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Abstract. In this paper we prove, on one hand, extrapolation from infinity for the one-sided
classes A+

p , A+(p, q), A+
p,q,α,β , and on the other hand, the BMO-boundedness for one-sided

singular integrals. We also provide several applications of our results.

1. Introduction

Extrapolation properties for the Muckenhoupt classes Ap were proved by J.L. Rubio de
Francia in 1984, see [14], roughly speaking, if an operator preserves Lp0(w) for all w ∈ Ap0 ,
then it necessarily preserves the Lp(w) space for every w ∈ Ap, and every 1 < p < ∞.
Extensions of this result were obtained by several authors, for instance in [5] and [6], E.
Harboure, R.A. Maćıas and C. Segovia study A(p, q) classes, pairs of weights and extreme
cases, p0 = ∞; more recently F. Mart́ın–Reyes, P. Ortega and A. de la Torre, see [9],
considered this problem for one-sided classes of weights for 1 ≤ p0 < ∞. (The one-sided
classes of weights were first introduced by Sawyer in [13].) Since proving Lp0 boundedness
for p0 = ∞ is usually much simpler than doing this for a finite p0, it is of great interest to
study that extreme case.

In this paper we study the strong and weak extrapolation properties of one-sided classes
of weights, A+

p , A+(p, q) and A+
p,q,α,β starting from ∞. The results are stated in Paragraph

1, see Theorems I through V. The proofs of these theorems are given in Paragraph 4.
Moreover we also study in Paragraph 2 the weighted BMO boundedness of one-sided
singular integral operators recently introduced by H. Aimar, L. Forzani and F. Mart́ın–
Reyes, ( see [1] ). These allow us to show several applications which are contained in
Paragraph 3, including new proofs of the results appearing in [1], [9], and [10].

Before stating our results we need some definitions. Given p ∈ R\{0}, p′ is the conjugate
index, 1/p + 1/p′ = 1. A nonnegative function w defined in R shall be called a weight if it
is locally integrable. In the following we consider the right lateral classes. It is easy to see
that the left classes can be treated analogously.

A weight w is said to belong to the class A+
p , 1 < p < ∞, if and only if there is a

constant C such that
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(
1
h

∫ x

x−h

w

) (
1
h

∫ x+h

x

w−
1

p−1

)p−1

≤ C ,

for every h > 0 and x ∈ R. The class A+
1 is defined by

M−w(x) = sup
h>0

∫ x

x−h

w(t) dt ≤ Cw(x) ,

for almost every x ∈ R. For p = ∞, we put

A+
∞ = ∪p≥1A

+
p .

We say that a pair of weights, (u, v), belongs to A+(p, q), 1 < p ≤ ∞, 1 ≤ q < ∞, if
and only if

(
1
h

∫ x

x−h

uq

)1/q
(

1
h

∫ x+h

x

v−p′
)1/p′

≤ C ,

for all h > 0 and x ∈ R. Also (u, v) ∈ A+(p,∞) if and only if

‖χ[x−h,x]u‖∞
(

1
h

∫ x+h

x

v−p′
)1/p′

≤ C ,

for every h > 0 and x ∈ R.
We say that v ∈ A+(p, q), A+(p,∞), if the pair (v, v) does.

For 0 ≤ β ≤ α ≤ 1 and 1 < p ≤ q < ∞, A+
p,q,α,β is the class of all the pair of weights

(u, v), such that

(∫ b

a

u

)1/q (∫ c

b

v1−p′(s)
(c− s)(1−α)p′ ds

)1/p′

≤ C(c− a)β ,

is satisfied for every a < b < c. In the case p = 1, we let (u, v) ∈ A+
1,q,α,β if and only if

(∫ b

a

u

)1/q

≤ C(c− a)β essinfs∈(b,c)v
1−p′(s)(c− s)(1−α) ,

whenever a < b < c. In the case 1 < p < ∞ and q = ∞, (u, v) ∈ A+
p,∞,α,β if and only if

||χ[a,b]u||∞
(∫ c

b

v1−p′(s)
(c− s)(1−α)p′ ds

)1/p′

≤ C(c− a)β ,

is satisfied for every a < b < c.

Extrapolation results.
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The next theorem is an extension of the one that appears in [8], where the case
1 < p0 = q0 < ∞ is obtained.

Theorem I. Let T be a sublinear operator defined on C∞0 (R). If the inequality

(∫
|Tf |q0vq0

)1/q0

≤ C(v)
(∫

|f |p0vp0

)1/p0

holds for some pair (p0, q0), 1 < p0 ≤ q0 < ∞ and for all weights v belonging to the class
A+(p0, q0), then for any pair (p, q) 1 < p ≤ q < ∞, satisfying 1

p − 1
q = 1

p0
− 1

q0
, and for

any weight v ∈ A+(p, q) the inequality

(∫
|Tf |qvq

)1/q

≤ C(v)
(∫

|f |pvp

)1/p

,

holds, provided the left hand side is finite.

Given f belonging to L1
loc(R), let

f#
+ (x) = sup

h>0

1
h

∫ x+h

x

(
f(y)− 1

h

∫ x+2h

x+h

f(z) dz

)+

dy,

where z+ = max(z, 0). In [9], an one-sided version of the BMO space, BMO+, is defined
as the set of those functions such that ||f#

+ ||∞ < ∞. We consider the quantity given by

|‖f |‖v,+ = sup
x

sup
h>0

‖vχ[x−h,x]‖∞


 1

h

∫ x+h

x

(
f(y)− 1

h

∫ x+2h

x+h

f(z) dz

)+

dy


 .

We introduce, BMO+(v), a weighted version of BMO+, as being the set of those functions
such that |‖f |‖v,+ < ∞. Then we are able to give, in Theorems II, III and IV, one-sided
versions for the extrapolation from infinity results obtained in [4] and [5].

