Weighted Estimates for Singular Integral Operators Satisfying Hörmander's conditions of Young Type

M. Lorente, *
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
e-mail: lorente@anamat.cie.uma.es
M. S. Riveros, ${ }^{\dagger}$
FaMAF
Universidad Nacional de Córdoba
CIEM (CONICET).
(5000) Córdoba, Argentina
e-mail: sriveros@mate.uncor.edu
A. de la Torre ${ }^{\ddagger}$
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
e-mail: torre@anamat.cie.uma.es

28th June 2005

[^0]
1. INTRODUCTION

Let T be a singular integral operator of the type

$$
T f(x)=p \cdot v \cdot \int_{\mathbb{R}^{n}} K(x-y) f(y) d y
$$

where the kernel K has bounded Fourier transform, and let $M f$ be the Hardy-Littlewood maximal function. A classical result of Coifman [4] states that if the kernel satisfies the following Lipschitz condition: there are numbers $\alpha>0$ and $C>0$ such that

$$
\begin{equation*}
|K(x-y)-K(-y)| \leq C \frac{|x|^{\alpha}}{|y|^{\alpha+n}}, \text { whenever }|y|>2|x| \tag{0.1}
\end{equation*}
$$

then, for any $0<p<\infty$ and any $w \in A_{\infty}$, there exists a constant C such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|T f(x)|^{p} w(x) d x \leq C \int_{\mathbb{R}^{n}}(M f(x))^{p} w(x) d x \tag{0.2}
\end{equation*}
$$

for every f such that the left-hand side is finite. Recently, Martell, Pérez and Trujillo [7] have proved that (0.2) fails if instead of condition (0.1) we assume that K satisfies the weaker Hörmander condition

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{n}} \int_{|y|>2|x|}|K(x-y)-K(-y)| d y<\infty . \tag{0.3}
\end{equation*}
$$

Actually they prove that (0.2) fails even if the kernel K satisfies certain intermediate conditions between (0.1) and (0.3). These conditions are the L^{r}-Hörmander conditions defined as follows:

Definition 0.4. Let $1 \leq r \leq \infty$, we say that the kernel K satisfies the L^{r}-Hörmander condition, if there are numbers $c_{r}>1$ and $C_{r}>0$ such that for any $x \in \mathbb{R}^{n}$ and $R>c_{r}|x|$

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left(2^{m} R\right)^{n}\left(\frac{1}{\left(2^{m} R\right)^{n}} \int_{2^{m} R<|y| \leq 2^{m+1} R}|K(x-y)-K(-y)|^{r} d y\right)^{\frac{1}{r}} \leq C_{r}, \tag{0.5}
\end{equation*}
$$

if $r<\infty$, and

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left(2^{m} R\right)^{n} \sup _{2^{m} R<|y| \leq 2^{m+1} R}|K(x-y)-K(-y)| \leq C_{\infty} \tag{0.6}
\end{equation*}
$$

in the case $r=\infty$.

We will denote by H_{r} the class of kernels satisfying the L^{r}-Hörmander condition.

Observe that these classes are nested, namely

$$
H_{\infty} \subset H_{r} \subset H_{s} \subset H_{1}, \quad 1<s<r
$$

and that H_{1} is the class of kernels satisfying the Hörmander condition (0.3). For these classes some weighted estimates are known. See [13] and [2].
Theorem. Let $1<r \leq \infty$. Assume that the operator T is bounded in some $L^{p}, 1<p<\infty$, and the kernel K belongs to H_{r}, then for any $0<p<\infty$ and $w \in A_{\infty}$ there is a constant C such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|T f(x)|^{p} w(x) d x \leq C \int_{\mathbb{R}^{n}}\left(M_{r^{\prime}} f(x)\right)^{p} w(x) d x \tag{0.7}
\end{equation*}
$$

whenever the left hand side is finite.
We recall that for any $1 \leq t$, the maximal operator M_{t} is defined as $M_{t} f(x)=\left(M|f|^{t}(x)\right)^{\frac{1}{t}} \geq$ $M f(x)$. In [7] it is proved that this theorem is sharp in the following sense:

Theorem. Let $1 \leq r<\infty$ and $1 \leq t<r^{\prime}$. There exists a singular integral operator T, bounded in some $L^{p}, 1<p<\infty$, and whose kernel is in H_{r}, for which the following inequality does not hold:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|T f(x)|^{p} w(x) d x \leq C \int_{\mathbb{R}^{n}}\left(M_{t} f(x)\right)^{p} w(x) d x \tag{0.8}
\end{equation*}
$$

for any function f for which the left hand side is finite, where $0<p<\infty, w \in A_{\infty}$.
A natural question, left open by this result, is the following:
What happens between H_{∞} and the intersection of the $H_{r}, 1 \leq r<\infty$?
More precisely: Are there kernels which belong to H_{r} for every finite r but do not belong to H_{∞} ?

For such kernels, if there are any, the best known result is that the following inequality holds

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|T f(x)|^{p} w(x) d x \leq C \int_{\mathbb{R}^{n}}\left(M_{t} f(x)\right)^{p} w(x) d x \tag{0.9}
\end{equation*}
$$

for any $1<t$. Since those kernels do not belong to H_{∞} we can not assert that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|T f(x)|^{p} w(x) d x \leq C \int_{\mathbb{R}^{n}}(M f(x))^{p} w(x) d x \tag{0.10}
\end{equation*}
$$

This, however, does not exclude that these operators could satisfy an inequality of the type

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|T f(x)|^{p} w(x) d x \leq C \int_{\mathbb{R}^{n}}\left(M_{A} f(x)\right)^{p} w(x) d x \tag{0.11}
\end{equation*}
$$

where M_{A} is some maximal operator such that $M f(x) \leq M_{A} f(x) \leq M_{t} f(x)$ for any function f and any $1<t$.

