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1. INTRODUCTION

Let T be a singular integral operator of the type

Tf(x) = p.v.

∫
Rn

K(x− y)f(y) dy,

where the kernel K has bounded Fourier transform, and let Mf be the Hardy-Littlewood
maximal function. A classical result of Coifman [4] states that if the kernel satisfies the
following Lipschitz condition: there are numbers α > 0 and C > 0 such that

(0.1) |K(x− y)−K(−y)| ≤ C
|x|α

|y|α+n
, whenever |y| > 2|x|

then, for any 0 < p < ∞ and any w ∈ A∞, there exists a constant C such that

(0.2)

∫
Rn

|Tf(x)|pw(x) dx ≤ C

∫
Rn

(Mf(x))pw(x) dx,

for every f such that the left-hand side is finite. Recently, Martell, Pérez and Trujillo [7]
have proved that (0.2) fails if instead of condition (0.1) we assume that K satisfies the weaker
Hörmander condition

(0.3) sup
x∈Rn

∫
|y|>2|x|

|K(x− y)−K(−y)| dy < ∞.

Actually they prove that (0.2) fails even if the kernel K satisfies certain intermediate con-
ditions between (0.1) and (0.3). These conditions are the Lr-Hörmander conditions defined
as follows:

Definition 0.4. Let 1 ≤ r ≤ ∞, we say that the kernel K satisfies the Lr−Hörmander
condition, if there are numbers cr > 1 and Cr > 0 such that for any x ∈ Rn and R > cr|x|

(0.5)
∞∑

m=1

(2mR)n

(
1

(2mR)n

∫
2mR<|y|≤2m+1R

|K(x− y)−K(−y)|r dy

) 1
r

≤ Cr,

if r < ∞, and

(0.6)
∞∑

m=1

(2mR)n sup
2mR<|y|≤2m+1R

|K(x− y)−K(−y)| ≤ C∞,

in the case r = ∞.

We will denote by Hr the class of kernels satisfying the Lr−Hörmander condition.
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Observe that these classes are nested, namely

H∞ ⊂ Hr ⊂ Hs ⊂ H1, 1 < s < r

and that H1 is the class of kernels satisfying the Hörmander condition (0.3). For these classes
some weighted estimates are known. See [13] and [2].
Theorem. Let 1 < r ≤ ∞. Assume that the operator T is bounded in some Lp, 1 < p < ∞,
and the kernel K belongs to Hr, then for any 0 < p < ∞ and w ∈ A∞ there is a constant
C such that

(0.7)

∫
Rn

|Tf(x)|pw(x) dx ≤ C

∫
Rn

(Mr′f(x))p w(x) dx,

whenever the left hand side is finite.
We recall that for any 1 ≤ t, the maximal operator Mt is defined as Mtf(x) = (M |f |t(x))

1
t ≥

Mf(x). In [7] it is proved that this theorem is sharp in the following sense:

Theorem. Let 1 ≤ r < ∞ and 1 ≤ t < r′. There exists a singular integral operator
T, bounded in some Lp, 1 < p < ∞, and whose kernel is in Hr, for which the following
inequality does not hold:

(0.8)

∫
Rn

|Tf(x)|pw(x) dx ≤ C

∫
Rn

(Mtf(x))p w(x) dx,

for any function f for which the left hand side is finite, where 0 < p < ∞, w ∈ A∞.

A natural question, left open by this result, is the following:

What happens between H∞ and the intersection of the Hr, 1 ≤ r < ∞?
More precisely: Are there kernels which belong to Hr for every finite r but do not belong

to H∞?
For such kernels, if there are any, the best known result is that the following inequality

holds

(0.9)

∫
Rn

|Tf(x)|pw(x) dx ≤ C

∫
Rn

(Mtf(x))p w(x) dx,

for any 1 < t. Since those kernels do not belong to H∞ we can not assert that

(0.10)

∫
Rn

|Tf(x)|pw(x) dx ≤ C

∫
Rn

(Mf(x))p w(x) dx.