Theorem II. Let 1 < p0 < ∞ and let T be a sublinear operator defined on C∞0 (R)
satisfying

‖vχ[x−h,x]‖∞


 1

h

∫ x+h

x

(
|Tf |(y)− 1

h

∫ x+2h

x+h

|Tf |
)+

dy


 ≤ C(v)

(∫
|f |p0vp0 dx

)1/p0

for every h > 0, x ∈ R and v ∈ A+(p0,∞), then for every 1 < p < p0, 1/p− 1/q = 1/p0

and v ∈ A+(p, q), the inequality

(∫
|Tf |qvq

)1/q

≤ C(v)
(∫

|f |pvp

)1/p

,

holds, provided that the left hand side is finite.
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Theorem III. Let T be a sublinear operator defined on C∞0 (R) and satisfying

‖vχ[x−h,x]‖∞


 1

h

∫ x+h

x

(
|Tf |(y)− 1

h

∫ x+2h

x+h

|Tf |
)+

dy


 ≤ C(v)‖fv‖∞

for every h > 0, x ∈ R and v such that v−1 ∈ A−1 . Then, if 1 < p < ∞ and v ∈ A+
p , the

inequality (∫
|Tf |pv

)1/p

≤ C(v)
(∫

|f |pv
)1/p

,

holds, provided the left hand side is finite.

Theorem IV. Let T be a sublinear operator defined on C∞0 (R), with values on the space
of measurable functions. Let us assume that T verifies

||aT (f)||∞ ≤ C||fb||p0 ,

for every pair (a, b) of functions such that (ar, br) ∈ A+(p0
r ,∞), 1 ≤ r < p0 ≤ ∞ with

C depending upon the constant of A+
(

p0
r ,∞)

of the pair (ar, br). Then if r < p < p0,
1
q = 1

p − 1
p0

and (ur, vr) ∈ A+
(

p
r , q

r

)
there exists C, depending only on p

r , q
r , and the

constant A+
(

p
r , q

r

)
of the pair (ur, vr), such that

uq ({x : |Tf(x)| > λ}) ≤ C

(
λ−p

∫
|f |pvp dx

) q
p

∀λ > 0 .

Recently a general maximal function,

M+
α,βf(x) = sup

c>x

1
(c− x)β

∫ c

x

|f(s)|
(c− s)1−α

ds ,

was introduced in [10], where it is shown that the pair (u, v) ∈ A+
p,q,α,β , for 0 ≤ β ≤ α ≤ 1,

1 ≤ p ≤ q, or 1
p − 1

q = α− β, if and only if

u({x : M+
α,βf(x) > λ}) ≤ C

(
λ−p

∫
|f |pv

)q/p

, (1.1)

for all λ > 0. The next theorem proves that also in this case extrapolation from infinity is
posible, which allows us to obtain, in Paragraph 3, an easier proof of the boundedness of
these maximal functions.

Theorem V. Let T be a sublinear operator defined in C∞0 (R), with values in the space
of measurable functions. Let 0 ≤ r ≤ 1 and 1 < p0 < ∞. Suppose that

||aTf ||∞ ≤ C||fb||p0 ,
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holds, for every pair of weights (a, b) such that (a, bp0) ∈ A+
p0,∞,r,r, and C depending only

on the constant A+
p0,∞,r,r of the pair (a, bp0).

Then for every pair (u, v) ∈ A+
p,q,α,β , 0 ≤ β < α ≤ r ≤ 1, 1

p − 1
q = α− β = 1

p0
, there exists

C depending only on p, q, and the constant A+
p,q,α,β of the pair (u, v), such that

u({x : |Tf(x)| > λ}) ≤ C

(
λ−p

∫
|f |pv

)q/p

,

for all λ > 0.

2. Weighted Boundedness for One Sided Singular Integral

In this section we will prove that one-sided singular integral operators are bounded from
L∞(v) into BMO+(v). Then, applying Theorem III we obtain the boundedness of these
operators from Lp(v) into Lp(v) if v ∈ A+

p , with 1 < p < ∞.
A function K ∈ L1

loc(R−{0}) shall be called a Calderón-Zygmund’s kernel if there exist
finite constants B1, B2, and B3 satisfying

∣∣∣∣∣
∫

ε<|x|<N

K(x) dx

∣∣∣∣∣ ≤ B1 , (2.1)

for all ε and all N , with 0 < ε < N ,

|K(x)| ≤ B2

|x| , (2.2)

for all x 6= 0,

|K(x− y)−K(x)| ≤ B3
|y|
|x|2 , (2.3)

for all x and y with |x| > 2|y|. Furthermore we assume that there exists

lim
ε→0

∫

ε<|x|<1

K(x) dx .

Let us consider

Tf(x) = lim
ε→0

Tεf(x) and T ∗f(x) = sup
ε>0

|Tεf(x)| , (2.4)

where
Tεf(x) =

∫

|x−y|>ε

K(x− y)f(y) dy .
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Lateral singular integral operators were recently defined by H. Aimar, L. Forzani, F.
Mart́ın–Reyes in [1], where they characterize the weights for which these operators are of
strong type (p, p), 1 < p < ∞. They also give an example of a Calderón-Zygmund kernel
with support in the negative real line, namely

K(x) =
1
x

sin(log |x|)
log(|x|) χ(−∞,0)(x) .

Observe that if K is a Calderón-Zygmund kernel then Ks(x) = sK(sx) s > 0 is as well,
with the same constants B1, B2, B3. For completness sake, we state as Theorems A and
B, some of the results of [1].

Theorem A. Let K be a kernel with support in the negative real line that satisfies (2.1),
(2.2) and (2.3); then we have:

(A.1) given a weight v ∈ A+
p , 1 < p < ∞, there exists a constant C, depending only on p,

B1, B2, B3, and the A+
p constant of v, such that

∫

R
|T ∗f(x)|pv(x) dx ≤ C

∫

R
|f(x)|pv(x) dx ;

(A.2) given a weight v ∈ A+
1 , there exists a constant C, depending only on B1, B2, B3,

and the A+
1 constant of v, such that

v({T ∗f(x) > λ}) ≤ C

λ

∫

R
|f(x)|v(x) dx .

Let us observe that T ∗s is the maximal operator associated to Ks, then this Theorem
implies that the operators T ∗s , s > 0, are uniformly bounded in Lp(v) , 1 < p < ∞,
if v ∈ A+

p and are of L1(v)-weak type if v ∈ A+
1 . The following theorem is a kind of

reciprocal.

