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Abstract. The purpose of this paper is to prove strong type inequalities
with one-sided weights for commutators (with symbol b ∈ BMO) of several
one-sided operators, such as the one-sided discrete square function, the
one-sided fractional operators, or one-sided maximal operators given by
the convolution with a smooth function. We also prove that b ∈ BMO is
a necessary condition for the boundedness of commutators of these one-
sided operators.

1. Introduction

There is a great amount of works that deal with the topic of commu-
tators of different operators with BMO functions. If T is the operator
given by convolution with a kernel K, the commutator of T , with a locally
integrable function b, called the symbol, is the operator

Tbf(x) =
∫

Rn
(b(x)− b(y))K(x− y)f(y)dy.

Sometimes the symbol appears inside the integral with absolute values (see
Section 2 for precise definitions).

In 1976, Coifman, Rochberg and Weiss, [4], introduced the higher order
commutators,

T kb f(x) =
∫

Rn
(b(x)− b(y))kK(x− y)f(y)dy, k = 0, 1, 2, ...

Nottice that T 0
b = T . In [4], it is proved that if K is a Calderón-Zygmund

kernel then T kb is bounded from Lp(Rn) to Lp(Rn), for 1 < p < ∞ when
b ∈ BMO. In fact, the condition b ∈ BMO is also necessary in order to
have Tb bounded on Lp(Rn).

Later, many authors have studied strong and weak type inequalities for
commutators with weights (see [3], [13], [14]). Furthermore, many of the
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results have been generalized to commutators of other operators, not only
Calderón-Zygmund operators (see [16], [17], [18]).

In this paper we are interested in studying commutators of certain one-
sided operators, such as the one-sided discrete square function that appears
in [19], the fractional integrals of Weyl and Riemann-Liouville and a class
of one-sided maximal operators given by the convolution with a smooth
function. This work is highly inspired in the works of C. Segovia and J. L.
Torrea [17] and [18]. The main tools for proving the weighted inequalities
for these one-sided operators are extrapolation theorems proved by R.
Maćıas and M.S. Riveros in [6]. We also prove that the condition b ∈ BMO
is necessary, i.e., even though we have one-sided operators and our weights
are one-sided Ap weights, the condition b ∈ BMO can’t be weakened (is
a two-sided condition).

Throughout this paper the letter C will be a positive constant, not
necessarily the same at each occurrence. If 1 ≤ p ≤ ∞, then its conjugate
exponent will be denoted by p′ and Ap will be the classical Muckenhoupt’s
class of weights (see [12]).

2. Definitions and statement of the results

Definition 2.1. For f locally integrable, we define the one-sided discrete
square function applied to f by

S+f(x) =

(∑

n∈Z
|Anf(x)−An−1f(x)|2

)1/2

,

where Anf(x) = 1
2n

∫ x+2n

x
f(y)dy.

It is not difficult to see that S+f(x) = ||U+f(x)||`2 , where U+ is the
sequence valued operator

(2.1) U+f(x) =
∫

R
H(x− y)f(y)dy,

where

(2.2) H(x) =
{

1
2n
χ(−2n,0)(x)− 1

2n−1
χ(−2n−1,0)(x)

}

n∈Z
.

(See [19].)

Definition 2.2. The one-sided Hardy-Littlewood maximal operators M+

and M− are defined for locally integrable functions f by

M+f(x) = sup
h>0

1
h

∫ x+h

x

|f | and M−f(x) = sup
h>0

1
h

∫ x

x−h
|f |.

The good weights for these operators are the one-sided weights, A+
p and

A−p :

(A+
p ) sup

a<b<c

1
(c− a)p

∫ b

a

ω

(∫ c

b

ω1−p′
)p−1

<∞, 1 < p <∞,
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(A+
1 ) M−ω(x) ≤ Cω(x) a.e.

and

(A+
∞) A+

∞ = ∪p≥1A
+
p .