This, however, does not exclude that these operators could satisfy an inequality of the type

(0.11)

∫
Rn

|Tf(x)|pw(x) dx ≤ C

∫
Rn

(MAf(x))p w(x) dx

where MA is some maximal operator such that Mf(x) ≤ MAf(x) ≤ Mtf(x) for any function
f and any 1 < t.
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In this note we give a positive answer to these questions.

In order to state our results we need to remind some definitions. A function B : [0,∞) →
[0,∞) is a Young function if it is continuous, convex, increasing and satisfies B(0) = 0 and
B(t) →∞ as t →∞. The Luxemburg norm of a function f , induced by B, is

||f ||B = inf

{
λ > 0 :

∫
B

(
|f |
λ

)
≤ 1

}
,

and the B-average of f over a cube, (or a ball) Q is

||f ||B,Q = inf

{
λ > 0 :

1

|Q|

∫
Q

B

(
|f |
λ

)
≤ 1

}
.

We will denote by B the complementary function associated to B (see [3]). Then the
generalized Hölder’s inequality

(0.12)
1

|Q|

∫
Q

|f g| ≤ ||f ||B,Q||g||B,Q,

holds.
The behaviour of B(t) for t ≤ t0 does not affect the value of ||f ||B,Q. Therefore, if

A(t) ≈ B(t) for t ≥ t0, then ||f ||A,Q ≈ ||f ||B,Q. This means that we will not be concerned
about the value of the Young functions for t small.

Definition 0.13. For each locally integrable function f , the maximal operator associated to
the Young function B is defined by

MBf(x) = sup
x∈Q

‖f‖B,Q ,

where the sup is taken over all the cubes, or balls, that contain x.

We will be using the following Young functions: B(t) = tr, B(t) = et1/k − 1, B(t) =
t(1 + log+(t))k. The maximal operators associated to these functions are Mr, MexpL1/k and
ML(1+log+ L)k . If k ≥ 0, k ∈ Z, then ML(1+log+ L)k is pointwise equivalent to Mk+1, where Mk

is the k-times iterated of M (see[11]). It is also known that

Mf(x) ≤ CML(1+log+ L)kf(x) ≤ CMrf(x),

for all k > 0 and r > 1.

Definition 0.14. Let A be a Young function. We say that the kernel K satisfies the LA-
Hörmander condition, if there are numbers cA > 1 and CA > 0 such that for any x and
R > cA|x|,

∞∑
m=1

(2mR)n||(K(x− ·)−K(−·)) χ{2mR<|y|≤2m+1R}(·) ||A,B(0,2m+1R) ≤ CA.
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We will denote by HA the class of all kernels satisfying this condition.
The main results on this paper are:

THEOREM A. Assume that T is a singular integral operator, bounded in some Lp, 1 <
p < ∞, whose kernel K belongs to HA. Then, for any 0 < p < ∞ and w ∈ A∞, there exists
C such that ∫

Rn

|Tf |pw ≤ C

∫
Rn

(MAf)pw,

for any f ∈ C∞ with compact support.
Similar results can be proved for vector valued operators or one-sided operators.

THEOREM B. There is a vector valued, one-sided operator S bounded in all Lp, 1 < p <
∞, whose kernel K belongs to Hr for every finite r ≥ 1 but does not belong to H∞. It does

satisfy the LA-Hörmander condition with A(t) = exp (t
1

1+ε )− 1, (ε > 0).
As a corollary we obtain that for this operator the inequality

(0.15)

∫
R
|Sf(x)|pw(x) dx ≤ C

∫
R

(Mtf(x))p w(x) dx, any t > 1, 0 < p < ∞, w ∈ A∞

may be improved to

(0.16)

∫
R
|Sf(x)|pw(x) dx ≤ C

∫
R

(
(M+)3f(x)

)p
w(x) dx,

where (M+)3 is the one-sided Hardy-Littlewood maximal operator iterated three times and
w is a weight in the A+

∞ class.

Remark 0.17. We do not know if our operator satisfies (0.2). It is an open question if
(0.2) holds for an operator whose kernel is in ∩Hr \H∞.

Remark 0.18. As a by-product of the analysis developed for the study of the example of
Theorem B we give an easy example of an operator whose kernel is not in H∞ but satisfies
(0.2).

The organization of the paper is as follows. In Section 1 we give the proof of Theorem
A and state, without proof, the corresponding version for the vector valued case. Since our
example for Theorem B is a vector valued operator with kernel supported on (−∞, 0), we
dedicate Section 2 to the proof of the one-sided version of Theorem A. Finally in Section 3
we give an example of an operator whose kernel belongs to ∩Hr \H∞.

1 Proof of theorem A

The sharp maximal function is defined as

(1.1) M#f(x) = sup
x∈Q

inf
a∈R

1

|Q|

∫
Q

|f(y)− a| dy.
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Although this operator is dominated pointwise by a multiple of the Hardy- Littlewood max-
imal function, there is a theorem that states some kind of reverse inequality. See ([5]).

Theorem. For any 0 < p < ∞ and w ∈ A∞ there exists C such that

(1.2)

∫
Rn

(Mf(x))pw(x) dx ≤ C

∫
Rn

(M#f(x))pw(x) dx,

whenever the left hand side is finite.

Since it is easy to see that
∫ (

M |Tf |δ(x)
) p

δ w(x) dx is finite whenever f is a C∞−function
with compact support, 0 < δ < 1, and w ∈ A∞ , it follows from the preceding theorem and
from the inequality

|Tf(x)| ≤
(
M |Tf |δ(x)

) 1
δ ,

that, in order to prove Theorem A, it is enough to prove

Theorem 1.3. Let T be a singular integral operator, bounded in some Lp, 1 < p < ∞,
whose kernel K satisfies the LA-Hörmander condition. Then, for any 0 < δ < 1, there is a
constant Cδ such that for any f and x,

(1.4) (M#|Tf |δ(x))
1
δ ≤ CδMAf(x).

Proof. It follows from (0.12) that for any Young function A, HA ⊂ H1 and therefore T
is of weak type (1, 1). It also follows that Mf(x) ≤ CMAf(x) for any f and x.

Let x0 be fixed and let Q be any cube containing x0. We will denote by d(Q) its diameter.
Let Q̃ be a cube concentric with Q with side equal to 5cA times the side of Q. If y /∈ Q̃ then
|y − x0| > 2cAd(Q). We split f in the form f = f1 + f2 where f1 = fχQ̃. It will be enough
to prove

(1.5)

(
1

|Q|

∫
Q

∣∣|Tf(x)|δ − |Tf2(x0)|δ
∣∣ dx

) 1
δ

≤ CMAf(x0).

In order to prove this inequality it is enough to prove:

(1.6)
1

|Q|

∫
Q

|Tf1(x)|δ dx ≤ C(Mf(x0))
δ,

and

(1.7)
1

|Q|

∫
Q

∣∣|Tf2(x)|δ − |Tf2(x0)|δ
∣∣ dx ≤ C(MAf(x0))

δ.

For (1.6) we use that our operator T is of weak type (1, 1) and Kolmogorov’s inequality.

1

|Q|

∫
Q

|Tf1(x)|δ dx ≤ Cδ

(
1

|Q|

∫
Rn

|f1(x)| dx

)δ

= Cδ

(
1

|Q|

∫
Q̃

|f(x)| dx

)δ

≤ Cn,δ(Mf(x0))
δ.
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To prove (1.7) we need to use the fact that our kernel satisfies HA. From∣∣|Tf2(x)|δ − |Tf2(x0)|δ
∣∣ ≤ |Tf2(x)− Tf2(x0)|δ,

it follows that is enough to estimate |Tf2(x)− Tf2(x0)|δ.
If x ∈ Q and R = cAd(Q) > cA|x− x0|, we have

|Tf2(x)− Tf2(x0)| =
∣∣∣∣∫

y/∈Q̃

(K(x− y)−K(x0 − y)) f(y) dy

∣∣∣∣
≤
∫
|y−x0|>2R

|K(x− y)−K(x0 − y)||f(y)|dy

=
∞∑

m=1

∫
2mR<|y−x0|≤2m+1R

|K(x− y)−K(x0 − y)||f(y)|dy.