Theorem B. Let K be a kernel with support in the negative real line that satisfies (2.1),
(2.2), (2.3), and K(x) 6≡ 0. Let T ∗s be the maximal operator associated to Ks . If v is
a weight and all the operators T ∗s with s > 0 are of weak type (p, p), 1 ≤ p < ∞, with
respect to v with a constant C not depending on s, then v ∈ A+

p .

We can now state and prove our boundedness result from L∞(v) into BMO+(v).

Theorem 2.5. Let K be a kernel satisfying (2.1), (2.2),(2.3) with support in the negative
real line. Let T ∗ be as in (2.4) and v−1 ∈ A−1 , then

|||T ∗f |||v,+ ≤ C||fv||∞ ,

for all f such that ||fv||∞ < ∞.

Proof. First of all we note that

Tεf(x) =
∫

|x−y|>ε

K(x− y)f(y) dy =
∫ ∞

x+ε

K(x− y)f(y) dy .
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Fix x ∈ R, h > 0 and let f , v and δ > 0 be such that v−1 ∈ A−1 , ||fv||∞ < ∞ and
(v−1)1+δ ∈ A−1 . Let us put f1 = fχ[x,x+8h] and f = f1 + f2; clearly, f1 ∈ L1+δ(dx). Now,
using the strong Lp(dx) , 1 < p < ∞, boundedness of T ∗ we have,

1
h

∫ x+h

x

(
T ∗f1(y)− 1

h

∫ x+2h

x+h

T ∗f1(z) dz

)+

dy

≤ C

(
1
h

∫ x+2h

x

|T ∗f1(y)|1+δ dy

) 1
1+δ

≤ C

(
1
h

∫ x+8h

x

|f(y)|1+δ dy

) 1
1+δ

≤ C||fv||∞
(

1
h

∫ x+8h

x

(v−1)1+δ dy

) 1
1+δ

.

Now let us take t ∈ [x− h, x] such that ||vχ[x−h,x]||∞ ≤ 2v(t); then

||vχ[x−h,x]||∞
(

1
h

∫ x+8h

x
(v−1)1+δ dy

) 1
1+δ ≤ Cv(t)

(
M+((v−1)1+δ)

) 1
1+δ (t) ≤ C .

The last inequality follows from (v−1)1+δ ∈ A−1 . So we have that

||vχ[x−h,x]||∞
h

∫ x+h

x

(
T ∗f1(y)− 1

h

∫ x+2h

x+h

T ∗f1(z) dz

)+

dy ≤ C||fv||∞ . (2.6)

Now we consider 1
h

∫ x+h

x

(
T ∗f2(y)− 1

h

∫ x+2h

x+h

T ∗f2(z) dz

)+

dy

≤ 1
h

∫ x+h

x

1
h

∫ x+2h

x+h

sup
ε>0

∣∣∣∣
∫ ∞

y+ε

K(y − t)f2(t) dt−
∫ ∞

z+ε

K(z − t)f2(t) dt

∣∣∣∣ dz dy.

Let

Iε =
∣∣∣∣
∫ ∞

y+ε

K(y − t)f2(t) dt−
∫ ∞

z+ε

K(z − t)f2(t) dt

∣∣∣∣ .

If ε < 6h

Iε ≤
∫ ∞

x+8h

|(K(y − t)−K(z − t))f(t)| dt = I1 .

When ε ≥ 6h

Iε ≤
∣∣∣∣
∫ z+ε

y+ε

K(y − t)f2(t) dt

∣∣∣∣ +
∫ ∞

x+8h

|(K(y − t)−K(z − t))f(t)| dt = I2,ε + I1 .

Since t− z > 2(y − z), applying (2.3), we get
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I1 ≤
∫ ∞

x+8h

z − y

(t− z)2
|f(t)| dt ≤ Ch

∞∑

k=3

1
(2kh)2

∫ x+2k+1h

x+2kh

|f(t)| dt

≤ C||fv||∞
∞∑

k=3

1
2k

1
2k+1h

∫ x+2k+1h

x

v−1 dt .

Let us study I2,ε:

I2,ε ≤
∣∣∣∣
∫ z+ε

y+ε

(K(y − t)−K(−ε))f2(t) dt

∣∣∣∣ +
∣∣∣∣
∫ z+ε

y+ε

K(−ε)f2(t) dt

∣∣∣∣

≤ C

∫ z+ε

y+ε

−ε + t− y

ε2
|f2(t)| dt +

∫ z+ε

y+ε

B2

ε
|f2(t)| dt

≤ C

ε

∫ z+ε

y+ε

|f2(t)| dt ≤ ||fv||∞C

ε

∫ x+2ε

x

v−1 ,

where the last inequalities follow from (2.3) and the fact | − ε| ≥ 2 |ε− (t− y)|. Therefore

||vχ[x−h,x]||∞
1
h

∫ x+h

x

(
T ∗f2(y)− 1

h

∫ x+2h

x+h

T ∗f2(z) dz

)+

dy

≤ ||vχ[x−h,x]||∞
1
h

∫ x+h

x

1
h

∫ x+2h

x+h

sup
ε>0

(Iε) dz dy

≤ C||vχ[x−h,x]||∞||fv||∞

×
( ∞∑

k=3

1
2k

1
2k+1h

∫ x+2k+1h

x

v−1 dt + sup
ε>0

1
ε

∫ x+2ε

x

v−1 dt

)

≤ C||fv||∞(
∞∑

k=3

1
2k

||vχ[x−2k+1h,x]||∞
2k+1h

∫ x+2k+1h

x

v−1 dt

+ sup
ε>0

||vχ[x−2ε,x]||∞
2ε

∫ x+2ε

x

v−1 dt)

≤ C||fv||∞ .