The classes A−p are defined in a similar way. It is interesting to note that
Ap = A+

p ∩ A−p , Ap ( A+
p and Ap ( A−p . (See [15], [7], [8], [9] for more

definitions and results.)
It is proved in [19], that ω ∈ A+

p , 1 < p < ∞, if, and only if, S+ is
bounded from Lp(ω) to Lp(ω) and that ω ∈ A+

1 , if, and only if, S+ is of
weak-type (1,1) with respect to ω.

We shall also use for our purposes the following variant of the one-sided
Hardy-Littlewood maximal operator:

Definition 2.3. Let ϕ ∈ C∞c (−∞, 0], ϕ ≥ 0 nondecreasing in (−∞, 0].
For ε > 0 let ϕε(x) = ε−1ϕ(ε−1x). The maximal operator associated to ϕ
is defined by

M+
ϕ f(x) = sup

ε>0
ϕε ∗ |f |(x).

It is not difficult to see that M+
ϕ f is pointwise equivalent to M+f . As

a consequence, M+
ϕ is bounded from Lp(ω) to Lp(ω), for 1 < p < ∞ and

ω ∈ A+
p .

Definition 2.4. The one-sided maximal fractional operator M+
α , 0 < α <

1, is defined, for locally integrable functions f , by

M+
α f(x) = sup

h>0

1
h1−α

∫ x+h

x

|f |.

It is proved in [2] that ||(M+
α f)ω||q ≤ C||fω||p if and only if ω ∈

A+(p, q), for 1 < p < q, 1/p− 1/q = α, where

(A+(p, q))
(

1
h

∫ x

x−h
ωq
)1/q

(
1
h

∫ x+h

x

ω−p
′
)1/p′

≤ C,

(A+(p,∞)) ||ωχ[x−h,x]||∞
(

1
h

∫ x+h

x

ω−p
′
)1/p′

≤ C,

for all h > 0 and x ∈ R.
We also have a variant of the operator M+

α :

Definition 2.5. Let 0 < α < 1 and let ϕα ∈ C∞((−∞, 0]), ϕα ≥ 0, non-
decreasing in (−∞, 0] and such that |ϕα(x−y)−ϕα(x)| ≤ C|y||x|−2+α, for
all x, y such that |x| > 2|y|. For each ε > 0, set ϕα,ε(x) = ε−1+αϕα(ε−1x).
We define the maximal operator associated to ϕα by

M+
ϕαf(x) = sup

ε>0
ϕα,ε ∗ |f |(x).

It is very easy to see that M+
ϕαf(x) ≤ CM+

α f(x).
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Definition 2.6. Let b ∈ L1
loc(R). We say that b ∈ BMO if

||b||BMO = sup
I

1
|I|
∫

I

|b− bI | <∞,

where I denotes any bounded interval and bI = 1
|I|
∫
I
b.

Definition 2.7. Let f be a locally integrable function. The one-sided
sharp maximal function is defined by

f#,+(x) = sup
h>0

1
h

∫ x+h

x

(
f(y)− 1

h

∫ x+2h

x+h

f

)+

dy.

It is proved in [11] that

f#,+(x) ≤ sup
h>0

inf
a∈R

1
h

∫ x+h

x

(f(y)− a)+dy +
1
h

∫ x+2h

x+h

(a− f(y))+dy

≤ C||f ||BMO.

Now we shall state our results.

Theorem 2.8. Let b ∈ BMO, H as in (2.2) and k = 0, 1, . . . . The k-th
order commutator of the one-sided discrete square function is defined by

S+,k
b f(x) =

∣∣∣∣
∣∣∣∣
∫

R
(b(x)− b(y))kH(x− y)f(y)dy

∣∣∣∣
∣∣∣∣
`2
.

Then for 1 < p <∞ and ω ∈ A+
p ,

∫

R
|S+,k
b f |pω ≤ C

∫

R
|f |pω,

for all bounded functions f with compact support.

Theorem 2.9. Let 0 < α < 1, b ∈ BMO, and k = 0, 1, . . . . The k-th
order commutator of the Weyl fractional integral is defined by

I+,k
α,b f(x) =

∫ ∞
x

(b(x)− b(y))k
f(y)

(y − x)1−α dy.