If we use Hölder’s inequality (0.12), we may dominate the last term by

∞∑
m=1

(2mR)n‖(K(x− ·)−K(x0 − ·))χ{2mR<|y−x0|≤2m+1R}(·)‖A,B(x0,2m+1R)MAf(x0)

≤ CMAf(x0).

Hence
|Tf2(x)− Tf2(x0)|δ ≤ C(MAf(x0))

δ,

and (1.7) follows. 2

The theorem can be extended to vector valued operators Tf(x) = p.v.
∫

K(x−y)f(y) dy,
where now K takes values in a Banach space X.

Definition 1.8. We say that the kernel K, satisfies the LA-Hörmander condition if there
are numbers cA > 1 and CA > 0 such that for any x and R > cA|x|,

∞∑
m=1

(2mR)n
∥∥‖(K(x− ·)−K(−·))‖X χ{2mR<|y|≤2m+1R}(·)

∥∥
A,B(0,2m+1R)

≤ CA.

The theorem, whose proof we leave to the reader, is

Theorem 1.9. Let K be a vector valued kernel, that satisfies the LA-Hörmander condition
and let Tf be the associated singular integral. If T is a bounded operator in some Lp,
1 ≤ p < ∞, then, for all 0 < p < ∞ and w ∈ A∞,∫

Rn

‖Tf‖p
Xw ≤ C

∫
Rn

(MAf)pw,

whenever the left hand side is finite.
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2 The one-sided case

In dimension one, there are examples of singular integrals, both real valued, [1], and vector
valued, [15], whose kernels are supported in (−∞, 0). These one-sided singular integrals are
particular cases of singular integrals, and thus Theorem A holds for them. But it seems
natural to ask if one can do better using the fact that the kernel is supported on (−∞, 0).
More precisely:

Can we improve the inequality∫
R
|Tf |pw ≤ C

∫
R
(MAf)pw,

allowing, perhaps an operator smaller than MAf , or a wider class of weights?

The answer is yes on both accounts. We can substitute MAf by the corresponding one-
sided operator and allow w to be any weight in the class A+

∞ which is bigger than A∞. (Any
increasing function is in A+

∞).
The one-sided weights are relevant to the study of the one-sided Hardy-Littlewood max-

imal operators:

Definition 2.1. The one-sided Hardy-Littlewood maximal operators M+ and M− are defined
for locally integrable functions f by

M+f(x) = sup
h>0

1

h

∫ x+h

x

|f | and M−f(x) = sup
h>0

1

h

∫ x

x−h

|f |.

The A+
p classes were introduced by E. Sawyer [14] in the study of the weights for these

operators.
He proved the following.

Theorem. If p > 1 the inequality
∫

R M+f(x)pw(x) dx ≤ C
∫

R |f(x)|pw(x) dx holds for all
f ∈ Lp(w) if, and only if, w satisfies the following condition:

(A+
p ) : There exists C such that for any three points a < b < c,(∫ b

a

w

) 1
p
(∫ c

b

w1−p′
) 1

p′

≤ C(c− a) (p + p′ = pp′).(2.2)

The case p = 1 was not considered in Sawyer’s paper but it was proved in [8] that the weak
type estimate for this operator holds, i.e.∫

{M+f(x)>λ}
w ≤ C

λ

∫
|f(x)|w(x)dx

if and only if:

(A+
1 ) : There exists C such that for almost every x: M−w(x) ≤ Cw(x).
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The class A+
∞ is defined as the union of all the A+

p classes,

A+
∞ = ∪p≥1A

+
p .

The classes A−
p are defined in a similar way. It is interesting to note that Ap = A+

p ∩ A−
p ,

Ap ( A+
p and Ap ( A−

p . (See [14], [8], [9] for more definitions and results.)