Then

||vχ[x−h,x]||∞
1
h

∫ x+h

x

(
|T ∗f2(y)| − 1

h

∫ x+2h

x+h

|T ∗f2(z)| dz

)+

dy ≤ C||fv||∞ , (2.7)

so, by (2.6) and (2.7), taking sup we get Theorem 2.5. ¤

In the following theorem we use the extrapolation properties proved in Theorem III
together with the boundedness given by Theorem 2.5, to obtain an easier proof for (A.1).
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Theorem 2.8. Let K be a kernel satisfying (2.1), (2.2),(2.3) with support in the negative
real line and T ∗ be as in (2.4). If v ∈ A+

p , 1 < p < ∞, then

∫

R
|T ∗f(x)|pv(x) dx ≤ C

∫

R
|f(x)|pv(x) dx .

Proof. In order to apply Theorem III, in view of Theorem 2.5, we only have to see that
if v ∈ A+

p and f ∈ C∞0 (R) then T ∗f ∈ Lp(v). Assume the support of f is contained in
[−N, N ]. Clearly T ∗f(x) = 0, if x ≥ N ; let −2N ≤ x < N , then

T ∗f(x) = sup
ε>0

∣∣∣∣∣
∫ N

x+ε

K(x− y)(f(y)− f(x)) dy + f(x)
∫ N

x+ε

K(x− y) dy

∣∣∣∣∣

≤ sup
ε>0

∫ N

x+ε

|K(x− y)(f ′(z)(y − x)) | dy + sup
ε>0

∣∣∣∣∣f(x)
∫ N

x+ε

K(x− y) dy

∣∣∣∣∣

≤ ‖f ′‖∞ sup
ε>0

∫ N

x+ε

B2

|y − x| (y − x) dy + sup
ε>0

∣∣∣∣∣f(x)
∫ N

x+ε

K(x− y) dy

∣∣∣∣∣

≤ B2‖f ′‖∞ sup
ε>0

∫ N

−2N

dy + ‖f‖∞ sup
ε>0

∣∣∣∣∣
∫ N

x+ε

K(x− y) dy

∣∣∣∣∣

≤
(

B23N‖f ′‖∞ + ||f ||∞ sup
ε>0

∣∣∣∣∣
∫

ε<|t|<N−x

K(t) dt

∣∣∣∣∣

)

≤ (B23N‖f ′‖∞ + B1||f ||∞) .

Now let us put x < −2N ,

T ∗f(x) = sup
0<ε

∣∣∣∣∣
∫ N

x+ε

K(x− y)f(y) dy

∣∣∣∣∣ ≤ ||f ||∞ sup
0<ε

∫ N

−N

B2
1

|y − x| dy ≤ B2||f ||∞ 2N

|x| .

Therefore
T ∗f(x) ≤ C||f ||∞ N

|x| .

Putting all the estimates together we get that T ∗f ∈ Lp(v) provided
∫

x≤−2N

v(x)
|x|p dx < ∞ (2.9)

is known. The proof of the last inequality can be found in [9]. ¤

Finally notice that Theorem 2.5 remain true replacing T ∗f by |Tf | and Theorem 2.8 is
also true replacing T ∗ by the singular integral operator T (see (2.4)).
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3. Applications.

Applications of Theorem II.

Let us consider a lateral version of the fractional integral operator. Given 0 < α < 1,
we put

I+
α f(x) =

∫ ∞

x

f(y)
(y − x)1−α

dy .

It is shown in [2] ( see also [9] and [11]), that I+
α is strongly continuous from Lp(vp) into

Lq(vq) for 1 < p < α−1 and finite values of q. Our purpose is to give a simpler proof of
this fact (see Theorem 3.7). In order to use the extrapolation Theorem II, we need first to
show, the boundedness of I+

α from L
1
α (v

1
α ) into BMO+(v).

Theorem 3.1. Let v belong to A+( 1
α ,∞), then

||vχ[x−h,x]||∞
1
h

∫ x+h

x

(
|I+

α f(y)| − 1
h

∫ x+2h

x+h

|I+
α f(z)| dz

)+

dy ≤ C

(∫
|fv| 1α

)α

, (3.2)

for every f ∈ L
1
α (v

1
α ), x ∈ R, h > 0.

Proof. Let v ∈ A+( 1
α ,∞), f ∈ L

1
α (v

1
α ), x ∈ R, and h > 0. We set f = f1 + f2, where

f1 = fχ[x,x+4h], then
I+
α f = I+

α f1 + I+
α f2 .

We will see that (3.2) holds for f1 and f2. Let us consider

1
h

∫ x+h

x

(
|I+

α f1(y)| − 1
h

∫ x+2h

x+h

|I+
α f1(z)| dz

)+

dy

≤ 1
h

∫ x+2h

x

|I+
α f1(y)| dy =

1
h

∫ x+2h

x

∣∣∣∣∣
∫ x+4h

y

f(t)
(t− y)1−α

dt

∣∣∣∣∣ dy

≤ 1
h

∫ x+4h

x

|f(t)|
(∫ t

x

1
(t− y)1−α

dy

)
dt ≤ 1

α

(4h)α

h

∫ x+4h

x

|f(t)| dt.

Then

||vχ[x−h,x]||∞
1
h

∫ x+h

x

(
|I+

α f1(y)| − 1
h

∫ x+2h

x+h

|I+
α f1(z)| dz

)+

dy

≤ 4
α
||vχ[x−4h,x]||∞(4h)α−1

∫ x+4h

x

|f(t)| dt .

By Hölder for p = 1
α , and using that v ∈ A+( 1

α ,∞), we have
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||vχ[x−h,x]||∞ 1
h

∫ x+h

x

(
|I+

α f1(y)| − 1
h

∫ x+2h

x+h

|I+
α f1(z)| dz

)+

dy ≤ C

(∫
|fv| 1α

)α

.(3.3)

Now we study

1
h

∫ x+h

x

(
|I+

α f2(y)| − 1
h

∫ x+2h

x+h

|I+
α f2(z)| dz

)+

dy

≤ 1
h2

∫ x+h

x

∫ x+2h

x+h

∫ ∞

x+4h

∣∣∣∣
f(t)

(t− y)1−α
− f(t)

(t− z)1−α

∣∣∣∣ dt dz dy . (3.4)

Now using the mean value theorem and the fact that (t−ξ)α−2 ≤ (t−z)α−2, for y ≤ ξ ≤ z,
we obtain

(3.4) ≤ 1
h2

∫ x+h

x

∫ x+2h

x+h

∫ ∞

x+4h

|f(t)|(1− α)2h(t− z)α−2 dt dz dy

≤ C

∫ x+2h

x+h

∫ ∞

x+4h

|f(t)||t− x− 2h|α−2 dt dz, (3.5)

and by Hölder for exponents 1/α and 1/(1− α)

(3.5) ≤ Ch

(∫ ∞

x+4h

|f(t)| 1α v
1
α dt

)α (∫ ∞

x+4h

|t− x− 2h|α−2
1−α v−

1
1−α dt

)1−α

.

