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1. INTRODUCTION

Let T be a singular integral operator of the type

Tf(z)=pov. | K(r—y)f(y)dy,

R"

where the kernel K has bounded Fourier transform, and let M f be the Hardy-Littlewood
maximal function. A classical result of Coifman [4] states that if the kernel satisfies the
following Lipschitz condition: there are numbers o > 0 and C' > 0 such that

2|

(0.1) K(z—y) — K(—y)| < CWTTM, whenever |y| > 2|z|

then, for any 0 < p < oo and any w € A, there exists a constant C' such that

(0.2) - |Tf(x)|Pw(x) de < C/ (M f(x))Pw(zx) dz,

n

for every f such that the left-hand side is finite. Recently, Martell, Pérez and Trujillo [7]
have proved that (0.2) fails if instead of condition (0.1) we assume that K satisfies the weaker
Hormander condition

(0.3) sup / K@) Ky < oo

z€R™

Actually they prove that (0.2) fails even if the kernel K satisfies certain intermediate con-
ditions between (0.1) and (0.3). These conditions are the L"-Hérmander conditions defined
as follows:

Definition 0.4. Let 1 < r < oo, we say that the kernel K satisfies the L"—Hormander
condition, if there are numbers ¢, > 1 and C, > 0 such that for any r € R™ and R > ¢, ||

09 Y (o | o K@ =) = Ky w) <c.
if r < 0o, and
(06) SR s |K(z—y) - K(~y)] < Cn,

— 2m R<|y|<2m+1R

in the case r = oo.

We will denote by H, the class of kernels satisfying the L"—Hormander condition.



Observe that these classes are nested, namely
H,CH.CH,CH,, 1<s<r

and that H is the class of kernels satisfying the Hormander condition (0.3). For these classes
some weighted estimates are known. See [13] and [2].

Theorem. Let 1 < r < oo. Assume that the operator T is bounded in some LP, 1 < p < oo,
and the kernel K belongs to H,, then for any 0 < p < oo and w € A, there is a constant
C' such that

(0.7) / T f@)Pu() dr < © / (M () () d

whenever the left hand side is finite.
We recall that for any 1 < ¢, the maximal operator M, is defined as M, f(z) = (M| f]*(x))
M f(x). In [7] it is proved that this theorem is sharp in the following sense:

1
t

>

Theorem. Let 1 < r < oo and 1 < t < r'. There exists a singular integral operator
T, bounded in some LP, 1 < p < oo, and whose kernel is in H,, for which the following
inequality does not hold:

0.8) [ rr@e) < / (M, () w(z) dz,

n

for any function f for which the left hand side is finite, where 0 < p < 00, w € A.
A natural question, left open by this result, is the following:

What happens between H,, and the intersection of the H,, 1 <r < co?

More precisely: Are there kernels which belong to H, for every finite  but do not belong
to Hy?

For such kernels, if there are any, the best known result is that the following inequality
holds

(0.9) - Tf(@)Pw(z)de <C | (M f(2))" w(z)dr,

Rn

for any 1 < t. Since those kernels do not belong to H,, we can not assert that

(0.10) ITf(x)Pw(z)de < C | (Mf(z)) w(z)de.

Rn R™
This, however, does not exclude that these operators could satisfy an inequality of the type
(0.11) / T Pux)de < C | (Maf@) w(z)de

Rn R™

where M4 is some maximal operator such that M f(z) < My f(x) < M f(x) for any function
f and any 1 < t.



In this note we give a positive answer to these questions.

In order to state our results we need to remind some definitions. A function B : [0,00) —
[0, 00) is a Young function if it is continuous, convex, increasing and satisfies B(0) = 0 and
B(t) — o0 as t — 0o0. The Luxemburg norm of a function f, induced by B, is

||f||B:inf{A>o:/B(@) gl},

and the B-average of f over a cube, (or a ball) @ is

_ 1 il
HfHBQ1nf{>\>O‘Q|/QB()\)§1}

We will denote by B the complementary function associated to B (see [3]). Then the
generalized Holder’s inequality

(0.2 5 1791 < Il alslng,

]

holds.

The behaviour of B(t) for ¢t < t;, does not affect the value of ||f||pq. Therefore, if
A(t) = B(t) for t > ty, then ||f||a.o =~ ||f||B.q- This means that we will not be concerned
about the value of the Young functions for ¢ small.

Definition 0.13. For each locally integrable function f, the mazximal operator associated to
the Young function B is defined by

Mpf(x) =sup||flsq
zeQ

where the sup is taken over all the cubes, or balls, that contain x.

We will be using the following Young functions: B(t) = 7, B(t) = ¢!''* — 1, B(t) =
t(1 +log™*(t))*. The maximal operators associated to these functions are M,, M., r1/x and
ML(1+log+L If k>0, k €z, then ML(1+1og+ Ly s pointwise equivalent to M’“Jrl where M*
is the k-times iterated of M (see[ll]) It is also known that

Mf($) < C1]\4L(1—i-log+ L)kf(x) < CM’I‘f(x)7
for all kK > 0 and r > 1.

Definition 0.14. Let A be a Young function. We say that the kernel K satisfies the LA-
Hormander condition, if there are numbers cq4 > 1 and C'y > 0 such that for any x and
R > cyz|,

Z 2mR || ) - K<_)) X{277LR<|y‘S2'm+1R}(') ||A’B(O’277L+1R) S CA
m=1



We will denote by H 4 the class of all kernels satisfying this condition.
The main results on this paper are:

THEOREM A. Assume that T is a singular integral operator, bounded in some LP, 1 <
p < oo, whose kernel K belongs to H,. Then, for any 0 < p < oo and w € A, there exists
C such that

1w [ (afru.
Rn R"

for any f € C'*° with compact support.
Similar results can be proved for vector valued operators or one-sided operators.

THEOREM B. There is a vector valued, one-sided operator S bounded in all LP, 1 < p <
00, whose kernel K belongs to H, for every finite r > 1 but does not belong to H.,. It does
satisfy the LA-Hérmander condition with A(t) = exp (tﬁ) -1, (e>0).

As a corollary we obtain that for this operator the inequality

(0.15) /R]Sf(x)]pw(x) iz < C/R (M f(2)P w(z)de, anyt>1,0<p<oo, we A

may be improved to

(0.16) /R|Sf(x)]pw(x) dr < C/R (M2 f(2))" w(z) da,

where (M™)3 is the one-sided Hardy-Littlewood maximal operator iterated three times and
w is a weight in the AT class.

Remark 0.17. We do not know if our operator satisfies (0.2). It is an open question if
(0.2) holds for an operator whose kernel is in NH, \ H.

Remark 0.18. As a by-product of the analysis developed for the study of the example of
Theorem B we give an easy example of an operator whose kernel is not in H., but satisfies

(0.2).

The organization of the paper is as follows. In Section 1 we give the proof of Theorem
A and state, without proof, the corresponding version for the vector valued case. Since our
example for Theorem B is a vector valued operator with kernel supported on (—o0,0), we
dedicate Section 2 to the proof of the one-sided version of Theorem A. Finally in Section 3
we give an example of an operator whose kernel belongs to NH, \ H.

1 Proof of theorem A

The sharp maximal function is defined as

(1.1) M# f(z) = sup inf ﬁ /Q |f(y) — al dy.

z€Q a€R

5



Although this operator is dominated pointwise by a multiple of the Hardy- Littlewood max-
imal function, there is a theorem that states some kind of reverse inequality. See ([5]).

Theorem. For any 0 < p < 0o and w € Ay, there exists C' such that

(1.2) / (Mf@) () de<C | (M) d

Rn

whenever the left hand side is finite.

P
Since it is easy to see that [ (M|Tf|°(x))® w(z)dz is finite whenever f is a C°—function
with compact support, 0 < d < 1, and w € A, , it follows from the preceding theorem and
from the inequality

1
Tf(x)] < (MITF’(x))"
that, in order to prove Theorem A, it is enough to prove

Theorem 1.3. Let T be a singular integral operator, bounded in some LP, 1 < p < o0,
whose kernel K satisfies the LA-Hormander condition. Then, for any 0 < § < 1, there is a
constant Cs such that for any f and z,

(1.4) (MH#|TfI () < CsMf(x).

Proof. It follows from (0.12) that for any Young function A, H4 C H; and therefore T
is of weak type (1,1). It also follows that M f(x) < CM4f(x) for any f and z.

Let z be fixed and let @ be any cube containing z,. We will denote by d(Q) its diameter.
Let Q be a cube concentric with @ with side equal to 5c4 times the side of Q. If y ¢ Q then
|y — o] > 2c4d(Q). We split f in the form f = fi + f, where fi = fx4. It will be enough
to prove

(1.5 (g7 L s =12t ) < o).
In order to prove this inequality it is enough to prove:
1

1.6 — | |T Sde < C(M s
(1.6 g1 L IPA@Ide < CO5ro)
and

1 5 5 5
(L7) o [ ITR@F = [Tl do < COLf(a0)'

Ql Jo

For (1.6) we use that our operator 7" is of weak type (1,1) and Kolmogorov’s inequality.