(The Weyl fractional integral is the corresponding one for k = 0) Then for
all ω ∈ A+(p, q), 1 < p < q <∞, 1/p− 1/q = α, we have

(∫

R
|I+,k
α,b f |qωq

)1/q

≤ C
(∫

R
|f |pωp

)1/p

,

for all bounded f with compact support.

In the following theorems we prove that for commutators of one-sided
operators given by convolution with a smooth function, b ∈ BMO is also
a necessary condition in order to have the commutator bounded on Lp(ω).

Let ϕ ∈ C∞c (−∞, 0], ϕ ≥ 0 nondecreasing in (−∞, 0]. Then it is easy
to see that there exists C > 0 such that |ϕ(x− y)−ϕ(x)| ≤ C|y||x|−2, for
all x, y such that |x| > 2|y|.

For k = 0, 1, ..., the k-th order commutator of M+
ϕ with symbol b is

defined by

M+,k
ϕ,b f(x) = sup

ε>0

∫ ∞
x

|b(x)− b(y)|kϕε(x− y)|f(y)| dy.
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Theorem 2.10. Let 1 < p <∞, b ∈ BMO and ω ∈ A+
p . Then

∫

R
|M+,k

ϕ,b f |pω ≤ C
∫

R
|f |pω.

If we consider ϕ as before and such that χ[−1,0] ≤ ϕ, then we have

M+,k
b f(x) ≤M+,k

ϕ,b f(x),

where

M+,k
b f(x) = sup

h>0

1
h

∫ x+h

x

|b(x)− b(y)|k|f(y)| dy.

Therefore, if b ∈ BMO, Theorem 2.10 gives that M+,k
b is bounded from

Lp(ω) to Lp(ω), for 1 < p < ∞ and ω ∈ A+
p . In fact, more can be said,

the converse is also true.

Theorem 2.11. The following conditions are equivalent:
(i) M+,k

b is bounded from Lp(ω) to Lp(ω), for all p with 1 < p < ∞
and ω ∈ A+

p .
(ii) M+,k

b is bounded from Lp(dx) to Lp(dx), for some p > 1.
(iii) b ∈ BMO.

Analogous results hold for M+
ϕα . Let 0 < α < 1. Suppose ϕα ∈

C∞((−∞, 0]), ϕα ≥ 0, nondecreasing in (−∞, 0] and such that
|ϕα(x− y)− ϕα(x)| ≤ C|y||x|α−2, for all x, y such that |x| > 2|y|.

For k = 0, 1, ..., the k-th order commutator of M+
ϕα with symbol b is

defined by

M+,k
ϕα,b

f(x) = sup
ε>0

∫ ∞
x

|b(x)− b(y)|kϕα,ε(x− y)|f(y)| dy.

Then we have the following:

Theorem 2.12. Let b ∈ BMO and let (p, q) be such that 1 < p < q <∞
and 1

p − 1
q = α. Then, for all ω ∈ A+(p, q), we have that

(∫

R
|M+,k

ϕα,b
f |qωq

)1/q

≤ C
(∫

R
|f |pωp

)1/p

.

Since M+
ϕαf(x) ≤ CM+

α f(x), the case k = 0 is a consequence of a result
of Andersen and Sawyer [2]. And if we choose ϕα such that χ[−1,0] ≤ ϕα,
then M+,k

α,b f(x) ≤M+,k
ϕα,b

f(x), where

M+,k
α,b f(x) = sup

h>0

1
h1−α

∫ x+h

x

|b(x)− b(y)|k|f(y)|dy.

For this operator we can also prove that b ∈ BMO is a necessary condition.

Theorem 2.13. The following conditions are equivalent:
(i) M+,k

α,b is bounded from Lp(ωp) to Lq(ωq) for all pairs (p, q) such
that 1

p − 1
q = α, 1 < p < q <∞ and ω ