ)w(I) + (δ + 1)
∫

R
[M+χI ]qw

≤ 2C(δ)
∫

R
[M+χI ]qw + (δ + 1)

∫

R
[M+χI ]qw.

To prove (i) we use the fact that there exists α > 0 such that for every λ > 0 we
have

(2.1) |Eλ| = |{x :
∑

j

[M+χJj ]
q(x) > λ}| ≤ Ce−αλ|I|

(for details see [FeSt]). We define a sequence of points as follows: x0 = a and
for i ∈ N, xi − xi−1 = b − xi and consider the sets Eiλ = Eλ ∩ (xi, xi+1). For
x ∈ (xi, xi+1) we may assume that Jj in

∑
j |M+χJj |q(x) are all contained in

(xi, b). It follows from (2.1) that

|Eiλ| ≤ Ce−αλ(b− xi) = Ce−αλ(xi+2 − xi+1).

If we now use condition C+
q for the set Eiλ and the points xi, xi+1, xi+2 we get

w(Eiλ) ≤ Ce−αλε
∫

[M+χ(xi,xi+2)]qw.

It is easy to see that
∑
i>1M

+χ(xi,xi+2) ≤ CM+χI and adding up we get

w(Eλ ∩ I) ≤ Ce−αλε
∫

[M+χI ]qw.

Therefore,

∫

I

∑

j

[M+χJj ]
qw =

∫ λ0

0

∫

Eλ∩I
w dλ+

∫ ∞
λ0

∫

Eλ∩I
w dλ

≤ λ0w(I) +
∫ ∞
λ0

w(Eλ ∩ I) dλ

≤ λ0w(I) + C

∫ ∞
λ0

e−αλε dλ
∫

[M+χI ]qw

≤ C(δ)w(I) + δ

∫
[M+χI ]qw,
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if we choose λ0 big enough. �

For the next lemma we need to define a new operator, M+
p,q. Let f be a nonneg-

ative measurable function. Let us consider

Ωk = {x : f(x) > 2k} = ∪iIki ,

where Iki are the connected components of Ωk. Then

[M+
p,qf(x)]p =

∑

k,i

2pk[M+χIki (x)]q.

Lemma 2. Let 1 < p < q < ∞, w ∈ C+
q , and f non-negative, bounded and of

compact support. Then

∫
[M+

p,q(M
+f)]w ≤ C

∫
[M+f ]pw.

Proof. Let Ωk = {x : M+f(x) > 2k} = ∪jIkj , where Ikj are the connected com-
ponents of Ωk. Let N ≥ 1, note that Ωk ⊆ Ωk−N for all k. Given a connected
component of Ωk−N , Ik−Ni we estimate |Ωk ∩ Ik−Ni |. First, we put f = g + h with
g = fχIk−Ni

. Observe that if x ∈ Ik−Ni = (a, b), then M+h(x) ≤ M+f(b) ≤ 2k−N .

So if x ∈ Ωk ∩ Ik−Ni , then

M+g(x) ≥M+f −M+h ≥ 2k − 2k−N ≥ 1
2

2k.

Now using the fact that the operator M+ is of weak type (1, 1) with respect to
Lebesgue meausure we get

(2.2)
|Ωk ∩ Ik−Ni | ≤ |{x : M+g(x) ≥ 1

2
2k}| ≤ C2−k

∫
g

= C2−k
∫

Ik−Ni

f ≤ C2−k|Ik−Ni |M+f(a) ≤ C2−N |Ik−Ni |.

Let S(k) = 2kp
∑

j

∫
[M+χIkj ]qw and S(k,N, i) = 2kp

∑

j:Ikj ⊆Ik−Ni

∫
[M+χIkj ]qw.

Then

S(k,N, i) = 2kp
∑

j:Ikj ⊆Ik−Ni

∫

Ik−Ni

[M+χIkj ]qw + 2kp
∑

j:Ikj ⊆Ik−Ni

∫

(Ik−Ni )C
[M+χIkj ]qw

= I + II.

By Lemma 1

I ≤ C(δ)2kpw(Ik−Ni ) + δ2kp
∫

[M+χIk−Ni
]qw,
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where δ > 0 is choosen later. Now, by (2.2)

II ≤ C2kp
∫ a

−∞

∑ |Ikj |q
(b− x)q

w ≤ C2kp
∫ a

−∞

(C2−N |Ik−Ni |)q
(b− x)q

w

≤ C2N(p−q)2p(k−N)

∫
[M+χIk−Ni

]qw.

So we get

S(k) =
∑

i

S(k,N, i) ≤ C(δ)2kp
∑

i

w(Ik−Ni ) + [δ2Np + C2N(p−q)]S(k −N).

As p < q, we can choose δ small and N big enough such that

S(k) ≤ C(δ)2kpw(Ωk−N ) +
1
2
S(k −N).

Now

SM =
∑

k≤M
S(k) ≤ 1

2
SM + C

∫
[M+f ]pw,

for all M . If we prove that under the assumptions on f , we have SM < ∞, we
are finished. Let us suppose that suppf ⊂ I = (a, b). There exists L such that
2L < 1/(b− a)

∫ b
a
f ≤ 2L+1.

If k ≥ L + 1, then Ωk ⊂ I− ∪ I, where I− = (2a − b, a). Indeed, if x < 2a − b,
then

M+f(x) = sup
h>a−x>b−a

1
h

∫ x+h

x

≤ 1
b− a

∫ b

a

f ≤ 2L+1.

If Ikj are the connected componets of Ωk, using Lemma 1 and since q > p, we have

M∑

k=L+1

∑

j

2kp
∫

[M+χIkj ]qw ≤
M∑

k=L+1

2kp
∫

[M+χI−∪I ]qw ≤ C
∫

[M+χI ]pw <∞.

If k ≤ L we can show again that Ωk ⊂ 2L−k+2(I−) ∪ I, where 2n(I−) = (cn, a),
with (a− cn) = 2n(b− a). Then by Lemma 1 we have

∑

k≤L

∑

j

2kp
∫

[M+χIkj ]qw ≤ C
∑

k≤L
2kp
∫

[M+χ2L−k+2(I−)∪I ]
qw.

Now its easy to see, using p < q, that

∑

k≤L
2kp[M+χ2L−k+2(I−)∪I(x)]q ≤ C2Lp[M+χI(x)]p <∞. �
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Lemma 3. Let 1 < p < q < ∞, w ∈ C+
q and let f be a non-negative bounded

function with compact support. Then
∫

[M+
p,q(T

∗+f)]pw ≤ C[
∫

[T ∗+f ]pw +
∫

[M+f ]pw].

Proof. Let Ωk = {x : T ∗+f(x) > 2k} = ∪jIkj , where Ikj are the connected compo-
nents of Ωk. Observe that in the proof of the “good lambda inequality” in [AFM,
Lemma 2.7], what they really show is
(2.3)
|{x ∈ Ik−Ni : T ∗+f(x) > 2k}| ≤ C2−N |Ik−Ni | if Ik−Ni * {x : M+f(x) > 2k−N}.

Let Ok = {x : M+f(x) > 2k} = ∪Jkj , where Jkj are the connected components of
Ok. For each Ik−Ni we have two cases

(1) Ik−Ni ⊆ Ok−N ,
(2) Ik−Ni * Ok−N .

Case (1) There exists li such that Ik−Ni ⊆ Jk−Nli
.

Case (2). (2.3) implies

(2.4)
∑

j:Ikj ⊆Ik−Ni

|Ikj | = |{x ∈ Ik−Ni : T ∗+f(x) > 2k}| ≤ C2−N |Ik−Ni |.

Let S(k) = 2kp
∑

j

∫
[M+χIkj ]qw and S(k,N, i) = 2kp

∑

j:Ikj ⊆Ik−Ni

∫
[M+χIkj ]qw.

Then

S(k,N, i) = 2kp
∑

j:Ikj ⊆Ik−Ni

∫

Ik−Ni

[M+χIkj ]qw + 2kp
∑

j:Ikj ⊆Ik−Ni

∫

(Ik−Ni )C
[M+χIkj ]qw

= I + II.

By Lemma 1 we have that

I ≤ C(δ)2kpw(Ik−Ni ) + δ2kp
∫

[M+χIk−Ni
]qw,

where δ > 0. We denote (ak−Ni , bk−Ni ) = Ik−Ni , then by (2.4) we obtain

II ≤ C2kp
∫ ak−Ni

−∞

∑
j:Ikj ⊆Ik−Ni

|Ikj |q

(bk−Ni − x)q
w ≤ C2kp

∫ ak−Ni

−∞

(C2−N |Ik−Ni |)q
(bk−Ni − x)q

w

≤ C2kp−Nq
∫

[M+χIk−Ni
]qw.

Adding I and II we get

S(k,N, i) ≤ C(δ)2kpw(Ik−Ni ) + (δ + C2−Nq)2kp
∫

[M+χIk−Ni
]qw.
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Then

S(k) =
∑

i:Ik−Ni is in case (1)

S(k,N, i) +
∑

i:Ik−Ni is in case (2)

S(k,N, i) = III + IV.

For III we observe that Ikj is contained in exatly one Jk−Nl and by Lemma 1 we
have

III =
∑

i:Ik−Ni ⊆Jk−Nli

S(k,N, i) =
∑

i:Ik−Ni ⊆Jk−Nli

∑

j:Ikj ⊆Ik−Ni

2kp
∫

[M+χIkj ]qw

≤
∑

l

∑

j:Ikj ⊆Jk−Nli

2kp
∫

[M+χIkj ]qw

≤ C
∑

l

2kp
∫

[M+χJk−Nl
]qw.

To estimate IV we observe that

IV ≤ C(δ)2kp
∑

i

w(Ik−Ni ) + (δ + C2−Nq)2kp
∑

i

∫
[M+χIk−Ni

]qw

≤ C2kpw(Ωk−N ) +
1
2
S(k −N),

choosing δ small and N big enough. Combining III and IV we get

S(k) ≤ 1
2
S(k −N) + C2kpw(Ωk−N ) + C2kp

∑

l

∫
[M+χJk−Nl

]qw.

Using Lemma 2

SM =
∑

k≤M
Sk ≤ 1

2
SM + C

∫
[T ∗+f ]pw + C

∫
[M+

p,q(M
+f)]pw

≤ 1
2
SM + C

(∫
[T ∗+f ]pw +

∫
[M+f ]pw

)
,

and since SM <∞ (see Lemma 2), we get
∫

[M+
p,q(T

∗+f)]pw ≤ C
(∫

[T ∗+f ]pw +
∫

[M+f ]pw
)
. �

Proof of Theorem 1. First we observe that |T+f | ≤ T ∗+f , so it is enough to prove
the theorem for T ∗+. Let f be a non-negative bounded function with compact
support.
Let Ωk = {x : T ∗+f(x) > 2k} = ∪jJkj where Jkj , are the connected components
of Ωk. Let us fix (a, b) = Jkj . We partition (a, b) as follows. Let x0 = a, and we
choose xi+1 such that xi+1 − xi = b − xi+1 and we let Iki = (xi, xi+1). By “the
good lambda inequality” in [AFM Lemma 2.7] we have that

|Eki | = |{x ∈ Iki : T ∗+f(x) > 2k+1,M+f(x) ≤ γ2k}| ≤ Cγ|Iki | for 0 < γ < 1.
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From C+
q condition we have

w(Eki ) ≤ Cγε
∫

[M+χIki ∪Iki+1
]qw.

Summing over all i and using Lemma 1we infer that

w({x ∈ Jkj : T ∗+f(x) > 2k+1,M+f(x) ≤ γ2k}) ≤ Cγε
∑

i

∫
[M+χIki,j∪Iki+1,j

]qw

≤ Cγε
∫

[M+χJkj ]qw.

Now, summing over all j we have that

w({x ∈ Ωk : T ∗+f(x) > 2k+1,M+f(x) ≤ γ2k}) ≤ Cγε
∑

j

∫
[M+χJkj ]qw.

Then by Lemma 3,∫
(T ∗+f)pw =

∑

k

∫

Ωk−Ωk+1

(T ∗+f)pw ≤ 2p
∑

k

2kpw(Ωk)

= C
∑

k

2kp[w({x ∈ Ωk : T ∗+f > 2k+1,M+f ≤ γ2k})

+ w({x ∈ Ωk : T ∗+f > 2k+1,M+f > γ2k})]

≤
∑

j,k

(Cγε2kp
∫

[M+χJkj ]qw) + C
∑

k

2kpw({x ∈ Ωk : M+f(x) > γ2k})

≤ Cγε[
∫

[T ∗+f ]pw +
∫

[M+f ]pw] + C

∫
[M+f ]pw.