L ; L ‘5
g s <o (g [ 1nwiae)

6 (ﬁ [ 1) dxf < Cos(M (o))’
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To prove (1.7) we need to use the fact that our kernel satisfies H,4. From

I fo(@))” = |T fo(x0)’| < T falw) = T folxo)l’,

it follows that is enough to estimate |T'fo(x) — T fo(o)]°.
If € @ and R = cad(Q) > calx — x0|, we have

T fa(x) = Tha(wo) = | [ (K(z—y) = K(zo —y)) f(y)dy

yEQ
< /| m|>2R|K<x_y>- K(z0 — )| f(y)|dy

=S K = Kol

If we use Holder’s inequality (0.12), we may dominate the last term by

> @M R)M(E (x =) = K (20 — )X{2m Rely—sol<2m+1 &} ()| 4, Bwo 2m+1r) Mo f (o)
m=1
< CMzf(wo).
Hence

T fo(x) — T fo(o)|” < C(Mzf (o)),

and (1.7) follows. O
The theorem can be extended to vector valued operators T'f(z) = p.v. [ K(z—vy)f(y) dy,
where now K takes values in a Banach space X.

Definition 1.8. We say that the kernel K, satisfies the L*-Hérmander condition if there
are numbers c4 > 1 and Cy > 0 such that for any x and R > calx|,

Z(sz)n H [(K(z —-) — K(—=))llx X{2mR<|y\<2m“R} HA ,B(0,2m+1R) = < Ca.
m=1

The theorem, whose proof we leave to the reader, is

Theorem 1.9. Let K be a vector valued kernel, that satisfies the LA-Hérmander condition
and let T f be the associated singular integral. If T 1is a bounded operator in some LP,
1 <p<oo, then, for all 0 < p < oo and w € A,

[Tflw < [ Otz

R

whenever the left hand side is finite.



2 The one-sided case

In dimension one, there are examples of singular integrals, both real valued, [1], and vector
valued, [15], whose kernels are supported in (—o0,0). These one-sided singular integrals are
particular cases of singular integrals, and thus Theorem A holds for them. But it seems
natural to ask if one can do better using the fact that the kernel is supported on (—o0,0).
More precisely:

Can we improve the inequality

[irsrwsc [y
R R
allowing, perhaps an operator smaller than )M f, or a wider class of weights?

The answer is yes on both accounts. We can substitute M4 f by the corresponding one-
sided operator and allow w to be any weight in the class AT which is bigger than A.,. (Any
increasing function is in A%).

The one-sided weights are relevant to the study of the one-sided Hardy-Littlewood max-
imal operators:

Definition 2.1. The one-sided Hardy-Littlewood maximal operators M™ and M~ are defined
for locally integrable functions f by

x+h T
M f(z) = sup - / | and M~ f(x) = sup - / 1

h>0 I h>0 N Jop,

The A;; classes were introduced by E. Sawyer [14] in the study of the weights for these
operators.
He proved the following.

Theorem. If p > 1 the inequality [, M f(z)Pw(z)dx < C [, |f(2)|Pw(x)dx holds for all
f € LP(w) if, and only if, w satisfies the following condition:

(AY) : There exists C such that for any three points a < b < c,

(2.2 (/w) (/w) <Cle—a)  (+o =p).

The case p = 1 was not considered in Sawyer’s paper but it was proved in [8] that the weak
type estimate for this operator holds, i.e.

C
/{M+f(x)>A}w = A / |f () w(x)dz

if and only if:

(AY) : There exists C such that for almost every z: M w(z) < Cw(z).

8



The class AZ, is defined as the union of all the Al classes,
A; - UpzlA;'

The classes A are defined in a similar way. It is interesting to note that A4, = A N A,
A, C A and A, € A, (See [14], [8], [9] for more definitions and results.)

Definition 2.3. Let f be a locally integrable function. The one-sided sharp maximal function

18 defined by . N
T+ T+
M f(z) = Supl/ (f(y) - %/ f) dy.

+h
It is proved in [10] that
1 z+h z+2h
ny M@ <swats [ e —atae g [ - sy
< C||fllsmo-

Here f* denotes the positive part of f, i.e., fT(x) = max{f(x),0}. (See [10] for other results
and definitions.)

Definition 2.5. For each locally integrable function f, the one-sided maximal operators
associated to the Young function B are defined by

M f(x) :SU-%HJCHB,(;U,Z)) and Mg f(x) = sup || f||B,(a)-
<

a<lzx
We shall also need the following maximal operators:

M} f(z) = (MFIf]" ()" and M f(x) = (MP# ()"

We can now state our result.

Theorem 2.6. Let K be a kernel, supported on (—o0,0), possibly vector valued, that satisfies
the LA-Hormander condition. Let Tf be the associated singular integral. If T is a bounded
operator in some LP, 1 < p < oo, then, for any 0 < p < oo and w € AL there exists C > 0
such that

[ rs@pru@ s < ¢ [ Orise)ye ds,
R R
for any f € C* with compact support.

Proof. We will prove the scalar case, since the vector valued case is analogous. Our
proof of theorem A was based on inequality (1.2). The one sided version of this theorem is
the following ([10]):

Theorem. For any 0 < p < oo and w € A} there exists C' such that

27 [t et de <€ [ (0t @)yl d,

9



whenever the left hand side is finite.

It follows from this theorem that it is enough to prove
(MEHITfP ()5 < CoM ().

If we use (2.4) we get that

1 z+h 1 x+2h
MrH) <swpint & [ 15w —aldy+ 5 [ - £y

z+h
< C'sup 1nfE/ |f(y) — aldy.

h>0 a€R

Therefore, it is enough to prove that, for fixed g, there is, for every positive h, a real number
ap, that may depend on xy and h, such that

1

(2.8) (5 / " T f ()l = anl’| dx)é < C(MZ f)(wo).

zo

We define fi = fX(womo+20): f2o = [X(z0+2h,00) and choose ap, = T f5(x). We need to prove
that,

1

(2.0 L p @) - (Then)f| de) < COE (o).
h 0

Now we use the one-sided character of our operator to get that for = € (xg,zo+h), Tf(z) =
T fi(x) + T fo(x) and follow the proof of (1.4). For f;, Kolmogorov’s inequality yields

xo+h xo+2h é
F [ el s ([T wl) o< GO ey

zo

For fy; we observe that for any = € (z¢, ¢ + h), if R = cah, we have,

T fo(x) =T fa(xo)| =

/ (=) = Kz =) S dy

S| K(e )~ Ko — )L 0)ldy.

1 Y 2" h<y—zo<2mt1h

If we use Holder’s inequality (0.12), we may dominate the last term by

o0

D @K (=) = K (20 — )X (2mhey—zo<zmt1n ()| eo.corzmtin M f (0)

m=1

< CM (o). O

10



3 Proof of theorem B

Let us now show an example of a one-sided operator whose kernel is in NH, \ Hy. The
example comes from ergodic theory.

Definition 3.1. Let f be a measurable function defined on R. For each n € Z we consider
the average A, f(z) = l fx+2 f. The Square Function is defined as

- ( 3 rAnf<w>—An1f<x>P) -

n=—oo

The local version of this operator, namely the operator

) = (Z |Anf(x)_f4n—1f(x)|2> ,

n=—oo

is of interest in ergodic theory and it has been extensively studied. In particular it has been
proved, [6], that it is of weak type one-one, maps L? into itself ( p > 1) and L* into BMO.
The operator S is obviously non-linear but it can be interpreted as the norm of a vector
valued operator (see [15]).

Definition 3.2. Given a locally integrable function f we define the sequence valued operator
U as follows

Uf@) = {Auf(@) ~ Acaf@)
—{ [ Fxcrate -0 - [ gxceate- o)

- {/ (QnX( 0@ —y) = znl—lxunl’o)(x_y)) f(y)dy}
= /K x —y)f(y)dy,

where K is the sequence valued function

n

n

K(o) = (Kol = { goxcanan(@) = gm0}

n

Observe that ||Uf(z)|| = Sf(x). It is proved in [15] that the kernel satisfies the following
condition:

Smoothness Condition. Assume

2o €ER, zg <z <x0+2°, 1o+2 <y <o+ 2T,

11



where i < j and i,j € Z. Let K be the vector valued kernel that appears in Definition 3.2.

Then
0 ifn & {j,j+1};
3.3 Ky(x—vy)— K,(xqg —y) = ’ . U ’
( ) ( y) ( 0 y) { %X(.Io-f—?j, x+2j)(y)7 ifn € {.]7] + 1}
It follows from this lemma that the kernel does not satisfy H,. Indeed, take zy = 0,
0 <z <2 and R =2, then for any m € N

2m2'  sup K (z—y) — K(=y)|le =C
2m+i<y§2m+i+1
and H, fails. The following lemma tells us that our kernel satisfies something better that
just being in the intersection of all the H,, r > 1.

Lemma 3.4. The kernel K satisfies the LA-Hormander condition with A(t) ~ exp (tﬁe),
e>0.

Proof. Let us fix x. Observe that since the support of K is contained in (—o0,0), we
may assume x > 0. We will assume that R is of the form R = 2¢ for some integer i and the
general case will follow. Let R > |x|. Then R =2 > x > 0. Let I,,, = (0,2™""1). Then

V2

MK (@ =) = K(=Dlle xeriay<emon ()[4, = gurIXemarns

AL

An easy computation gives

B 1 C
”X(Qm“,z-&-?"“) Al — A_I(Qm-:H) < A_1(2m+1>'
Therefore,
Z 2"R)||I(K (2 — -) — K(=))lle2 Xg2m r<lyl<2m+1 Ry (+) [ 4,B0,2m+1 R)
m=1

Z 1+€ < 00. ]

Remark 3.5. Since the square function Sf is a one-sided operator we may apply theorem
(2.6) to get that for any p > 0 and any AL, weight w, there exists a constant C' such that

/ (Sf(z))Pw(z)dr < C / (M*) () Pulz) do,

whenever the left hand side is finite.
Proof. We just observe that A(t) = t(1 + log™(t))** which for € small is dominated by
B(t) = t(1+ log™(t))* and M3 f is pointwise equivalent to (M™T)3f. O

Since the one sided Hardy-Littlewood maximal operator is bounded form LP(w) to itself,
and Ay C AZ we obtain a different proof of the boundedness of S from LP(w) to itself,
whenever w € AF ([15]).

12



Theorem 3.6. There is a vector valued operator T whose kernel K is in NH, \ Hy but
nevertheless the operator satisfies (0.2).

Proof. Just consider the operator 1" defined as T'f(x) = ||U f(x)||¢. The argument given
for the square function proves that the kernel K with the ¢*° norm does not satisfy H.,. But
the operator corresponding to this norm is dominated by 2M ™ f(x) and (0.2) holds trivially
(even if the weight w does not satisfy A..).

We finish by proving that for any Young function A, there exists a kernel K belonging
to H,. (This example is in the spirit of [7] and was suggested to us by C. Pérez.) O]

Theorem 3.7. Let A be any Young function. For > 0 we consider the function ka(t) =
A7 (Y (loge) = B)) x(01) (). The kernel K 4 defined by Ka(t) = ka(t — 4) belongs to Ha.

Proof. It is an argument similar to the one in [7]. We will prove first that k4 € L' N LA
To see that k4 € L we just need to find ¢ > 0, such that

/RA(I{:A?@) dt < oo.

[ty a= [ tog(§)0%0 = 4 <o

An easy computation gives

while Jensen’s inequality yields

[ < an ([ sy a) =4,

We define the operator T'f(x) = Ka* f(x). Since K4 is just a translation of k4, it belongs
to L' and then | T'f|, < C||fl|, for any 1 < q. We need to prove that K, satisfies

o0

Z(QmR)H(KA(x — ) = K(—)) xg2mr<pyi<2m+1 1} () || a,B0,2m+1R) < Ca.

m=1

whenever R > cq|z|. We just sketch the proof. We take ¢4 =1 and |z| < R. For m > 1 and
2"R < |y| < 2™T'R, one has 2" 'R < |y—x| < 2™T2R and, trivially, 2" 'R < |y| < 2mT2R.
Now

H(KA(@" - ‘) - KA(—')) X{QmR<|y|§2m+1R}(') HA,B(O,2’"+1R)

< O|Ka Xq2m-1Rr<lyj<2m+2r)(-) || 4,B0,2m+1R)-
The kernel k4 has support on (0, 1). Therefore if R > 5 there is nothing to prove. If R < 5
and my is the unique natural number so that 2™ R < 5 < 20T R Then, for any m > mgy+2

and 2"7'R < |y + 4| < 2""2R, it follows that |y| > 1 and ka(y) = 0. We need only to

estimate
mo+1

S = Z 2" R|[Ka X{Zm*1R<|y\§2m+2R}(') ||A,B(o,2m+1R)-

m=1

13



But, for each m, we have

1
HKA X{Qm—1R<|y|§2m+2R}('> HA,B(O,zmHR) <1+ m A(KA(?J)) dy.

/2m1R<|y+4§2m+2R

Since the domains of integration are almost disjoint we can add and get

S < C2™R 4+ C/A(KA(y)) dy < C (5 + %) : O
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