On the other hand

||vχ[x−h,x]||∞h

(∫ ∞

x+4h

|t− x− 2h|α−2
1−α v−

1
1−α dt

)1−α

≤ C||vχ[x−h,x]||∞h

∞∑

k=2

(∫ x+2k+1h

x+2kh

(2k−1h)
α−2
1−α v−

1
1−α dt

)1−α

≤ C

∞∑

k=2

||vχ[x−2k+1h,x]||∞(2k−1h)α−2h

(∫ x+2k+1h

x

v−
1

1−α dt

)1−α

≤ C
∑ 1

2k
< ∞ .

Putting together the estimates we have

||vχ[x−h,x]||∞ 1
h

∫ x+h

x

(
|I+

α f2(y)| − 1
h

∫ x+2h

x+h

|I+
α f2(z)| dz

)+

dy ≤ C

(∫
|fv| 1α

)α

(3.6)

From (3.3) and (3.6) we get (3.2) for every x ∈ R and h > 0. ¤
Now we are ready to apply the extrapolation Theorem II to prove the weighted strong

(p, q) type of I+
α .
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Theorem 3.7. If 1/q = 1/p− α, 1 < p < 1/α, and w ∈ A+(p, q), then

||I+
α fw||q ≤ C||fw||p.

Proof. We shall get the proof as a consequence of Theorem II. In view of Theorem 3.1 we
just need to see that I+

α f ∈ Lq(wq) whenever f ∈ C∞0 (R). Let 1 < p < 1/α , 1/q = 1/p−α,
w ∈ A+(p, q), and f be with support contained in (−N,N). If x ≥ N then I+

α f(x) = 0.
Taking x ∈ (−2N, N), we get

|I+
α f(x)| ≤ CNα||f ||∞ .

Finally if x ≤ −2N ,

|I+
α f(x)| ≤ C2N ||f ||∞ 1

(−N − x)1−α
.

Since 1 + q/p′ = q(1 − α) and wq ∈ A+
q(1−α) , using an analogue of (2.9) we get the

Theorem. ¤

Applications of Theorem IV.

1. For 0 < α < 1 and 1 ≤ r < ∞, we define

Mr,+
α f(x) = sup

h>0

(
1

h1−α

∫ x+h

x

|f(y)|r dy

) 1
r

.

When r = 1 , M1,+
α = M+

α .

The boundedness of the bilateral case of Mr
αf was studied in [5]. Here we prove the

one-sided result using Theorem IV.

Theorem 3.8. Let 0 < α < 1, 1 ≤ r < ∞ and (ur, vr) ∈ A+(p
r , q

r ). Then there exists C
such that

uq
({x : M+,r

α f(x) > λ}) ≤ C

(
λ−p

∫
|f |pvp dx

) q
p

,

for all λ > 0, 1
q = 1

p − α
r and r < p < r

α .

Proof. We shall see that T = Mr,+
α satisfies the hypothesis of Theorem IV. Let p0 = r

α ,
(ar, br) ∈ A+(p0

r ,∞) and h > 0. Then, by Hölder’s inequality,

1
h1−α

∫ x+h

x

|f |r ≤ 1
h1−α

(∫ x+h

x

|f | r
α b

r
α

)α (∫ x+h

x

b−
r

1−α

)1−α

.

Note that a(x) is finite almost everywhere. Therefore for every x such that
ar(x) ≤ ||arχ[x−h,x]||∞,
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a(x)

(
1

h1−α

∫ x+h

x

|f |r
) 1

r

≤ ||arχ[x−h,x]||
1
r∞


 1

h1−α

(∫ x+h

x

|f | r
α b

r
α

)α (∫ x+h

x

b−
r

1−α

)1−α



1
r

≤ C||fb||p0 .

Then it follows that
||aTf ||∞ ≤ C||fb||p0 . (3.9)

Now an application of Theorem IV, proves the theorem. ¤
Taking r = 1 we obtain the known result due to M. Gabidzashvili and V. Kokilashvili, [3]:

Theorem 3.10. Let (u, v) ∈ A+(p, q). Then there exists C such that

uq
({x : |M+

α f(x)| > λ}) ≤ C

(
λ−p

∫
|f |pvp dx

) q
p

∀λ > 0 ,

with 1
q = 1

p − α and 1 < p < 1
α .

2. As another application of Theorem IV, we present next the one-sided version of a result
proved in [5].

Theorem 3.11. Let Tf(x) = (I+
α |f |(x))#+ . If (u, v) ∈ A+(p, q), with 1

p − 1
q = α, then

uq({x : (I+
α |f |(x))#+ > λ}) ≤ C

(
λ−p

∫
|f |pvp dx

) q
p

for every λ > 0.

Proof. It is known that (see [9])

(I+
α |f |(x))#+ ≤ CαM+

α f(x) . (3.12)

From (3.9) it follows that
||aM+

α f ||∞ ≤ C||fb|| 1
α

,

for every pair (a, b) ∈ A+( 1
α ,∞). Using (3.12) we obtain

||a(I+
α |f |)#+ ||∞ ≤ Cα||fb|| 1

α
,

for every pair (a, b) ∈ A+( 1
α ,∞). Then, applying Theorem IV, we have

uq({x : (I+
α |f |(x))#+ > λ}) ≤ C

(
λ−p

∫
|f |pvp dx

) q
p

,

for all λ > 0 and (u, v) ∈ A+(p, q) with 1
p − 1

q = α. ¤
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Application of Theorem V.

The following Theorem provides a way to give a simpler proof of a result published in
[10].

Theorem 3.12. Let (u, v) ∈ A+
p,q,α,β with 0 ≤ β < α ≤ 1, and 1

p − 1
q = α− β, then

u({x : M+
α,βf(x) > λ}) ≤ C

(
λ−p

∫
|f |pv

)q/p

for all λ > 0

Proof. Let T = M+
α,β , 0 ≤ β < α ≤ 1, p−1

0 = α − β, and r = 1 − (1−α)
(1−α+β) if α < 1, and

r = 1 if α = 1. By Theorem V we only have to show that

||aM+
α,βf ||∞ ≤ ||fb|| 1

α−β

for every pair of weights (a, b) such that (a, bp0) ∈ A+
p0,∞,r,r. In order to see this, notice

that if (a, bp0) ∈ A+
p0,∞,r,r then, a(x)(M+

r,rb
−p′0)1/p′0 ≤ C. Therefore

a(x)
1

(c− x)β

∫ c

x

|f(t)| dt

(c− t)1−α
≤ a(x)||fb||p0

1
(c− x)β

(∫ c

x

b−p′0(t) dt

(c− t)p′0(1−α)

)1/p′0

≤ a(x)||fb||p0(M
+
r,rb

−p′0(x))1/p′0

≤ C||fb||p0 . ¤

4. Proofs of the Extrapolation Results

In order to shorten notation, we shall denote ||f ||p,v =
(∫ |f |pv)1/p. We will first begin

by studing some relations between ||| . |||v,+ and || . ||p,v.

Lemma 4.1. Let v ≥ 0 be a locally integrable function, then we have

‖vf#
+ ‖∞ ≤ |‖f |‖v,+ ≤ c‖vM+f‖∞ .

Proof. Let x be a Lebesgue point of v with v(x) > 0, we have for all h > 0, 0 < v(x) ≤
‖vχ[x−h,x]‖∞. Thus,

v(x)
1
h

∫ x+h

x

(
f(y)− 1

h

∫ x+2h

x+h

f(z) dz

)+

dy

≤ ‖vχ[x−h,x]‖∞
1
h

∫ x+h

x

(
f(y)− 1

h

∫ x+2h

x+h

f(z) dz

)+

dy ≤ |‖f |‖v,+ .
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Then v(x)f#
+ (x) ≤ |‖f |‖v,+ for almost every x, so

‖vf#
+ ‖∞ ≤ |‖f |‖v,+.

We may assume that ‖vχ[x−h,x]‖∞ > 0. Let 0 < M < ‖vχ[x−h,x]‖∞. Then there exist a
t ∈ [x− h, x] such that M < v(t). Then

M
1
h

∫ x+h

x

(
f(y)− 1

h

∫ x+2h

x+h

f(z) dz

)+

dy

≤ v(t)
1
h

∫ x+2h

t

|f | ≤ 3v(t) ·M+f(t)

≤ C‖vM+f‖∞ .

Letting M tend to ‖vχ[x−h,x]‖∞ we are done. ¤

Theorem 4.2. Let v ∈ A+
∞ and f ≥ 0. Assume for some p0, 1 < p0 < ∞,

∫
(M+f)p0w <

∞. Then for every p0 ≤ p < ∞
∫ ∞

−∞
(M+f)pv ≤ C

∫ ∞

−∞
(f#

+ )pv .

Proof. See [9]. ¤

Corollary 4.3. Given 1 < p0 ≤ p, v ∈ A+
p0

and f ≥ 0 such that f ∈ Lp0(v), there exists
C independent of p0 and f such that

‖f‖p,v ≤ C‖f#
+ ‖p,v .

Proof. Since
∫

(M+f)p0w ≤ ∫ |f |p0w < ∞, (see for instance [7]) and f(x) ≤ M+f(x)
almost everywhere, by Theorem 4.2

‖f‖p,v ≤ ‖M+f‖p,v ≤ C‖f#
+ ‖p,v . ¤

We shall also make use of the following lemma proved in [8].

Lemma 4.4.
i. Let v ∈ A+

p and 1 ≤ p0 < p < ∞ then for all h ≥ 0 in L(p/p0)
′
(v) there exists H ≥ h

such that Hv ∈ A+
p0

and
‖H‖(p/p0)′,v ≤ C‖h‖(p/p0)′,v

ii. Let v ∈ A−p and 1 ≤ p0 < p < ∞ then for all h ≥ 0 in L(p/p0)
′
(v) there exists H ≥ h

such that Hv ∈ A−p0
and

‖H‖(p/p0)′,v ≤ C‖h‖(p/p0)′,v .
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Finally, we recall some definitions concerning the Lorentz L(p, q, µ) spaces. Let f be a
measurable function on a measure space (M,M, µ). The non-increasing rearrangement f∗

of f is defined as
f∗(t) = inf{s : µ({x : |f(x)| > s}) ≤ t} ,

for t > 0. The function f is said to belong to the Lorentz space L(p, q, µ) if

||f ||p,q,µ =
(

p

q

∫ ∞

0

[t
1
p f∗(t)]q

dt

t

) 1
q

< ∞ ,

whenever 1 < p < ∞ and 1 < q < ∞, and

||f ||p,∞,µ = sup
t>0

t
1
p f∗(t) ,

when 1 < p ≤ ∞ and q = ∞. For more details see [14].

Proof of Theorem I. Let v ∈ A+(p, q). Let us assume first p > p0, thus q > q0 and

(∫
|Tf |qvq

)1/q

=
(∫

|Tf |q0gvq

)1/q0

,

holds with some g ≥ 0, ‖g‖(q/q0)′,vq = 1. We observe that v ∈ A+(p, q) if and only if
vq ∈ A+

r with r = 1+ q/p′. Let us put r0 = 1+ q0/p′0, h = g and w = vq. As r/r0 = q/q0,
by Lemma 4.4-i, there exists H ≥ g such that ‖H‖(q/q0)′,vq ≤ C and Hvq ∈ A+

r0
. This

implies H1/q0vq/q0 ∈ A+(p0, q0). Therefore, noting that p0 q/q0 = p0 + q (1− p0/p),

(∫
|Tf |qvq

)1/q

≤
(∫

|Tf |q0(H1/q0vq/q0)q0

)1/q0

≤ C

(∫
|f |p0(H1/q0vq/q0)p0

)1/p0

= C

(∫
|f |p0vp0Hp0/q0v

q( 1
(p/p0)′ )

)1/p0

.

Using Hölder’s inequality

(∫
|Tf |qvq

)1/q

≤ C

[(∫
|f |pvp

) p0
p

(∫
H

p0
q0

( p
p0

)′v
q 1

( p
p0

)′ (
p

p0
)′
) 1

(p/p0)′
] 1

p0

= C

(∫
|f |pvp

) 1
p

(∫
H( r

r0
)′vq

) 1
p0
− 1

p

≤ C‖f‖p,vp .

Now if p0 > p, then q0 > q and we have

(∫
|f |pvp

) 1
p

=
(∫ (

|fvp′ |p0

) p
p0

v−p′
) p0

p
1

p0

.
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Therefore, there exists (see [6], Theorem 210), g ≥ 0 that satisfies

∫
g

p
p−p0 v−p′ dx = 1 , and

(∫
|f |pvp

) 1
p

=
(∫

|fvp′ |p0gv−p′
) 1

p0

.

Let h = g−p′0/p0 , w = v−p′ , r = 1 + p′/q and r0 = 1 + p′0/q0. Since (r/r0)′(−p′0/p0) =
p/(p − p0), we have that

∫
h( r

r0
)′w dx = 1. On the other hand, v ∈ A+(p, q) if and

only if v−p′ ∈ A−r with r = 1 + p′/q. By Lemma 4.4-ii there exists H ≥ h such that∫
H( r

r0
)′v−p′ ≤ C and Hv−p′ ∈ A−r0

. Hence [Hv−p′ ]−1/p′0 ∈ A+(p0, q0). Thus

(∫
|f |pvp

) 1
p

=
(∫

|fvp′ |p0gv−p′
) 1

p0

=
(∫

|f |p0h
− p0

p′0 v−p′(1−p0)

) 1
p0

≥
(∫

|f |p0

[
H
− 1

p′0 v
p′
p′0

]p0 ) 1
p0

≥ C

(∫
|Tf |q0

[
H
− 1

p′0 v
p′
p′0

]q0 ) 1
q0

.

By Hölder’s inequality

(∫
|f |pvp

) 1
p

≥ C

(∫
|Tf |qvq

) 1
q

(∫
H( r

r0
)′v−p′

) q−q0
q0q

≥ C ′
(∫

|Tf |qvq

) 1
q

. ¤

Proof of Theorem II. Let v ∈ A+(p, q), 1/p− 1/q = 1/p0 and f ∈ Lp(vp), then

(∫
|f |pvp

) 1
p

=
(∫ (

|fvp′ |p0

)p/p0

v−p′
) p0

p
1

p0

.

So there exists g ≥ 0 such that
∫

g(p/p0)
′
v−p′ = 1 and

(∫
|f |pvp

) 1
p

=
(∫

|fvp′ |p0gv−p′
)1/p0

.

Let h = g−p′0/p0 , thus

1 =
∫

g(p/p0)
′
v−p′ dx =

∫
hq/p′0v−p′ .

Taking r = 1 + p′/q, r0 = 1 and w = v−p′ then w ∈ A−r . Observe that (r/r0)′ =
(1 + p′/q)′ = q/p′0. Applying Lemma 4.4-ii there exists H ≥ h with Hv−p′ ∈ A−1 and

∫
Hq/p′0v−p′ ≤ C . (4.5)
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Since v ∈ A+(p,∞) if and only if v−p′ ∈ A−1 , we have H−1/p′0vp′/p′0 ∈ A+(p0,∞) . Hence
by Lemma 4.1 and (4.5)

(∫
|f |pvp

) 1
p

=
(∫

|fvp′ |p0gv−p′
)1/p0

=
(∫

|f |p0

(
h−1/p′0v

p′
p′0

)p0)1/p0

≥
(∫

|f |p0

(
H−1/p′0v

p′
p′0

)p0)1/p0

≥ C|‖ |Tf | |‖
H
−1/p′0v

p′/p′0 ,+

≥ C‖H−1/p′0vp′/p′0(Tf)#+‖∞

≥ C

(∫
H−q/p′0vqp′/p′0(Tf)# q

+ Hq/p′0v−p′
) 1

q

= C

(∫
(Tf)# q

+ vq

) 1
q

.

Since q > 1 and
∫ |Tf |qvq < ∞, by Corollary 4.3 we obtain

(∫
|Tf |qvq

) 1
q

≤
(∫

|f |pvp

) 1
p

. ¤

Before proving Theorem III, we need some previous results.

Lemma 4.6. If Φ ∈ L1 and
∫ |Φ| = 1, then there exists h such that

∫ |h| ≤ 2 and
‖Φh−1‖∞ = 1.

Proof. Let

h(x) =
{ Φ(x) if Φ(x) 6= 0

e−π|x|2 if Φ(x) = 0 ,

clearly ‖Φh−1‖∞ = 1 and
∫
|h| =

∫

{x : Φ(x)6=0}
|Φ|+

∫

{x : Φ(x)=0}
e−π|x|2 ≤ 2 . ¤

Corollary 4.7. Given f ∈ Lp(v), then there exists g ∈ Lp(v−
1

p−1 ), g ≥ 0, such that

∫
gpv−

1
p−1 ≤ 2 and (

∫
|f |pv )

1
p = ‖fv

1
p−1 g−1‖∞.

Proof. If
∫ |f |pv 6= 0 take

Φ =
|f |pv∫ |f |pv ,

then
∫ |Φ| = 1. Let h be the function given by Lemma 4.6. If we put

gp =

{
v

1
p−1 h v 6= 0

0 v = 0 ,



ONE-SIDED EXTRAPOLATION AT INFINITY AND SINGULAR INTEGRALS 19

it follows immediately that
∫

gpv−
1

p−1 =
∫

h ≤ 2 and

1 = ‖Φh−1‖∞ =
1∫ |f |pv ‖ |f |

pv
p

p−1 g−p‖∞.

The case
∫ |f |pv = 0 is clear. ¤

Proof of Theorem III. Let v ∈ A+
p , f ∈ Lp(v) and g the function given by Corollary

4.7. Let w = v−
1

p−1 , r = p′, r0 = 1 and h = g ≥ 0. Then we have w ∈ A−p′ , and
∫

hpw =∫
h(r/r0)

′
w ≤ 2. Using Lemma 4.4-ii, there exists H ≥ g such that Hw = Hv−

1
p−1 ∈ A−1

and

(
∫

Hpv−
1

p−1 )
1
p ≤ C .

Then

(
∫
|f |pv dx)

1
p = ‖fv

1
p−1 g−1‖∞ ≥ ‖fv

1
p−1 H−1‖∞ .

As Hv−
1

p−1 ∈ A−1 , by hypothesis and Lemma 4.1, we obtain

‖ |Tf |#+v
1

p−1 H−1‖∞ ≤ |‖ |Tf | |‖
v

1
p−1 H−1,+

≤ C‖fv
1

p−1 H−1‖∞ .

Collecting the estimates,

(∫
|f |pv dx

) 1
p

≥ C‖ |Tf |#+v
1

p−1 H−1‖∞
(∫

Hpv−
1

p−1 dx

) 1
p

≥ C

(∫
|Tf |# p

+ v
p

p−1 H−pHpv−
1

p−1 dx

) 1
p

= C

(∫
|Tf |# p

+ v dx

) 1
p

≥ C

(∫
|Tf |pv dx

) 1
p

.

The last inequality follows from Corollary 4.3. ¤

Proof of Theorem IV. Let f ∈ C∞0 (R), 0 < m =
∫ |f |pvp , and (ur, vr) ∈ A+

(
p
r , q

r

)
.

We define

b(x) =

{ |f(x)|p/p0−1v(x)p/p0m
1
q if |f(x)| > 0

eπ
|x|2

q v(x) if |f(x)| = 0 .

Thus
||fv||p = ||fb||p0 and

∫
b−qvq dx ≤ 2

Let us put

a(x) =
(
M+b−r(

p0
r )′(x)

)− 1
r(

p0
r

)′ .
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It follows immediately that (ar, br) ∈ A+(p0
r ,∞). Let Eλ = {x : |Tf(x)| > λ}. Hence

uq(Eλ) =
∫

Eλ

uq =
∫

χEλ
(x)a−1(x)a(x)uq(x) dx

≤ ||χEλ
||(1+1/q,1,auq)||a−1||(q+1,∞,auq) .

In order to estimate the second factor above, we observe that

λq+1

∫

{x:a(x)−1>λ}
auq ≤ λq

∫

{x:M+b−r(
p0
r

)′ (x)>λr(
p0
r

)′}
uq . (4.8)

Recalling (ur, vr) ∈ A+
(

p
r , q

r

)
, implies (uq, vq) = (ur q

r , vr q
r ) ∈ A+

s , for s = 1+(q/r)/(p/r)′,
then it follows that M+ is weakly bounded from Ls(vq) into Ls(uq) (see [13], [8], [7]).
Therefore

(4.8) ≤ C
λq

(λr(
p0
r )′)s

∫
(b−r(

p0
r )′)svq = C

∫
b−qvq ≤ 2C .

We consider the non-increasing rearrangement of a−1 respect to the measure auq,

(a−1)∗(t) = inf{y : auq({x : |a−1| > y}) ≤ t} ≤ inf{y :
C

yq+1
≤ t} =

(
C

t

) 1
q+1

;

then, we have
||a−1||(q+1,∞,auq) = sup

t>0
t

1
q+1 (a−1)∗(t) ≤ C .

A non-increasing rearragement of χEλ
with respect to the measure auq is χ[0,R) with

R =
∫

Eλ

auq, then

||χEλ
||(1+ 1

q ,1,auq) =
q

q + 1

∫ R

0

t
q

q+1
dt

t
=

q

q + 1

∫ R

0

t−
1

q+1 dt = R
q

q+1 .

On the other hand

R =
∫

Eλ

auq ≤ λ−1

∫

Eλ

|Tf |auq ≤ λ−1||aTf ||∞
∫

Eλ

uq ≤ Cλ−1||fb||p0

∫

Eλ

uq .

then
||χEλ

||(1+ 1
q ,1,auq) ≤ Cλ−

q
q+1 ||fb||

q
q+1
p0 (

∫

Eλ

uq)
q

q+1 .

Since f ∈ C∞0 (R)) , it follows that

uq(Eλ) ≤ ||χEλ
||(1+1/q,1,auq)||a−1||(q+1,∞,auq) ≤ Cλ−

q
q+1 ||fv||

q
q+1
p (uq(Eλ))

q
q+1 ,

and as uq(Eλ) is finite, we get

uq({x : |Tf(x)| > λ}) ≤ C(
1
λp

∫
fpvp)

q
p . ¤
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Proof of Theorem V. The proof is similar to the one given in Theorem IV. Let α, β be
such that 0 ≤ β < α ≤ r ≤ 1, α− β = 1

p0
, 1

p − 1
q = 1

p0
, and (u, v) ∈ A+

p,q,α,β . We only need
to produce a weight satisfiying

||fv||p = ||fb||β and
∫

b−qvq dx ≤ 2.

Then defining a(x) = (M+
r,rb

−p′0)−1/p′0(x), obviously, we have that the pair (a, bp0) ∈
A+

p0,∞,r,r. Notice that if (u, v) ∈ A+
p,q,α,β then (u, vq/p) ∈ A+

s,s,α,α with s = q(1−(α−β)) =
q
p′0

. This implies (u, vq/p) ∈ A+
s,s,r,r for all 1 ≥ r ≥ α. In order to get a bound similar to

(4.8), we need to use (1.1) for α = β = r and p = q = s. ¤
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