In this note we give a positive answer to these questions.
In order to state our results we need to remind some definitions. A function $B:[0, \infty) \rightarrow$ $[0, \infty)$ is a Young function if it is continuous, convex, increasing and satisfies $B(0)=0$ and $B(t) \rightarrow \infty$ as $t \rightarrow \infty$. The Luxemburg norm of a function f, induced by B, is

$$
\|f\|_{B}=\inf \left\{\lambda>0: \int B\left(\frac{|f|}{\lambda}\right) \leq 1\right\}
$$

and the B-average of f over a cube, (or a ball) Q is

$$
\|f\|_{B, Q}=\inf \left\{\lambda>0: \frac{1}{|Q|} \int_{Q} B\left(\frac{|f|}{\lambda}\right) \leq 1\right\} .
$$

We will denote by \bar{B} the complementary function associated to B (see [3]). Then the generalized Hölder's inequality

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q}|f g| \leq\|f\|_{B, Q}\|g\|_{\bar{B}, Q} \tag{0.12}
\end{equation*}
$$

holds.
The behaviour of $B(t)$ for $t \leq t_{0}$ does not affect the value of $\|f\|_{B, Q}$. Therefore, if $A(t) \approx B(t)$ for $t \geq t_{0}$, then $\|f\|_{A, Q} \approx\|f\|_{B, Q}$. This means that we will not be concerned about the value of the Young functions for t small.

Definition 0.13. For each locally integrable function f, the maximal operator associated to the Young function B is defined by

$$
M_{B} f(x)=\sup _{x \in Q}\|f\|_{B, Q}
$$

where the sup is taken over all the cubes, or balls, that contain x.
We will be using the following Young functions: $B(t)=t^{r}, B(t)=e^{t^{1 / k}}-1, B(t)=$ $t\left(1+\log ^{+}(t)\right)^{k}$. The maximal operators associated to these functions are $M_{r}, M_{\exp L^{1 / k}}$ and $M_{L\left(1+\log ^{+} L\right)^{k}}$. If $k \geq 0, k \in \mathbb{Z}$, then $M_{L\left(1+\log ^{+} L\right)^{k}}$ is pointwise equivalent to M^{k+1}, where M^{k} is the k-times iterated of M (see[11]). It is also known that

$$
M f(x) \leq C M_{L\left(1+\log ^{+} L\right)^{k}} f(x) \leq C M_{r} f(x),
$$

for all $k>0$ and $r>1$.
Definition 0.14. Let A be a Young function. We say that the kernel K satisfies the $L^{A_{-}}$ Hörmander condition, if there are numbers $c_{A}>1$ and $C_{A}>0$ such that for any x and $R>c_{A}|x|$,

$$
\sum_{m=1}^{\infty}\left(2^{m} R\right)^{n}\left\|(K(x-\cdot)-K(-\cdot)) \chi_{\left\{2^{m} R<|y| \leq 2^{m+1} R\right\}}(\cdot)\right\|_{A, B\left(0,2^{m+1} R\right)} \leq C_{A}
$$

We will denote by H_{A} the class of all kernels satisfying this condition. The main results on this paper are:

THEOREM A. Assume that T is a singular integral operator, bounded in some $L^{p}, 1<$ $p<\infty$, whose kernel K belongs to H_{A}. Then, for any $0<p<\infty$ and $w \in A_{\infty}$, there exists C such that

$$
\int_{\mathbb{R}^{n}}|T f|^{p} w \leq C \int_{\mathbb{R}^{n}}\left(M_{\bar{A}} f\right)^{p} w
$$

for any $f \in C^{\infty}$ with compact support.
Similar results can be proved for vector valued operators or one-sided operators.
THEOREM B. There is a vector valued, one-sided operator S bounded in all $L^{p}, 1<p<$ ∞, whose kernel K belongs to H_{r} for every finite $r \geq 1$ but does not belong to H_{∞}. It does satisfy the L^{A}-Hörmander condition with $A(t)=\exp \left(t^{\frac{1}{1+\epsilon}}\right)-1,(\epsilon>0)$.

As a corollary we obtain that for this operator the inequality

$$
\begin{equation*}
\int_{\mathbb{R}}|S f(x)|^{p} w(x) d x \leq C \int_{\mathbb{R}}\left(M_{t} f(x)\right)^{p} w(x) d x, \quad \text { any } t>1,0<p<\infty, w \in A_{\infty} \tag{0.15}
\end{equation*}
$$

may be improved to

$$
\begin{equation*}
\int_{\mathbb{R}}|S f(x)|^{p} w(x) d x \leq C \int_{\mathbb{R}}\left(\left(M^{+}\right)^{3} f(x)\right)^{p} w(x) d x \tag{0.16}
\end{equation*}
$$

where $\left(M^{+}\right)^{3}$ is the one-sided Hardy-Littlewood maximal operator iterated three times and w is a weight in the A_{∞}^{+}class.
Remark 0.17. We do not know if our operator satisfies (0.2). It is an open question if (0.2) holds for an operator whose kernel is in $\cap H_{r} \backslash H_{\infty}$.

Remark 0.18. As a by-product of the analysis developed for the study of the example of Theorem B we give an easy example of an operator whose kernel is not in H_{∞} but satisfies (0.2).

The organization of the paper is as follows. In Section 1 we give the proof of Theorem A and state, without proof, the corresponding version for the vector valued case. Since our example for Theorem B is a vector valued operator with kernel supported on $(-\infty, 0)$, we dedicate Section 2 to the proof of the one-sided version of Theorem A. Finally in Section 3 we give an example of an operator whose kernel belongs to $\cap H_{r} \backslash H_{\infty}$.

1 Proof of theorem A

The sharp maximal function is defined as

$$
\begin{equation*}
M^{\#} f(x)=\sup _{x \in Q} \inf _{a \in \mathbb{R}} \frac{1}{|Q|} \int_{Q}|f(y)-a| d y \tag{1.1}
\end{equation*}
$$

Although this operator is dominated pointwise by a multiple of the Hardy- Littlewood maximal function, there is a theorem that states some kind of reverse inequality. See ([5]).

Theorem. For any $0<p<\infty$ and $w \in A_{\infty}$ there exists C such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}(M f(x))^{p} w(x) d x \leq C \int_{\mathbb{R}^{n}}\left(M^{\#} f(x)\right)^{p} w(x) d x \tag{1.2}
\end{equation*}
$$

whenever the left hand side is finite.
Since it is easy to see that $\int\left(M|T f|^{\delta}(x)\right)^{\frac{p}{\delta}} w(x) d x$ is finite whenever f is a C^{∞}-function with compact support, $0<\delta<1$, and $w \in A_{\infty}$, it follows from the preceding theorem and from the inequality

$$
|T f(x)| \leq\left(M|T f|^{\delta}(x)\right)^{\frac{1}{\delta}},
$$

that, in order to prove Theorem A, it is enough to prove
Theorem 1.3. Let T be a singular integral operator, bounded in some $L^{p}, 1<p<\infty$, whose kernel K satisfies the L^{A}-Hörmander condition. Then, for any $0<\delta<1$, there is a constant C_{δ} such that for any f and x,

$$
\begin{equation*}
\left(M^{\#}|T f|^{\delta}(x)\right)^{\frac{1}{\delta}} \leq C_{\delta} M_{\bar{A}} f(x) \tag{1.4}
\end{equation*}
$$

Proof. It follows from (0.12) that for any Young function $A, H_{A} \subset H_{1}$ and therefore T is of weak type $(1,1)$. It also follows that $M f(x) \leq C M_{A} f(x)$ for any f and x.

Let x_{0} be fixed and let Q be any cube containing x_{0}. We will denote by $d(Q)$ its diameter. Let \tilde{Q} be a cube concentric with Q with side equal to $5 c_{A}$ times the side of Q. If $y \notin \tilde{Q}$ then $\left|y-x_{0}\right|>2 c_{A} d(Q)$. We split f in the form $f=f_{1}+f_{2}$ where $f_{1}=f \chi_{\tilde{Q}}$. It will be enough to prove

$$
\begin{equation*}
\left(\left.\left.\frac{1}{|Q|} \int_{Q}| | T f(x)\right|^{\delta}-\left|T f_{2}\left(x_{0}\right)\right|^{\delta} \right\rvert\, d x\right)^{\frac{1}{\delta}} \leq C M_{\bar{A}} f\left(x_{0}\right) \tag{1.5}
\end{equation*}
$$

In order to prove this inequality it is enough to prove:

$$
\begin{equation*}
\frac{1}{|Q|} \int_{Q}\left|T f_{1}(x)\right|^{\delta} d x \leq C\left(M f\left(x_{0}\right)\right)^{\delta} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left.\frac{1}{|Q|} \int_{Q}| | T f_{2}(x)\right|^{\delta}-\left|T f_{2}\left(x_{0}\right)\right|^{\delta} \right\rvert\, d x \leq C\left(M_{\bar{A}} f\left(x_{0}\right)\right)^{\delta} \tag{1.7}
\end{equation*}
$$

For (1.6) we use that our operator T is of weak type $(1,1)$ and Kolmogorov's inequality.

$$
\begin{aligned}
\frac{1}{|Q|} \int_{Q}\left|T f_{1}(x)\right|^{\delta} d x & \leq C_{\delta}\left(\frac{1}{|Q|} \int_{\mathbb{R}^{n}}\left|f_{1}(x)\right| d x\right)^{\delta} \\
& =C_{\delta}\left(\frac{1}{|Q|} \int_{\tilde{Q}}|f(x)| d x\right)^{\delta} \leq C_{n, \delta}\left(M f\left(x_{0}\right)\right)^{\delta}
\end{aligned}
$$

To prove (1.7) we need to use the fact that our kernel satisfies H_{A}. From

$$
\left|\left|T f_{2}(x)\right|^{\delta}-\left|T f_{2}\left(x_{0}\right)\right|^{\delta}\right| \leq\left|T f_{2}(x)-T f_{2}\left(x_{0}\right)\right|^{\delta}
$$

it follows that is enough to estimate $\left|T f_{2}(x)-T f_{2}\left(x_{0}\right)\right|^{\delta}$.
If $x \in Q$ and $R=c_{A} d(Q)>c_{A}\left|x-x_{0}\right|$, we have

$$
\begin{aligned}
\left|T f_{2}(x)-T f_{2}\left(x_{0}\right)\right| & =\left|\int_{y \notin \tilde{Q}}\left(K(x-y)-K\left(x_{0}-y\right)\right) f(y) d y\right| \\
& \leq \int_{\left|y-x_{0}\right|>2 R}\left|K(x-y)-K\left(x_{0}-y\right)\right||f(y)| d y \\
& =\sum_{m=1}^{\infty} \int_{2^{m} R<\left|y-x_{0}\right| \leq 2^{m+1} R}\left|K(x-y)-K\left(x_{0}-y\right)\right||f(y)| d y .
\end{aligned}
$$

If we use Hölder's inequality (0.12), we may dominate the last term by

$$
\begin{gathered}
\sum_{m=1}^{\infty}\left(2^{m} R\right)^{n}\left\|\left(K(x-\cdot)-K\left(x_{0}-\cdot\right)\right) \chi_{\left\{2^{m} R<\left|y-x_{0}\right| \leq 2^{m+1} R\right\}}(\cdot)\right\|_{A, B\left(x_{0}, 2^{m+1} R\right)} M_{\bar{A}} f\left(x_{0}\right) \\
\leq C M_{\bar{A}} f\left(x_{0}\right)
\end{gathered}
$$

Hence

$$
\left|T f_{2}(x)-T f_{2}\left(x_{0}\right)\right|^{\delta} \leq C\left(M_{\bar{A}} f\left(x_{0}\right)\right)^{\delta}
$$

and (1.7) follows.
The theorem can be extended to vector valued operators $T f(x)=p . v . \int K(x-y) f(y) d y$, where now K takes values in a Banach space X.

Definition 1.8. We say that the kernel K, satisfies the L^{A}-Hörmander condition if there are numbers $c_{A}>1$ and $C_{A}>0$ such that for any x and $R>c_{A}|x|$,

$$
\sum_{m=1}^{\infty}\left(2^{m} R\right)^{n}\| \|(K(x-\cdot)-K(-\cdot))\left\|_{X} \chi_{\left\{2^{m} R<|y| \leq 2^{m+1} R\right\}}(\cdot)\right\|_{A, B\left(0,2^{m+1} R\right)} \leq C_{A}
$$

The theorem, whose proof we leave to the reader, is
Theorem 1.9. Let K be a vector valued kernel, that satisfies the L^{A}-Hörmander condition and let $T f$ be the associated singular integral. If T is a bounded operator in some L^{p}, $1 \leq p<\infty$, then, for all $0<p<\infty$ and $w \in A_{\infty}$,

$$
\int_{\mathbb{R}^{n}}\|T f\|_{X}^{p} w \leq C \int_{\mathbb{R}^{n}}\left(M_{\bar{A}} f\right)^{p} w
$$

whenever the left hand side is finite.

2 The one-sided case

In dimension one, there are examples of singular integrals, both real valued, [1], and vector valued, [15], whose kernels are supported in $(-\infty, 0)$. These one-sided singular integrals are particular cases of singular integrals, and thus Theorem A holds for them. But it seems natural to ask if one can do better using the fact that the kernel is supported on $(-\infty, 0)$. More precisely:

Can we improve the inequality

$$
\int_{\mathbb{R}}|T f|^{p} w \leq C \int_{\mathbb{R}}\left(M_{\bar{A}} f\right)^{p} w,
$$

allowing, perhaps an operator smaller than $M_{\bar{A}} f$, or a wider class of weights?
The answer is yes on both accounts. We can substitute $M_{\bar{A}} f$ by the corresponding onesided operator and allow w to be any weight in the class A_{∞}^{+}which is bigger than A_{∞}. (Any increasing function is in A_{∞}^{+}).

The one-sided weights are relevant to the study of the one-sided Hardy-Littlewood maximal operators:

Definition 2.1. The one-sided Hardy-Littlewood maximal operators M^{+}and M^{-}are defined for locally integrable functions f by

$$
M^{+} f(x)=\sup _{h>0} \frac{1}{h} \int_{x}^{x+h}|f| \quad \text { and } \quad M^{-} f(x)=\sup _{h>0} \frac{1}{h} \int_{x-h}^{x}|f| .
$$

The A_{p}^{+}classes were introduced by E. Sawyer [14] in the study of the weights for these operators.

He proved the following.
Theorem. If $p>1$ the inequality $\int_{\mathbb{R}} M^{+} f(x)^{p} w(x) d x \leq C \int_{\mathbb{R}}|f(x)|^{p} w(x) d x$ holds for all $f \in L^{p}(w)$ if, and only if, w satisfies the following condition:
$\left(A_{p}^{+}\right)$: There exists C such that for any three points $a<b<c$,

$$
\begin{equation*}
\left(\int_{a}^{b} w\right)^{\frac{1}{p}}\left(\int_{b}^{c} w^{1-p^{\prime}}\right)^{\frac{1}{p^{\prime}}} \leq C(c-a) \quad\left(p+p^{\prime}=p p^{\prime}\right) \tag{2.2}
\end{equation*}
$$

The case $p=1$ was not considered in Sawyer's paper but it was proved in [8] that the weak type estimate for this operator holds, i.e.

$$
\int_{\left\{M^{+} f(x)>\lambda\right\}} w \leq \frac{C}{\lambda} \int|f(x)| w(x) d x
$$

if and only if:
$\left(A_{1}^{+}\right):$There exists C such that for almost every $x: \quad M^{-} w(x) \leq C w(x)$.

The class A_{∞}^{+}is defined as the union of all the A_{p}^{+}classes,

$$
A_{\infty}^{+}=\cup_{p \geq 1} A_{p}^{+}
$$

The classes A_{p}^{-}are defined in a similar way. It is interesting to note that $A_{p}=A_{p}^{+} \cap A_{p}^{-}$, $A_{p} \subsetneq A_{p}^{+}$and $A_{p} \subsetneq A_{p}^{-}$. (See [14], [8], [9] for more definitions and results.)

Definition 2.3. Let f be a locally integrable function. The one-sided sharp maximal function is defined by

$$
M^{+, \#} f(x)=\sup _{h>0} \frac{1}{h} \int_{x}^{x+h}\left(f(y)-\frac{1}{h} \int_{x+h}^{x+2 h} f\right)^{+} d y
$$

It is proved in [10] that

$$
\begin{align*}
M^{+, \#} f(x) & \leq \sup _{h>0} \inf _{a \in \mathbb{R}} \frac{1}{h} \int_{x}^{x+h}(f(y)-a)^{+} d y+\frac{1}{h} \int_{x+h}^{x+2 h}(a-f(y))^{+} d y \tag{2.4}\\
& \leq C\|f\|_{B M O} .
\end{align*}
$$

Here f^{+}denotes the positive part of f, i.e., $f^{+}(x)=\max \{f(x), 0\}$. (See [10] for other results and definitions.)

Definition 2.5. For each locally integrable function f, the one-sided maximal operators associated to the Young function B are defined by

$$
M_{B}^{+} f(x)=\sup _{x<b}\|f\|_{B,(x, b)} \quad \text { and } \quad M_{B}^{-} f(x)=\sup _{a<x}\|f\|_{B,(a, x)} .
$$

We shall also need the following maximal operators:

$$
M_{r}^{+} f(x)=\left(M^{+}|f|^{r}(x)\right)^{1 / r} \quad \text { and } \quad M_{\delta}^{+, \#} f(x)=\left(M^{+, \#}|f|^{\delta}(x)\right)^{1 / \delta}
$$

We can now state our result.
Theorem 2.6. Let K be a kernel, supported on $(-\infty, 0)$, possibly vector valued, that satisfies the L^{A}-Hörmander condition. Let $T f$ be the associated singular integral. If T is a bounded operator in some $L^{p}, 1 \leq p<\infty$, then, for any $0<p<\infty$ and $w \in A_{\infty}^{+}$there exists $C>0$ such that

$$
\int_{\mathbb{R}}|T f(x)|^{p} w(x) d x \leq C \int_{\mathbb{R}}\left(M_{\bar{A}}^{+} f(x)\right)^{p} w(x) d x
$$

for any $f \in C^{\infty}$ with compact support.
Proof. We will prove the scalar case, since the vector valued case is analogous. Our proof of theorem A was based on inequality (1.2). The one sided version of this theorem is the following ([10]):
Theorem. For any $0<p<\infty$ and $w \in A_{\infty}^{+}$there exists C such that

$$
\begin{equation*}
\int_{\mathbb{R}}\left|M^{+} f(x)\right|^{p} w(x) d x \leq C \int_{\mathbb{R}}\left(M^{+, \#} f(x)\right)^{p} w(x) d x \tag{2.7}
\end{equation*}
$$

whenever the left hand side is finite.

It follows from this theorem that it is enough to prove

$$
\left(M^{+, \#}|T f|^{\delta}(x)\right)^{\frac{1}{\delta}} \leq C_{\delta} M_{A}^{+} f(x)
$$

If we use (2.4) we get that

$$
\begin{aligned}
M^{+, \#} f(x) & \leq \sup _{h>0} \inf _{a \in \mathbb{R}} \frac{1}{h} \int_{x}^{x+h}|f(y)-a| d y+\frac{1}{h} \int_{x+h}^{x+2 h}|a-f(y)| d y \\
& \leq C \sup _{h>0} \inf _{a \in \mathbb{R}} \frac{1}{h} \int_{x}^{x+h}|f(y)-a| d y .
\end{aligned}
$$

Therefore, it is enough to prove that, for fixed x_{0}, there is, for every positive h, a real number a_{h}, that may depend on x_{0} and h, such that

$$
\begin{equation*}
\left(\left.\left.\frac{1}{h} \int_{x_{0}}^{x_{0}+h}| | T f(x)\right|^{\delta}-\left|a_{h}\right|^{\delta} \right\rvert\, d x\right)^{\frac{1}{\delta}} \leq C\left(M_{\frac{+}{A}}^{+} f\right)\left(x_{0}\right) . \tag{2.8}
\end{equation*}
$$

We define $f_{1}=f \chi_{\left(x_{0}, x_{0}+2 h\right)}, f_{2}=f \chi_{\left(x_{0}+2 h, \infty\right)}$ and choose $a_{h}=T f_{2}\left(x_{0}\right)$. We need to prove that,

$$
\begin{equation*}
\left(\left.\left.\frac{1}{h} \int_{x_{0}}^{x_{0}+h}| | T f(x)\right|^{\delta}-\left|T f_{2}\left(x_{0}\right)\right|^{\delta} \right\rvert\, d x\right)^{\frac{1}{\delta}} \leq C\left(M_{\frac{+}{A}}^{+} f\right)\left(x_{0}\right) \tag{2.9}
\end{equation*}
$$

Now we use the one-sided character of our operator to get that for $x \in\left(x_{0}, x_{0}+h\right), T f(x)=$ $T f_{1}(x)+T f_{2}(x)$ and follow the proof of (1.4). For f_{1}, Kolmogorov's inequality yields

$$
\frac{1}{h} \int_{x_{0}}^{x_{0}+h}\left|T f_{1}(x)\right|^{\delta} d x \leq C_{\delta}\left(\frac{1}{h} \int_{x_{0}}^{x_{0}+2 h}|f(x)|\right)^{\delta} d x \leq C_{\delta}\left(M^{+} f\left(x_{0}\right)\right)^{\delta} .
$$

For f_{2} we observe that for any $x \in\left(x_{0}, x_{0}+h\right)$, if $R=c_{A} h$, we have,

$$
\begin{aligned}
& \left|T f_{2}(x)-T f_{2}\left(x_{0}\right)\right|=\left|\int_{y>x_{0}+2 h}\left(K(x-y)-K\left(x_{0}-y\right)\right) f(y) d y\right| \\
& \quad \leq \sum_{m=1}^{\infty} \int_{2^{m} h<y-x_{0} \leq 2^{m+1} h}\left|K(x-y)-K\left(x_{0}-y\right)\right||f(y)| d y .
\end{aligned}
$$

If we use Hölder's inequality (0.12), we may dominate the last term by

$$
\begin{gathered}
\sum_{m=1}^{\infty}\left(2^{m} h\right)\left\|\left(K(x-\cdot)-K\left(x_{0}-\cdot\right)\right) \chi_{\left\{2^{m} h<y-x_{0} \leq 2^{m+1} h\right.}(\cdot)\right\|_{A,\left(x_{0}, x_{0}+2^{m+1} h\right)} M_{\frac{+}{A}} f\left(x_{0}\right) \\
\leq C M_{A}^{+} f\left(x_{0}\right) .
\end{gathered}
$$

3 Proof of theorem B

Let us now show an example of a one-sided operator whose kernel is in $\cap H_{r} \backslash H_{\infty}$. The example comes from ergodic theory.

Definition 3.1. Let f be a measurable function defined on \mathbb{R}. For each $n \in \mathbb{Z}$ we consider the average $A_{n} f(x)=\frac{1}{2^{n}} \int_{x}^{x+2^{n}} f$. The Square Function is defined as

$$
S f(x)=\left(\sum_{n=-\infty}^{\infty}\left|A_{n} f(x)-A_{n-1} f(x)\right|^{2}\right)^{\frac{1}{2}}
$$

The local version of this operator, namely the operator

$$
S_{1} f(x)=\left(\sum_{n=-\infty}^{0}\left|A_{n} f(x)-A_{n-1} f(x)\right|^{2}\right)^{\frac{1}{2}}
$$

is of interest in ergodic theory and it has been extensively studied. In particular it has been proved, [6], that it is of weak type one-one, maps L^{p} into itself $(p>1)$ and L^{∞} into $B M O$. The operator S is obviously non-linear but it can be interpreted as the norm of a vector valued operator (see [15]).

Definition 3.2. Given a locally integrable function f we define the sequence valued operator U as follows

$$
\begin{aligned}
U f(x) & =\left\{A_{n} f(x)-A_{n-1} f(x)\right\}_{n} \\
& =\left\{\int_{\mathbb{R}} \frac{1}{2^{n}} \chi_{\left(-2^{n}, 0\right)}(x-y) f(y) d y-\int_{\mathbb{R}} \frac{1}{2^{n-1}} \chi_{\left(-2^{n-1}, 0\right)}(x-y) f(y) d y\right\}_{n} \\
& =\left\{\int_{\mathbb{R}}\left(\frac{1}{2^{n}} \chi_{\left(-2^{n}, 0\right)}(x-y)-\frac{1}{2^{n-1}} \chi_{\left(-2^{n-1}, 0\right)}(x-y)\right) f(y) d y\right\}_{n} \\
& =\int_{\mathbb{R}} K(x-y) f(y) d y,
\end{aligned}
$$

where K is the sequence valued function

$$
K(x)=\left\{K_{n}(x)\right\}_{n}=\left\{\frac{1}{2^{n}} \chi_{\left(-2^{n}, 0\right)}(x)-\frac{1}{2^{n-1}} \chi_{\left(-2^{n-1}, 0\right)}(x)\right\}_{n}
$$

Observe that $\|U f(x)\|_{\ell^{2}}=S f(x)$. It is proved in [15] that the kernel satisfies the following condition:

Smoothness Condition. Assume

$$
x_{0} \in \mathbb{R}, x_{0}<x<x_{0}+2^{i}, x_{0}+2^{j}<y \leq x_{0}+2^{j+1}
$$

where $i<j$ and $i, j \in \mathbb{Z}$. Let K be the vector valued kernel that appears in Definition 3.2. Then

$$
K_{n}(x-y)-K_{n}\left(x_{0}-y\right)= \begin{cases}0, & \text { if } n \notin\{j, j+1\} \tag{3.3}\\ \frac{1}{2^{j}} \chi_{\left(x_{0}+2^{j}, x+2^{j}\right)}(y), & \text { if } n \in\{j, j+1\} .\end{cases}
$$

It follows from this lemma that the kernel does not satisfy H_{∞}. Indeed, take $x_{0}=0$, $0<x<2^{i}$ and $R=2^{i}$, then for any $m \in \mathbb{N}$

$$
2^{m} 2^{i} \sup _{2^{m+i}<y \leq 2^{m+i+1}}\|K(x-y)-K(-y)\|_{\ell^{2}}=C
$$

and H_{∞} fails. The following lemma tells us that our kernel satisfies something better that just being in the intersection of all the $H_{r}, r \geq 1$.
Lemma 3.4. The kernel K satisfies the L^{A}-Hörmander condition with $A(t) \approx \exp \left(t^{\frac{1}{1+\epsilon}}\right)$, $\epsilon>0$.

Proof. Let us fix x. Observe that since the support of K is contained in $(-\infty, 0)$, we may assume $x>0$. We will assume that R is of the form $R=2^{i}$ for some integer i and the general case will follow. Let $R>|x|$. Then $R=2^{i}>x>0$. Let $I_{m}=\left(0,2^{m+i+1}\right)$. Then

$$
\left\|\|(K(x-\cdot)-K(-\cdot))\|_{\ell^{2}} \chi_{\left\{2^{m+i}<|y| \leq 2^{m+i+1}\right\}}(\cdot)\right\|_{A, I_{m}}=\frac{\sqrt{2}}{2^{m+i}}\left\|\chi_{\left(2^{m+i}, x+2^{m+i}\right)}\right\|_{A, I_{m}} .
$$

An easy computation gives

$$
\left\|\chi_{\left(2^{m+i}, x+2^{m+i}\right)}\right\|_{A, I_{m}}=\frac{1}{A^{-1}\left(\frac{2^{m+i+1}}{x}\right)} \leq \frac{C}{A^{-1}\left(2^{m+1}\right)} .
$$

Therefore,

$$
\begin{gathered}
\sum_{m=1}^{\infty}\left(2^{m} R\right)\| \|(K(x-\cdot)-K(-\cdot))\left\|_{\ell^{2}} \chi_{\left\{2^{m} R<|y| \leq 2^{m+1} R\right\}}(\cdot)\right\|_{A, B\left(0,2^{m+1} R\right)} \\
\leq C \sum_{m=1}^{\infty} \frac{1}{(m+1)^{1+\epsilon}}<\infty
\end{gathered}
$$

Remark 3.5. Since the square function $S f$ is a one-sided operator we may apply theorem (2.6) to get that for any $p>0$ and any A_{∞}^{+}weight w, there exists a constant C such that

$$
\int(S f(x))^{p} w(x) d x \leq C \int\left(\left(M^{+}\right)^{3} f(x)\right)^{p} w(x) d x
$$

whenever the left hand side is finite.
Proof. We just observe that $\bar{A}(t)=t\left(1+\log ^{+}(t)\right)^{1+\epsilon}$ which for ϵ small is dominated by $B(t)=t\left(1+\log ^{+}(t)\right)^{2}$ and $M_{B}^{+} f$ is pointwise equivalent to $\left(M^{+}\right)^{3} f$.

Since the one sided Hardy-Littlewood maximal operator is bounded form $L^{p}(w)$ to itself, and $A_{p}^{+} \subset A_{\infty}^{+}$we obtain a different proof of the boundedness of S from $L^{p}(w)$ to itself, whenever $w \in A_{p}^{+}([15])$.

Theorem 3.6. There is a vector valued operator T whose kernel K is in $\cap H_{r} \backslash H_{\infty}$ but nevertheless the operator satisfies (0.2).

Proof. Just consider the operator T defined as $T f(x)=\|U f(x)\|_{\ell \infty}$. The argument given for the square function proves that the kernel K with the ℓ^{∞} norm does not satisfy H_{∞}. But the operator corresponding to this norm is dominated by $2 M^{+} f(x)$ and (0.2) holds trivially (even if the weight w does not satisfy A_{∞}).

We finish by proving that for any Young function A, there exists a kernel K belonging to H_{A}. (This example is in the spirit of [7] and was suggested to us by C. Pérez.)

Theorem 3.7. Let A be any Young function. For $\beta>0$ we consider the function $k_{A}(t)=$ $A^{-1}\left(\frac{1}{t}\left(\log \frac{e}{t}\right)^{-(1+\beta)}\right) \chi_{(0,1)}(t)$. The kernel K_{A} defined by $K_{A}(t)=k_{A}(t-4)$ belongs to H_{A}.

Proof. It is an argument similar to the one in [7]. We will prove first that $k_{A} \in L^{1} \cap L^{A}$. To see that $k_{A} \in L^{A}$ we just need to find $c>0$, such that

$$
\int_{\mathbb{R}} A\left(\frac{k_{A}(t)}{c}\right) d t<\infty
$$

An easy computation gives

$$
\int_{\mathbb{R}} A\left(k_{A}(t)\right) d t=\int_{0}^{1} \frac{1}{t}\left(\log \left(\frac{e}{t}\right)\right)^{-(1+\beta)}=\frac{1}{\beta}<\infty
$$

while Jensen's inequality yields

$$
\int_{0}^{1} k_{A}(t) \leq A^{-1}\left(\int_{0}^{1} \frac{1}{t}\left(\log \frac{e}{t}\right)^{-(1+\beta)} d t\right)=A^{-1}\left(\frac{1}{\beta}\right) .
$$