Definition 2.3. Let f be a locally integrable function. The one-sided sharp maximal function
is defined by

M+,#f(x) = sup
h>0

1

h

∫ x+h

x

(
f(y)− 1

h

∫ x+2h

x+h

f

)+

dy.

It is proved in [10] that

(2.4)
M+,#f(x) ≤ sup

h>0
inf
a∈R

1

h

∫ x+h

x

(f(y)− a)+dy +
1

h

∫ x+2h

x+h

(a− f(y))+dy

≤ C||f ||BMO.

Here f+ denotes the positive part of f , i.e., f+(x) = max{f(x), 0}. (See [10] for other results
and definitions.)

Definition 2.5. For each locally integrable function f , the one-sided maximal operators
associated to the Young function B are defined by

M+
B f(x) = sup

x<b
‖f‖B,(x,b) and M−

B f(x) = sup
a<x

‖f‖B,(a,x).

We shall also need the following maximal operators:

M+
r f(x) = (M+|f |r(x))1/r and M+,#

δ f(x) =
(
M+,#|f |δ(x)

)1/δ
.

We can now state our result.

Theorem 2.6. Let K be a kernel, supported on (−∞, 0), possibly vector valued, that satisfies
the LA-Hörmander condition. Let Tf be the associated singular integral. If T is a bounded
operator in some Lp, 1 ≤ p < ∞, then, for any 0 < p < ∞ and w ∈ A+

∞ there exists C > 0
such that ∫

R
|Tf(x)|pw(x) dx ≤ C

∫
R
(M+

A
f(x))pw(x) dx,

for any f ∈ C∞ with compact support.

Proof. We will prove the scalar case, since the vector valued case is analogous. Our
proof of theorem A was based on inequality (1.2). The one sided version of this theorem is
the following ([10]):
Theorem. For any 0 < p < ∞ and w ∈ A+

∞ there exists C such that

(2.7)

∫
R
|M+f(x)|pw(x) dx ≤ C

∫
R
(M+,#f(x))pw(x) dx,
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whenever the left hand side is finite.

It follows from this theorem that it is enough to prove

(M+,#|Tf |δ(x))
1
δ ≤ CδM

+

A
f(x).

If we use (2.4) we get that

M+,#f(x) ≤ sup
h>0

inf
a∈R

1

h

∫ x+h

x

|f(y)− a|dy +
1

h

∫ x+2h

x+h

|a− f(y)|dy

≤ C sup
h>0

inf
a∈R

1

h

∫ x+h

x

|f(y)− a|dy.

Therefore, it is enough to prove that, for fixed x0, there is, for every positive h, a real number
ah, that may depend on x0 and h, such that

(2.8)

(
1

h

∫ x0+h

x0

∣∣|Tf(x)|δ − |ah|δ
∣∣ dx

) 1
δ

≤ C(M+

A
f)(x0).

We define f1 = fχ(x0,x0+2h), f2 = fχ(x0+2h,∞) and choose ah = Tf2(x0). We need to prove
that,

(2.9)

(
1

h

∫ x0+h

x0

∣∣|Tf(x)|δ − |Tf2(x0)|δ
∣∣ dx

) 1
δ

≤ C(M+

A
f)(x0).

Now we use the one-sided character of our operator to get that for x ∈ (x0, x0 +h), Tf(x) =
Tf1(x) + Tf2(x) and follow the proof of (1.4). For f1, Kolmogorov’s inequality yields

1

h

∫ x0+h

x0

|Tf1(x)|δdx ≤ Cδ

(
1

h

∫ x0+2h

x0

|f(x)|
)δ

dx ≤ Cδ(M
+f(x0))

δ.

For f2 we observe that for any x ∈ (x0, x0 + h), if R = cAh, we have,

|Tf2(x)− Tf2(x0)| =
∣∣∣∣∫

y>x0+2h

(K(x− y)−K(x0 − y)) f(y) dy

∣∣∣∣
≤

∞∑
m=1

∫
2mh<y−x0≤2m+1h

|K(x− y)−K(x0 − y)||f(y)|dy.

If we use Hölder’s inequality (0.12), we may dominate the last term by

∞∑
m=1

(2mh)‖(K(x− ·)−K(x0 − ·))χ{2mh<y−x0≤2m+1h(·)‖A,(x0,x0+2m+1h)M
+

A
f(x0)

≤ CM+

A
f(x0).
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3 Proof of theorem B

Let us now show an example of a one-sided operator whose kernel is in ∩Hr \ H∞. The
example comes from ergodic theory.

Definition 3.1. Let f be a measurable function defined on R. For each n ∈ Z we consider
the average Anf(x) = 1

2n

∫ x+2n

x
f . The Square Function is defined as

Sf(x) =

(
∞∑

n=−∞

|Anf(x)− An−1f(x)|2
) 1

2

.

The local version of this operator, namely the operator

S1f(x) =

(
0∑

n=−∞

|Anf(x)− An−1f(x)|2
) 1

2

,

is of interest in ergodic theory and it has been extensively studied. In particular it has been
proved, [6], that it is of weak type one-one, maps Lp into itself ( p > 1) and L∞ into BMO.
The operator S is obviously non-linear but it can be interpreted as the norm of a vector
valued operator (see [15]).

Definition 3.2. Given a locally integrable function f we define the sequence valued operator
U as follows

Uf(x) = {Anf(x)− An−1f(x)}n

=

{∫
R

1

2n
χ(−2n,0)(x− y)f(y)dy −

∫
R

1

2n−1
χ(−2n−1,0)(x− y)f(y)dy

}
n

=

{∫
R

(
1

2n
χ(−2n,0)(x− y) − 1

2n−1
χ(−2n−1,0)(x− y)

)
f(y)dy

}
n

=

∫
R

K(x− y)f(y)dy,

where K is the sequence valued function

K(x) = {Kn(x)}n =

{
1

2n
χ(−2n,0)(x) − 1

2n−1
χ(−2n−1,0)(x)

}
n

.

Observe that ‖Uf(x)‖`2 = Sf(x). It is proved in [15] that the kernel satisfies the following
condition:

Smoothness Condition. Assume

x0 ∈ R, x0 < x < x0 + 2i, x0 + 2j < y ≤ x0 + 2j+1,
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where i < j and i, j ∈ Z. Let K be the vector valued kernel that appears in Definition 3.2.
Then

Kn(x− y)−Kn(x0 − y) =

{
0, if n /∈ {j, j + 1};
1
2j χ(x0+2j , x+2j)(y), if n ∈ {j, j + 1}.(3.3)

It follows from this lemma that the kernel does not satisfy H∞. Indeed, take x0 = 0,
0 < x < 2i and R = 2i, then for any m ∈ N

2m2i sup
2m+i<y≤2m+i+1

‖K(x− y)−K(−y)‖`2 = C

and H∞ fails. The following lemma tells us that our kernel satisfies something better that
just being in the intersection of all the Hr, r ≥ 1.

Lemma 3.4. The kernel K satisfies the LA-Hörmander condition with A(t) ≈ exp (t
1

1+ε ),
ε > 0.

Proof. Let us fix x. Observe that since the support of K is contained in (−∞, 0), we
may assume x > 0. We will assume that R is of the form R = 2i for some integer i and the
general case will follow. Let R > |x|. Then R = 2i > x > 0. Let Im = (0, 2m+i+1). Then∥∥‖(K(x− ·)−K(−·))‖`2 χ{2m+i<|y|≤2m+i+1}(·)

∥∥
A,Im

=

√
2

2m+i
‖χ(2m+i,x+2m+i)‖A,Im .

An easy computation gives

‖χ(2m+i,x+2m+i)‖A,Im =
1

A−1(2m+i+1

x
)
≤ C

A−1(2m+1)
.

Therefore,

∞∑
m=1

(2mR)‖‖(K(x− ·)−K(−·))‖`2 χ{2mR<|y|≤2m+1R}(·) ‖A,B(0,2m+1R)

≤ C

∞∑
m=1

1

(m + 1)1+ε < ∞.

Remark 3.5. Since the square function Sf is a one-sided operator we may apply theorem
(2.6) to get that for any p > 0 and any A+

∞ weight w, there exists a constant C such that∫
(Sf(x))pw(x) dx ≤ C

∫
((M+)3f(x))pw(x) dx,

whenever the left hand side is finite.

Proof. We just observe that A(t) = t(1 + log+(t))1+ε which for ε small is dominated by
B(t) = t(1 + log+(t))2 and M+

B f is pointwise equivalent to (M+)3f. 2

Since the one sided Hardy-Littlewood maximal operator is bounded form Lp(w) to itself,
and A+

p ⊂ A+
∞ we obtain a different proof of the boundedness of S from Lp(w) to itself,

whenever w ∈ A+
p ([15]).
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Theorem 3.6. There is a vector valued operator T whose kernel K is in ∩Hr \ H∞ but
nevertheless the operator satisfies (0.2).

Proof. Just consider the operator T defined as Tf(x) = ‖Uf(x)‖`∞ . The argument given
for the square function proves that the kernel K with the `∞ norm does not satisfy H∞. But
the operator corresponding to this norm is dominated by 2M+f(x) and (0.2) holds trivially
(even if the weight w does not satisfy A∞).

We finish by proving that for any Young function A, there exists a kernel K belonging
to HA. (This example is in the spirit of [7] and was suggested to us by C. Pérez.)

Theorem 3.7. Let A be any Young function. For β > 0 we consider the function kA(t) =
A−1

(
1
t
(log e

t
)−(1+β)

)
χ(0,1)(t). The kernel KA defined by KA(t) = kA(t− 4) belongs to HA.

Proof. It is an argument similar to the one in [7]. We will prove first that kA ∈ L1∩LA.
To see that kA ∈ LA we just need to find c > 0, such that∫

R
A

(
kA(t)

c

)
dt < ∞.

An easy computation gives∫
R

A (kA(t)) dt =

∫ 1

0

1

t
(log(

e

t
))−(1+β) =

1

β
< ∞,

while Jensen’s inequality yields∫ 1

0

kA(t) ≤ A−1

(∫ 1

0

1

t
(log

e

t
)−(1+β) dt

)
= A−1(

1

β
).

We define the operator Tf(x) = KA∗f(x). Since KA is just a translation of kA, it belongs
to L1 and then ‖Tf‖q ≤ C‖f‖q for any 1 ≤ q. We need to prove that KA satisfies

∞∑
m=1

(2mR)||(KA(x− ·)−K(−·)) χ{2mR<|y|≤2m+1R}(·) ||A,B(0,2m+1R) ≤ CA.

whenever R > cA|x|. We just sketch the proof. We take cA = 1 and |x| < R. For m ≥ 1 and
2mR < |y| ≤ 2m+1R, one has 2m−1R < |y−x| ≤ 2m+2R and, trivially, 2m−1R < |y| ≤ 2m+2R.
Now

||(KA(x− ·)−KA(−·)) χ{2mR<|y|≤2m+1R}(·) ||A,B(0,2m+1R)

≤ C||KA χ{2m−1R<|y|≤2m+2R}(·) ||A,B(0,2m+1R).

The kernel kA has support on (0, 1). Therefore if R > 5 there is nothing to prove. If R < 5
and m0 is the unique natural number so that 2m0R ≤ 5 < 2m0+1R. Then, for any m ≥ m0+2
and 2m−1R < |y + 4| < 2m+2R, it follows that |y| > 1 and kA(y) = 0. We need only to
estimate

S =

m0+1∑
m=1

2mR||KA χ{2m−1R<|y|≤2m+2R}(·) ||A,B(0,2m+1R).

13



But, for each m, we have

||KA χ{2m−1R<|y|≤2m+2R}(·) ||A,B(0,2m+1R) ≤ 1 +
1

2m+1R

∫
2m−1R<|y+4|≤2m+2R

A(KA(y)) dy.

Since the domains of integration are almost disjoint we can add and get

S ≤ C2m0R + C

∫
A(KA(y)) dy ≤ C

(
5 +

1

β

)
.
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