Weighted Estimates for Singular Integral Operators Satisfying Hörmander's conditions of Young Type

M. Lorente, *

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain *e-mail: lorente@anamat.cie.uma.es*

> M. S. Riveros,[†] FaMAF Universidad Nacional de Córdoba CIEM (CONICET). (5000) Córdoba, Argentina *e-mail: sriveros@mate.uncor.edu*

> > A. de la Torre ‡

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain *e-mail: torre@anamat.cie.uma.es*

28th June 2005

^{*}Supported by Ministerio de Ciencia y Tecnología BFM 2001-1638 and Junta de Andalucía. †Partially supported by CONICET, Agencia Córdoba Ciencias y SECYT-UNC.

[‡]Supported by Ministerio de Ciencia y Tecnología BFM 2001-1638 and Junta de Andalucía.

1. INTRODUCTION

Let T be a singular integral operator of the type

$$Tf(x) = p.v. \int_{\mathbb{R}^n} K(x-y)f(y) \, dy,$$

where the kernel K has bounded Fourier transform, and let Mf be the Hardy-Littlewood maximal function. A classical result of Coifman [4] states that if the kernel satisfies the following Lipschitz condition: there are numbers $\alpha > 0$ and C > 0 such that

(0.1)
$$|K(x-y) - K(-y)| \le C \frac{|x|^{\alpha}}{|y|^{\alpha+n}}, \text{ whenever } |y| > 2|x|$$

then, for any $0 and any <math>w \in A_{\infty}$, there exists a constant C such that

(0.2)
$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}^n} (Mf(x))^p w(x) \, dx$$

for every f such that the left-hand side is finite. Recently, Martell, Pérez and Trujillo [7] have proved that (0.2) fails if instead of condition (0.1) we assume that K satisfies the weaker Hörmander condition

(0.3)
$$\sup_{x \in \mathbb{R}^n} \int_{|y| > 2|x|} |K(x-y) - K(-y)| \, dy < \infty.$$

Actually they prove that (0.2) fails even if the kernel K satisfies certain intermediate conditions between (0.1) and (0.3). These conditions are the L^r -Hörmander conditions defined as follows:

Definition 0.4. Let $1 \leq r \leq \infty$, we say that the kernel K satisfies the L^r -Hörmander condition, if there are numbers $c_r > 1$ and $C_r > 0$ such that for any $x \in \mathbb{R}^n$ and $R > c_r |x|$

(0.5)
$$\sum_{m=1}^{\infty} (2^m R)^n \left(\frac{1}{(2^m R)^n} \int_{2^m R < |y| \le 2^{m+1} R} |K(x-y) - K(-y)|^r \, dy \right)^{\frac{1}{r}} \le C_r,$$

if $r < \infty$, and

(0.6)
$$\sum_{m=1}^{\infty} (2^m R)^n \sup_{2^m R < |y| \le 2^{m+1} R} |K(x-y) - K(-y)| \le C_{\infty},$$

in the case $r = \infty$.

We will denote by H_r the class of kernels satisfying the L^r -Hörmander condition.

Observe that these classes are nested, namely

$$H_{\infty} \subset H_r \subset H_s \subset H_1, \quad 1 < s < r$$

and that H_1 is the class of kernels satisfying the Hörmander condition (0.3). For these classes some weighted estimates are known. See [13] and [2].

Theorem. Let $1 < r \leq \infty$. Assume that the operator T is bounded in some L^p , $1 , and the kernel K belongs to <math>H_r$, then for any $0 and <math>w \in A_{\infty}$ there is a constant C such that

(0.7)
$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}^n} (M_{r'}f(x))^p \, w(x) \, dx,$$

whenever the left hand side is finite.

We recall that for any $1 \leq t$, the maximal operator M_t is defined as $M_t f(x) = (M|f|^t(x))^{\frac{1}{t}} \geq Mf(x)$. In [7] it is proved that this theorem is sharp in the following sense:

Theorem. Let $1 \leq r < \infty$ and $1 \leq t < r'$. There exists a singular integral operator T, bounded in some L^p , $1 , and whose kernel is in <math>H_r$, for which the following inequality does **not** hold:

(0.8)
$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}^n} \left(M_t f(x) \right)^p w(x) \, dx,$$

for any function f for which the left hand side is finite, where $0 , <math>w \in A_{\infty}$.

A natural question, left open by this result, is the following:

What happens between H_{∞} and the intersection of the H_r , $1 \le r < \infty$?

More precisely: Are there kernels which belong to H_r for every finite r but do not belong to H_{∞} ?

For such kernels, if there are any, the best known result is that the following inequality holds

(0.9)
$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}^n} \left(M_t f(x) \right)^p w(x) \, dx,$$

for any 1 < t. Since those kernels do not belong to H_{∞} we can not assert that

(0.10)
$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}^n} (Mf(x))^p \, w(x) \, dx.$$

This, however, does not exclude that these operators could satisfy an inequality of the type

(0.11)
$$\int_{\mathbb{R}^n} |Tf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}^n} (M_A f(x))^p \, w(x) \, dx$$

where M_A is some maximal operator such that $Mf(x) \leq M_A f(x) \leq M_t f(x)$ for any function f and any 1 < t.

In this note we give a positive answer to these questions.

In order to state our results we need to remind some definitions. A function $B : [0, \infty) \to [0, \infty)$ is a Young function if it is continuous, convex, increasing and satisfies B(0) = 0 and $B(t) \to \infty$ as $t \to \infty$. The Luxemburg norm of a function f, induced by B, is

$$||f||_B = \inf\left\{\lambda > 0 : \int B\left(\frac{|f|}{\lambda}\right) \le 1\right\}$$

and the B-average of f over a cube, (or a ball) Q is

$$||f||_{B,Q} = \inf\left\{\lambda > 0: \frac{1}{|Q|} \int_Q B\left(\frac{|f|}{\lambda}\right) \le 1\right\}.$$

We will denote by \overline{B} the complementary function associated to B (see [3]). Then the generalized Hölder's inequality

(0.12)
$$\frac{1}{|Q|} \int_{Q} |f g| \le ||f||_{B,Q} ||g||_{\overline{B},Q},$$

holds.

The behaviour of B(t) for $t \leq t_0$ does not affect the value of $||f||_{B,Q}$. Therefore, if $A(t) \approx B(t)$ for $t \geq t_0$, then $||f||_{A,Q} \approx ||f||_{B,Q}$. This means that we will not be concerned about the value of the Young functions for t small.

Definition 0.13. For each locally integrable function f, the maximal operator associated to the Young function B is defined by

$$M_B f(x) = \sup_{x \in Q} \|f\|_{B,Q} ,$$

where the sup is taken over all the cubes, or balls, that contain x.

We will be using the following Young functions: $B(t) = t^r$, $B(t) = e^{t^{1/k}} - 1$, $B(t) = t(1 + \log^+(t))^k$. The maximal operators associated to these functions are M_r , $M_{\exp L^{1/k}}$ and $M_{L(1+\log^+L)^k}$. If $k \ge 0$, $k \in \mathbb{Z}$, then $M_{L(1+\log^+L)^k}$ is pointwise equivalent to M^{k+1} , where M^k is the k-times iterated of M (see[11]). It is also known that

$$Mf(x) \le CM_{L(1+\log^+ L)^k}f(x) \le CM_r f(x),$$

for all k > 0 and r > 1.

Definition 0.14. Let A be a Young function. We say that the kernel K satisfies the L^A -Hörmander condition, if there are numbers $c_A > 1$ and $C_A > 0$ such that for any x and $R > c_A|x|$,

$$\sum_{m=1}^{\infty} (2^m R)^n || (K(x-\cdot) - K(-\cdot)) \chi_{\{2^m R < |y| \le 2^{m+1} R\}}(\cdot) ||_{A,B(0,2^{m+1} R)} \le C_A$$

We will denote by H_A the class of all kernels satisfying this condition. The main results on this paper are:

THEOREM A. Assume that T is a singular integral operator, bounded in some L^p , $1 , whose kernel K belongs to <math>H_A$. Then, for any $0 and <math>w \in A_{\infty}$, there exists C such that

$$\int_{\mathbb{R}^n} |Tf|^p w \le C \int_{\mathbb{R}^n} (M_{\overline{A}}f)^p w,$$

for any $f \in C^{\infty}$ with compact support.

Similar results can be proved for vector valued operators or one-sided operators.

THEOREM B. There is a vector valued, one-sided operator S bounded in all L^p , $1 , whose kernel K belongs to <math>H_r$ for every finite $r \ge 1$ but does not belong to H_{∞} . It does satisfy the L^A -Hörmander condition with $A(t) = \exp(t^{\frac{1}{1+\epsilon}}) - 1$, $(\epsilon > 0)$.

As a corollary we obtain that for this operator the inequality

(0.15)
$$\int_{\mathbb{R}} |Sf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}} (M_t f(x))^p w(x) \, dx, \quad \text{any } t > 1, \ 0$$

may be improved to

(0.16)
$$\int_{\mathbb{R}} |Sf(x)|^{p} w(x) \, dx \le C \int_{\mathbb{R}} \left((M^{+})^{3} f(x) \right)^{p} w(x) \, dx,$$

where $(M^+)^3$ is the one-sided Hardy-Littlewood maximal operator iterated three times and w is a weight in the A^+_{∞} class.

Remark 0.17. We do not know if our operator satisfies (0.2). It is an open question if (0.2) holds for an operator whose kernel is $in \cap H_r \setminus H_{\infty}$.

Remark 0.18. As a by-product of the analysis developed for the study of the example of Theorem B we give an easy example of an operator whose kernel is not in H_{∞} but satisfies (0.2).

The organization of the paper is as follows. In Section 1 we give the proof of Theorem A and state, without proof, the corresponding version for the vector valued case. Since our example for Theorem B is a vector valued operator with kernel supported on $(-\infty, 0)$, we dedicate Section 2 to the proof of the one-sided version of Theorem A. Finally in Section 3 we give an example of an operator whose kernel belongs to $\cap H_r \setminus H_{\infty}$.

1 Proof of theorem A

The sharp maximal function is defined as

(1.1)
$$M^{\#}f(x) = \sup_{x \in Q} \inf_{a \in \mathbb{R}} \frac{1}{|Q|} \int_{Q} |f(y) - a| \, dy.$$

Although this operator is dominated pointwise by a multiple of the Hardy-Littlewood maximal function, there is a theorem that states some kind of reverse inequality. See ([5]).

Theorem. For any $0 and <math>w \in A_{\infty}$ there exists C such that

(1.2)
$$\int_{\mathbb{R}^n} (Mf(x))^p w(x) \, dx \le C \int_{\mathbb{R}^n} (M^\# f(x))^p w(x) \, dx,$$

whenever the left hand side is finite.

Since it is easy to see that $\int (M|Tf|^{\delta}(x))^{\frac{p}{\delta}} w(x) dx$ is finite whenever f is a C^{∞} -function with compact support, $0 < \delta < 1$, and $w \in A_{\infty}$, it follows from the preceding theorem and from the inequality

$$|Tf(x)| \le \left(M|Tf|^{\delta}(x)\right)^{\frac{1}{\delta}}.$$

that, in order to prove Theorem A, it is enough to prove

Theorem 1.3. Let T be a singular integral operator, bounded in some L^p , 1 , $whose kernel K satisfies the <math>L^A$ -Hörmander condition. Then, for any $0 < \delta < 1$, there is a constant C_{δ} such that for any f and x,

(1.4)
$$(M^{\#}|Tf|^{\delta}(x))^{\frac{1}{\delta}} \leq C_{\delta}M_{\overline{A}}f(x).$$

Proof. It follows from (0.12) that for any Young function $A, H_A \subset H_1$ and therefore T is of weak type (1, 1). It also follows that $Mf(x) \leq CM_Af(x)$ for any f and x.

Let x_0 be fixed and let Q be any cube containing x_0 . We will denote by d(Q) its diameter. Let \tilde{Q} be a cube concentric with Q with side equal to $5c_A$ times the side of Q. If $y \notin \tilde{Q}$ then $|y - x_0| > 2c_A d(Q)$. We split f in the form $f = f_1 + f_2$ where $f_1 = f\chi_{\tilde{Q}}$. It will be enough to prove

(1.5)
$$\left(\frac{1}{|Q|}\int_{Q}\left||Tf(x)|^{\delta}-|Tf_{2}(x_{0})|^{\delta}\right|\,dx\right)^{\frac{1}{\delta}} \leq CM_{\overline{A}}f(x_{0}).$$

In order to prove this inequality it is enough to prove:

(1.6)
$$\frac{1}{|Q|} \int_{Q} |Tf_1(x)|^{\delta} dx \le C(Mf(x_0))^{\delta},$$

and

(1.7)
$$\frac{1}{|Q|} \int_{Q} \left| |Tf_2(x)|^{\delta} - |Tf_2(x_0)|^{\delta} \right| \, dx \le C(M_{\overline{A}}f(x_0))^{\delta}.$$

For (1.6) we use that our operator T is of weak type (1, 1) and Kolmogorov's inequality.

$$\frac{1}{|Q|} \int_{Q} |Tf_1(x)|^{\delta} dx \leq C_{\delta} \left(\frac{1}{|Q|} \int_{\mathbb{R}^n} |f_1(x)| dx \right)^{\delta}$$
$$= C_{\delta} \left(\frac{1}{|Q|} \int_{\tilde{Q}} |f(x)| dx \right)^{\delta} \leq C_{n,\delta} (Mf(x_0))^{\delta}.$$

To prove (1.7) we need to use the fact that our kernel satisfies H_A . From

$$\left| |Tf_2(x)|^{\delta} - |Tf_2(x_0)|^{\delta} \right| \le |Tf_2(x) - Tf_2(x_0)|^{\delta},$$

it follows that is enough to estimate $|Tf_2(x) - Tf_2(x_0)|^{\delta}$. If $x \in Q$ and $R = c_A d(Q) > c_A |x - x_0|$, we have

$$|Tf_{2}(x) - Tf_{2}(x_{0})| = \left| \int_{y \notin \tilde{Q}} \left(K(x-y) - K(x_{0}-y) \right) f(y) \, dy \right|$$

$$\leq \int_{|y-x_{0}| > 2R} |K(x-y) - K(x_{0}-y)| |f(y)| dy$$

$$= \sum_{m=1}^{\infty} \int_{2^{m}R < |y-x_{0}| \le 2^{m+1}R} |K(x-y) - K(x_{0}-y)| |f(y)| dy$$

If we use Hölder's inequality (0.12), we may dominate the last term by

$$\sum_{m=1}^{\infty} (2^m R)^n \| (K(x-\cdot) - K(x_0-\cdot)) \chi_{\{2^m R < |y-x_0| \le 2^{m+1} R\}}(\cdot) \|_{A,B(x_0,2^{m+1}R)} M_{\overline{A}} f(x_0) \\ \le C M_{\overline{A}} f(x_0).$$

Hence

$$|Tf_2(x) - Tf_2(x_0)|^{\delta} \le C(M_{\overline{A}}f(x_0))^{\delta},$$

and (1.7) follows.

The theorem can be extended to vector valued operators $Tf(x) = p.v. \int K(x-y)f(y) dy$, where now K takes values in a Banach space X.

Definition 1.8. We say that the kernel K, satisfies the L^A -Hörmander condition if there are numbers $c_A > 1$ and $C_A > 0$ such that for any x and $R > c_A |x|$,

$$\sum_{m=1}^{\infty} (2^m R)^n \left\| \| (K(x-\cdot) - K(-\cdot)) \|_X \chi_{\{2^m R < |y| \le 2^{m+1} R\}}(\cdot) \right\|_{A, B(0, 2^{m+1} R)} \le C_A$$

The theorem, whose proof we leave to the reader, is

Theorem 1.9. Let K be a vector valued kernel, that satisfies the L^A -Hörmander condition and let Tf be the associated singular integral. If T is a bounded operator in some L^p , $1 \le p < \infty$, then, for all $0 and <math>w \in A_{\infty}$,

$$\int_{\mathbb{R}^n} \|Tf\|_X^p w \le C \int_{\mathbb{R}^n} (M_{\overline{A}}f)^p w,$$

whenever the left hand side is finite.

2 The one-sided case

In dimension one, there are examples of singular integrals, both real valued, [1], and vector valued, [15], whose kernels are supported in $(-\infty, 0)$. These one-sided singular integrals are particular cases of singular integrals, and thus Theorem A holds for them. But it seems natural to ask if one can do better using the fact that the kernel is supported on $(-\infty, 0)$. More precisely:

Can we improve the inequality

$$\int_{\mathbb{R}} |Tf|^p w \le C \int_{\mathbb{R}} (M_{\overline{A}}f)^p w$$

allowing, perhaps an operator smaller than $M_{\overline{A}}f$, or a wider class of weights?

The answer is yes on both accounts. We can substitute $M_{\overline{A}}f$ by the corresponding onesided operator and allow w to be any weight in the class A^+_{∞} which is bigger than A_{∞} . (Any increasing function is in A^+_{∞}).

The one-sided weights are relevant to the study of the one-sided Hardy-Littlewood maximal operators:

Definition 2.1. The one-sided Hardy-Littlewood maximal operators M^+ and M^- are defined for locally integrable functions f by

$$M^{+}f(x) = \sup_{h>0} \frac{1}{h} \int_{x}^{x+h} |f| \quad and \quad M^{-}f(x) = \sup_{h>0} \frac{1}{h} \int_{x-h}^{x} |f|.$$

The A_p^+ classes were introduced by E. Sawyer [14] in the study of the weights for these operators.

He proved the following.

Theorem. If p > 1 the inequality $\int_{\mathbb{R}} M^+ f(x)^p w(x) dx \leq C \int_{\mathbb{R}} |f(x)|^p w(x) dx$ holds for all $f \in L^p(w)$ if, and only if, w satisfies the following condition:

 (A_p^+) : There exists C such that for any three points a < b < c,

(2.2)
$$\left(\int_{a}^{b} w\right)^{\frac{1}{p}} \left(\int_{b}^{c} w^{1-p'}\right)^{\frac{1}{p'}} \le C(c-a) \qquad (p+p'=pp').$$

The case p = 1 was not considered in Sawyer's paper but it was proved in [8] that the weak type estimate for this operator holds, i.e.

$$\int_{\{M^+f(x)>\lambda\}} w \le \frac{C}{\lambda} \int |f(x)| w(x) dx$$

if and only if:

 (A_1^+) : There exists C such that for almost every x: $M^-w(x) \leq Cw(x)$.

The class A_{∞}^+ is defined as the union of all the A_p^+ classes,

$$A_{\infty}^+ = \cup_{p \ge 1} A_p^+.$$

The classes A_p^- are defined in a similar way. It is interesting to note that $A_p = A_p^+ \cap A_p^-$, $A_p \subsetneq A_p^+$ and $A_p \subsetneq A_p^-$. (See [14], [8], [9] for more definitions and results.)

Definition 2.3. Let f be a locally integrable function. The one-sided sharp maximal function is defined by

$$M^{+,\#}f(x) = \sup_{h>0} \frac{1}{h} \int_x^{x+h} \left(f(y) - \frac{1}{h} \int_{x+h}^{x+2h} f \right)^+ dy.$$

It is proved in [10] that

(2.4)
$$M^{+,\#}f(x) \leq \sup_{h>0} \inf_{a\in\mathbb{R}} \frac{1}{h} \int_{x}^{x+h} (f(y)-a)^{+} dy + \frac{1}{h} \int_{x+h}^{x+2h} (a-f(y))^{+} dy \\ \leq C ||f||_{BMO}.$$

Here f^+ denotes the positive part of f, i.e., $f^+(x) = \max\{f(x), 0\}$. (See [10] for other results and definitions.)

Definition 2.5. For each locally integrable function f, the one-sided maximal operators associated to the Young function B are defined by

$$M_B^+f(x) = \sup_{x < b} ||f||_{B,(x,b)}$$
 and $M_B^-f(x) = \sup_{a < x} ||f||_{B,(a,x)}.$

We shall also need the following maximal operators:

$$M_r^+ f(x) = (M^+ |f|^r(x))^{1/r}$$
 and $M_{\delta}^{+,\#} f(x) = (M^{+,\#} |f|^{\delta}(x))^{1/\delta}$.

We can now state our result.

Theorem 2.6. Let K be a kernel, supported on $(-\infty, 0)$, possibly vector valued, that satisfies the L^A -Hörmander condition. Let T f be the associated singular integral. If T is a bounded operator in some L^p , $1 \le p < \infty$, then, for any $0 and <math>w \in A^+_{\infty}$ there exists C > 0such that

$$\int_{\mathbb{R}} |Tf(x)|^p w(x) \, dx \le C \int_{\mathbb{R}} (M_{\overline{A}}^+ f(x))^p w(x) \, dx,$$

for any $f \in C^{\infty}$ with compact support.

Proof. We will prove the scalar case, since the vector valued case is analogous. Our proof of theorem A was based on inequality (1.2). The one sided version of this theorem is the following ([10]):

Theorem. For any $0 and <math>w \in A^+_{\infty}$ there exists C such that

(2.7)
$$\int_{\mathbb{R}} |M^+ f(x)|^p w(x) \, dx \le C \int_{\mathbb{R}} (M^{+,\#} f(x))^p w(x) \, dx,$$

whenever the left hand side is finite.

It follows from this theorem that it is enough to prove

$$(M^{+,\#}|Tf|^{\delta}(x))^{\frac{1}{\delta}} \le C_{\delta}M_{\overline{A}}^{+}f(x).$$

If we use (2.4) we get that

$$M^{+,\#}f(x) \le \sup_{h>0} \inf_{a\in\mathbb{R}} \frac{1}{h} \int_{x}^{x+h} |f(y) - a| dy + \frac{1}{h} \int_{x+h}^{x+2h} |a - f(y)| dy$$
$$\le C \sup_{h>0} \inf_{a\in\mathbb{R}} \frac{1}{h} \int_{x}^{x+h} |f(y) - a| dy.$$

Therefore, it is enough to prove that, for fixed x_0 , there is, for every positive h, a real number a_h , that may depend on x_0 and h, such that

(2.8)
$$\left(\frac{1}{h} \int_{x_0}^{x_0+h} \left| |Tf(x)|^{\delta} - |a_h|^{\delta} \right| \, dx \right)^{\frac{1}{\delta}} \le C(M_A^+ f)(x_0).$$

We define $f_1 = f\chi_{(x_0,x_0+2h)}$, $f_2 = f\chi_{(x_0+2h,\infty)}$ and choose $a_h = Tf_2(x_0)$. We need to prove that,

(2.9)
$$\left(\frac{1}{h}\int_{x_0}^{x_0+h} \left||Tf(x)|^{\delta} - |Tf_2(x_0)|^{\delta}\right| dx\right)^{\frac{1}{\delta}} \le C(M_A^+f)(x_0).$$

Now we use the one-sided character of our operator to get that for $x \in (x_0, x_0 + h)$, $Tf(x) = Tf_1(x) + Tf_2(x)$ and follow the proof of (1.4). For f_1 , Kolmogorov's inequality yields

$$\frac{1}{h} \int_{x_0}^{x_0+h} |Tf_1(x)|^{\delta} dx \le C_{\delta} \left(\frac{1}{h} \int_{x_0}^{x_0+2h} |f(x)|\right)^{\delta} dx \le C_{\delta} (M^+ f(x_0))^{\delta}.$$

For f_2 we observe that for any $x \in (x_0, x_0 + h)$, if $R = c_A h$, we have,

$$|Tf_2(x) - Tf_2(x_0)| = \left| \int_{y > x_0 + 2h} \left(K(x - y) - K(x_0 - y) \right) f(y) \, dy \right|$$
$$\leq \sum_{m=1}^{\infty} \int_{2^m h < y - x_0 \le 2^{m+1}h} |K(x - y) - K(x_0 - y)| |f(y)| dy.$$

If we use Hölder's inequality (0.12), we may dominate the last term by

$$\sum_{m=1}^{\infty} (2^m h) \| (K(x-\cdot) - K(x_0-\cdot)) \chi_{\{2^m h < y - x_0 \le 2^{m+1}h}(\cdot) \|_{A,(x_0,x_0+2^{m+1}h)} M_A^+ f(x_0) \\ \le C M_A^+ f(x_0). \qquad \Box$$

3 Proof of theorem B

Let us now show an example of a one-sided operator whose kernel is in $\cap H_r \setminus H_\infty$. The example comes from ergodic theory.

Definition 3.1. Let f be a measurable function defined on \mathbb{R} . For each $n \in \mathbb{Z}$ we consider the average $A_n f(x) = \frac{1}{2^n} \int_x^{x+2^n} f$. The Square Function is defined as

$$Sf(x) = \left(\sum_{n=-\infty}^{\infty} |A_n f(x) - A_{n-1} f(x)|^2\right)^{\frac{1}{2}}.$$

The local version of this operator, namely the operator

$$S_1 f(x) = \left(\sum_{n=-\infty}^0 |A_n f(x) - A_{n-1} f(x)|^2\right)^{\frac{1}{2}},$$

is of interest in ergodic theory and it has been extensively studied. In particular it has been proved, [6], that it is of weak type one-one, maps L^p into itself (p > 1) and L^{∞} into BMO. The operator S is obviously non-linear but it can be interpreted as the norm of a vector valued operator (see [15]).

Definition 3.2. Given a locally integrable function f we define the sequence valued operator U as follows

$$\begin{aligned} Uf(x) &= \{A_n f(x) - A_{n-1} f(x)\}_n \\ &= \left\{ \int_{\mathbb{R}} \frac{1}{2^n} \chi_{(-2^n,0)}(x-y) f(y) dy - \int_{\mathbb{R}} \frac{1}{2^{n-1}} \chi_{(-2^{n-1},0)}(x-y) f(y) dy \right\}_n \\ &= \left\{ \int_{\mathbb{R}} \left(\frac{1}{2^n} \chi_{(-2^n,0)}(x-y) - \frac{1}{2^{n-1}} \chi_{(-2^{n-1},0)}(x-y) \right) f(y) dy \right\}_n \\ &= \int_{\mathbb{R}} K(x-y) f(y) dy, \end{aligned}$$

where K is the sequence valued function

$$K(x) = \{K_n(x)\}_n = \left\{\frac{1}{2^n}\chi_{(-2^n,0)}(x) - \frac{1}{2^{n-1}}\chi_{(-2^{n-1},0)}(x)\right\}_n.$$

Observe that $||Uf(x)||_{\ell^2} = Sf(x)$. It is proved in [15] that the kernel satisfies the following condition:

Smoothness Condition. Assume

$$x_0 \in \mathbb{R}, \ x_0 < x < x_0 + 2^i, \ x_0 + 2^j < y \le x_0 + 2^{j+1},$$

where i < j and $i, j \in \mathbb{Z}$. Let K be the vector valued kernel that appears in Definition 3.2. Then

(3.3)
$$K_n(x-y) - K_n(x_0-y) = \begin{cases} 0, & \text{if } n \notin \{j, j+1\}; \\ \frac{1}{2^j}\chi_{(x_0+2^j, x+2^j)}(y), & \text{if } n \in \{j, j+1\}. \end{cases}$$

It follows from this lemma that the kernel does not satisfy H_{∞} . Indeed, take $x_0 = 0$, $0 < x < 2^i$ and $R = 2^i$, then for any $m \in \mathbb{N}$

$$2^{m}2^{i} \sup_{2^{m+i} < y \le 2^{m+i+1}} \|K(x-y) - K(-y)\|_{\ell^{2}} = C$$

and H_{∞} fails. The following lemma tells us that our kernel satisfies something better that just being in the intersection of all the H_r , $r \ge 1$.

Lemma 3.4. The kernel K satisfies the L^A -Hörmander condition with $A(t) \approx \exp(t^{\frac{1}{1+\epsilon}})$, $\epsilon > 0$.

Proof. Let us fix x. Observe that since the support of K is contained in $(-\infty, 0)$, we may assume x > 0. We will assume that R is of the form $R = 2^i$ for some integer i and the general case will follow. Let R > |x|. Then $R = 2^i > x > 0$. Let $I_m = (0, 2^{m+i+1})$. Then

$$\left\| \| (K(x-\cdot) - K(-\cdot)) \|_{\ell^2} \chi_{\{2^{m+i} < |y| \le 2^{m+i+1}\}}(\cdot) \right\|_{A, I_m} = \frac{\sqrt{2}}{2^{m+i}} \| \chi_{(2^{m+i}, x+2^{m+i})} \|_{A, I_m}.$$

An easy computation gives

$$\|\chi_{(2^{m+i},x+2^{m+i})}\|_{A,I_m} = \frac{1}{A^{-1}(\frac{2^{m+i+1}}{x})} \le \frac{C}{A^{-1}(2^{m+1})}.$$

Therefore,

$$\sum_{m=1}^{\infty} (2^m R) \| \| (K(x-\cdot) - K(-\cdot)) \|_{\ell^2} \chi_{\{2^m R < |y| \le 2^{m+1} R\}}(\cdot) \|_{A,B(0,2^{m+1}R)}$$
$$\leq C \sum_{m=1}^{\infty} \frac{1}{(m+1)^{1+\epsilon}} < \infty. \qquad \Box$$

Remark 3.5. Since the square function Sf is a one-sided operator we may apply theorem (2.6) to get that for any p > 0 and any A^+_{∞} weight w, there exists a constant C such that

$$\int (Sf(x))^p w(x) \, dx \le C \int ((M^+)^3 f(x))^p w(x) \, dx,$$

whenever the left hand side is finite.

Proof. We just observe that $\overline{A}(t) = t(1 + \log^+(t))^{1+\epsilon}$ which for ϵ small is dominated by $B(t) = t(1 + \log^+(t))^2$ and $M_B^+ f$ is pointwise equivalent to $(M^+)^3 f$.

Since the one sided Hardy-Littlewood maximal operator is bounded form $L^p(w)$ to itself, and $A_p^+ \subset A_{\infty}^+$ we obtain a different proof of the boundedness of S from $L^p(w)$ to itself, whenever $w \in A_p^+$ ([15]). **Theorem 3.6.** There is a vector valued operator T whose kernel K is in $\cap H_r \setminus H_\infty$ but nevertheless the operator satisfies (0.2).

Proof. Just consider the operator T defined as $Tf(x) = ||Uf(x)||_{\ell^{\infty}}$. The argument given for the square function proves that the kernel K with the ℓ^{∞} norm does not satisfy H_{∞} . But the operator corresponding to this norm is dominated by $2M^+f(x)$ and (0.2) holds trivially (even if the weight w does not satisfy A_{∞}).

We finish by proving that for any Young function A, there exists a kernel K belonging to H_A . (This example is in the spirit of [7] and was suggested to us by C. Pérez.)

Theorem 3.7. Let A be any Young function. For $\beta > 0$ we consider the function $k_A(t) = A^{-1} \left(\frac{1}{t} (\log \frac{e}{t})^{-(1+\beta)}\right) \chi_{(0,1)}(t)$. The kernel K_A defined by $K_A(t) = k_A(t-4)$ belongs to H_A .

Proof. It is an argument similar to the one in [7]. We will prove first that $k_A \in L^1 \cap L^A$. To see that $k_A \in L^A$ we just need to find c > 0, such that

$$\int_{\mathbb{R}} A\left(\frac{k_A(t)}{c}\right) \, dt < \infty.$$

An easy computation gives

$$\int_{\mathbb{R}} A(k_A(t)) \, dt = \int_0^1 \frac{1}{t} (\log(\frac{e}{t}))^{-(1+\beta)} = \frac{1}{\beta} < \infty,$$

while Jensen's inequality yields

$$\int_0^1 k_A(t) \le A^{-1}\left(\int_0^1 \frac{1}{t} (\log \frac{e}{t})^{-(1+\beta)} dt\right) = A^{-1}(\frac{1}{\beta}).$$

We define the operator $Tf(x) = K_A * f(x)$. Since K_A is just a translation of k_A , it belongs to L^1 and then $||Tf||_q \le C ||f||_q$ for any $1 \le q$. We need to prove that K_A satisfies

$$\sum_{m=1}^{\infty} (2^m R) || (K_A(x-\cdot) - K(-\cdot)) \chi_{\{2^m R < |y| \le 2^{m+1} R\}}(\cdot) ||_{A,B(0,2^{m+1} R)} \le C_A \cdot C$$

whenever $R > c_A |x|$. We just sketch the proof. We take $c_A = 1$ and |x| < R. For $m \ge 1$ and $2^m R < |y| \le 2^{m+1}R$, one has $2^{m-1}R < |y-x| \le 2^{m+2}R$ and, trivially, $2^{m-1}R < |y| \le 2^{m+2}R$. Now

$$\begin{aligned} ||(K_A(x-\cdot)-K_A(-\cdot))\chi_{\{2^mR<|y|\leq 2^{m+1}R\}}(\cdot)||_{A,B(0,2^{m+1}R)} \\ &\leq C||K_A\chi_{\{2^{m-1}R<|y|\leq 2^{m+2}R\}}(\cdot)||_{A,B(0,2^{m+1}R)}. \end{aligned}$$

The kernel k_A has support on (0, 1). Therefore if R > 5 there is nothing to prove. If R < 5 and m_0 is the unique natural number so that $2^{m_0}R \le 5 < 2^{m_0+1}R$. Then, for any $m \ge m_0+2$ and $2^{m-1}R < |y+4| < 2^{m+2}R$, it follows that |y| > 1 and $k_A(y) = 0$. We need only to estimate

$$S = \sum_{m=1}^{m_0+1} 2^m R || K_A \chi_{\{2^{m-1}R < |y| \le 2^{m+2}R\}}(\cdot) ||_{A,B(0,2^{m+1}R)}.$$

But, for each m, we have

$$||K_A \chi_{\{2^{m-1}R < |y| \le 2^{m+2}R\}}(\cdot)||_{A,B(0,2^{m+1}R)} \le 1 + \frac{1}{2^{m+1}R} \int_{2^{m-1}R < |y+4| \le 2^{m+2}R} A(K_A(y)) \, dy.$$

Since the domains of integration are almost disjoint we can add and get

$$S \le C2^{m_0}R + C \int A(K_A(y)) \, dy \le C\left(5 + \frac{1}{\beta}\right). \qquad \Box$$

References

- H. Aimar, L. Forzani and F. J. Martín-Reyes, On weighted inequalities for one-sided singular integrals, Proc. Amer. Math. Soc. 125 (1997), 2057-2064.
- [2] J. Alvarez and C. Pérez, Estimates with A_{∞} weights for various singular integral operators, Boll. Un. Mat. Ital. A 8 (7), (1994), 123-133.
- [3] C. Bennett and R. Sharpley, *Interpolation of Operators*, Academic Press, New York (1998).
- [4] R. Coifman, Distribution function inequalities for singular integrals, Proc. Acad. Sci. U.S.A. 69, (1972), 2838-2839.
- [5] J. García- Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North Holland Mathematics Studies 116, (1985).
- [6] R. Jones, R. Kaufman, J. M. Rosenblatt, and M. Wierld, Oscillation in ergodic theory, Ergodic Theory Dynam. Systems. 18 (4), (1998), 889-935.
- [7] J.M. Martell, C. Pérez, and R. Trujillo-González, Lack of natural weighted estimates for some singular integral operators, Trans. Amer. Math. Soc. 357 (1), (2005), 385-396 (electronic).
- [8] F.J. Martín-Reyes, P. Ortega and A. de la Torre, Weighted inequalities for one-sided maximal functions, Trans. Amer. Math. Soc. 319 (2), (1990), 517-534.
- [9] F.J. Martín-Reyes, L. Pick and A. de la Torre, A^+_{∞} condition, Canad. J. Math. 45 (1993), 1231-1244.
- [10] F.J. Martín-Reyes and A. de la Torre, One Sided BMO Spaces, J. London Math. Soc. 2 (49) (1994), 529-542.
- [11] M.S. Riveros, L. de Rosa, and A. de la Torre, Sufficient Conditions for one-sided Operators. J. Fourier Anal. Appl. 6, (2000) 607-621.
- [12] M.S. Riveros and A. de la Torre, On the best ranges for A_p^+ and RH_r^+ , Czechoslovak Math. J. **51** (126), (2001), 285-301.

- [13] J.L. Rubio de Francia, F.J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for vectorvalued functions, Adv. in Math. 62, (1986) 7-48.
- [14] E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297 (1986), 53-61.
- [15] A. de la Torre and J.L. Torrea, One-sided discrete square function, Studia Math. 156 (3), (2003), 243-260.