We define the operator $T f(x)=K_{A} * f(x)$. Since K_{A} is just a translation of k_{A}, it belongs to L^{1} and then $\|T f\|_{q} \leq C\|f\|_{q}$ for any $1 \leq q$. We need to prove that K_{A} satisfies

$$
\sum_{m=1}^{\infty}\left(2^{m} R\right)\left\|\left(K_{A}(x-\cdot)-K(-\cdot)\right) \chi_{\left\{2^{m} R<|y| \leq 2^{m+1} R\right\}}(\cdot)\right\|_{A, B\left(0,2^{m+1} R\right)} \leq C_{A}
$$

whenever $R>c_{A}|x|$. We just sketch the proof. We take $c_{A}=1$ and $|x|<R$. For $m \geq 1$ and $2^{m} R<|y| \leq 2^{m+1} R$, one has $2^{m-1} R<|y-x| \leq 2^{m+2} R$ and, trivially, $2^{m-1} R<|y| \leq 2^{m+2} R$. Now

$$
\begin{aligned}
\|\left(K_{A}(x-\cdot)\right. & \left.-K_{A}(-\cdot)\right) \chi_{\left\{2^{m} R<|y| \leq 2^{m+1} R\right\}}(\cdot) \|_{A, B\left(0,2^{m+1} R\right)} \\
& \leq C| | K_{A} \chi_{\left\{2^{m-1} R<|y| \leq 2^{m+2} R\right\}}(\cdot) \|_{A, B\left(0,2^{m+1} R\right)}
\end{aligned}
$$

The kernel k_{A} has support on $(0,1)$. Therefore if $R>5$ there is nothing to prove. If $R<5$ and m_{0} is the unique natural number so that $2^{m_{0}} R \leq 5<2^{m_{0}+1} R$. Then, for any $m \geq m_{0}+2$ and $2^{m-1} R<|y+4|<2^{m+2} R$, it follows that $|y|>1$ and $k_{A}(y)=0$. We need only to estimate

$$
S=\sum_{m=1}^{m_{0}+1} 2^{m} R\left\|K_{A} \chi_{\left\{2^{m-1} R<|y| \leq 2^{m+2} R\right\}}(\cdot)\right\|_{A, B\left(0,2^{m+1} R\right)} .
$$

But, for each m, we have

$$
\left\|K_{A} \chi_{\left\{2^{m-1} R<|y| \leq 2^{m+2} R\right\}}(\cdot)\right\|_{A, B\left(0,2^{m+1} R\right)} \leq 1+\frac{1}{2^{m+1} R} \int_{2^{m-1} R<|y+4| \leq 2^{m+2} R} A\left(K_{A}(y)\right) d y .
$$

Since the domains of integration are almost disjoint we can add and get

$$
S \leq C 2^{m_{0}} R+C \int A\left(K_{A}(y)\right) d y \leq C\left(5+\frac{1}{\beta}\right)
$$

References

[1] H. Aimar, L. Forzani and F. J. Martín-Reyes, On weighted inequalities for one-sided singular integrals, Proc. Amer. Math. Soc. 125 (1997), 2057-2064.
[2] J. Álvarez and C. Pérez, Estimates with A_{∞} weights for various singular integral operators, Boll. Un. Mat. Ital. A 8 (7), (1994), 123-133.
[3] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York (1998).
[4] R. Coifman, Distribution function inequalities for singular integrals, Proc. Acad. Sci. U.S.A. 69, (1972), 2838-2839.
[5] J. García- Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North Holland Mathematics Studies 116, (1985).
[6] R. Jones, R. Kaufman, J. M. Rosenblatt, and M. Wierld, Oscillation in ergodic theory, Ergodic Theory Dynam. Systems. 18 (4), (1998), 889-935.
[7] J.M. Martell, C. Pérez, and R. Trujillo-González, Lack of natural weighted estimates for some singular integral operators, Trans. Amer. Math. Soc. 357 (1), (2005), 385-396 (electronic).
[8] F.J. Martín-Reyes, P. Ortega and A. de la Torre, Weighted inequalities for one-sided maximal functions, Trans. Amer. Math. Soc. 319 (2), (1990), 517-534.
[9] F.J. Martín-Reyes, L. Pick and A. de la Torre, A_{∞}^{+}condition, Canad. J. Math. 45 (1993), 1231-1244.
[10] F.J. Martín-Reyes and A. de la Torre, One Sided BMO Spaces, J. London Math. Soc. 2 (49) (1994), 529-542.
[11] M.S. Riveros, L. de Rosa, and A. de la Torre, Sufficient Conditions for one-sided Operators. J. Fourier Anal. Appl. 6, (2000) 607-621.
[12] M.S. Riveros and A. de la Torre, On the best ranges for A_{p}^{+}and $R H_{r}^{+}$, Czechoslovak Math. J. 51 (126), (2001), 285-301.
[13] J.L. Rubio de Francia, F.J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for vectorvalued functions, Adv. in Math. 62, (1986) 7-48.
[14] E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297 (1986), 53-61.
[15] A. de la Torre and J.L. Torrea, One-sided discrete square function, Studia Math. 156 (3), (2003), 243-260.

[^0]: *Supported by Ministerio de Ciencia y Tecnología BFM 2001-1638 and Junta de Andalucía.
 ${ }^{\dagger}$ Partially supported by CONICET, Agencia Córdoba Ciencias y SECYT-UNC.
 ${ }^{\ddagger}$ Supported by Ministerio de Ciencia y Tecnología BFM 2001-1638 and Junta de Andalucía.