Finally we prove that under the assumptions on f , we have that
∫

[T ∗+f ]pw <∞,
and choosing γ small enough we finish the proof. To see that

∫
[T ∗+f ]pw <∞, let

suppf ⊂ I = (a, b) and I− = (2a− b, a). If x < 2a− b, then T ∗+f(x) ≤ CM+f(x),
so ∫ 2a−b

−∞
[T ∗+f ]pw ≤

∫ 2a−b

−∞
[M+f ]pw <∞.

Since T ∗+f is a singular integral and f is bounded, it is known that
∫
I−∪I e

αT∗+f <
∞ for some α > 0. Thus

|Eλ| = |{x ∈ I− ∪ I : T ∗+f(x) > λ}| ≤ Ce−λα|I− ∪ I|
for all λ > 0. Applying the C+

q condition to the set Eλ and the points 2a−b, b, 2b−a,
we get

w(Eλ) ≤ Ce−λαε
∫

[M+χI−∪I∪I+ ]qw,

where I+ = (b, 2b − a). Integrating with respect to λ, using that p < q, and
proceeding as in the final step of the proof of Lemma 1, we have∫

I−∪I
[T ∗+f ]pw ≤ C

∫
[M+χI−∪I∪I+ ]pw <∞.

�
As observed in the introduction A+

∞ ⊆ ∩p>1C
+
p . We now show that the inclusion

is proper.
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Proposition 1. Let w ∈ A∞, then wχ(−∞,0) ∈ ∩p>1C
+
p .

Proof. First we observe that wχ(−∞,0) /∈ A+
∞. Let us consider a < b < c such that

c− b < b− a and E a mesurable set such that E ⊂ (a, b). We have several cases
(i) a < b < c < 0. In this case there is nothing to prove because A∞ =⇒ A+

∞ =⇒
∩p>1C

+
p .

(ii) a < b < 0 < c. There exist ε > 0 and C > 0 such that

wχ(−∞,0)(E) = w(E) ≤ C
( |E|
b− a

)ε
w(a, b) ≤ C

( |E|
c− b

)ε ∫ b

a

[M+χ(a,b)]pw

≤ C
( |E|
c− b

)ε ∫ 0

−∞
[M+χ(a,b)]pw ≤ C

( |E|
c− b

)ε ∫ 0

−∞
[M+χ(a,c)]pw.

(iii) a < 0 < b < c, and b ≤ −2a. Suppose that E ⊆ (a, 0). Note that since
b− a ≤ −3a,

wχ(−∞,0)(E) = w(E) ≤ C
( |E|

0− a
)ε
w(a, 0) ≤ C

( |E|
b− a

)ε ∫ 0

a

[M+χ(a,0)]pw

≤ C
( |E|
c− b

)ε ∫ 0

−∞
[M+χ(a,c)]pw.

If E * (a, 0), then

wχ(−∞,0)(E) = w(E ∩ (−∞, 0)) ≤ C
( |E ∩ (−∞, 0)|

c− b
)ε ∫ 0

−∞
[M+χ(a,c)]pw

≤ C
( |E|
c− b

)ε ∫ 0

−∞
[M+χ(a,c)]pw.

(iv) a < 0 < b < c and b > −2a.

wχ(−∞,0)(E) ≤ w(E) ≤ C
( |E|
b− a

)ε
w(a, b) ≤ C

( |E|
c− b

)ε
w(a, b).

If we prove that w(a, b) ≤ C
∫ 0

−∞[M+χ(a,c)]pw, we have finished the proof. Using
that w satisfies the doubling condition and that b > −2a if and only if a+ b > b/2
we have
∫ 0

−∞
[M+χ(a,c)]pw ≥

∫ 0

−∞
[M+χ(a,b)]pw ≥

∫ a

−b
[M+χ(a,b)]pw =

∫ a

−b

(
b− a
b− x

)p
w

≥
∫ a

−b

(
1
2

)p
w ≥ C

2p
w(−b, a) ≥ Cw(a, b).

�
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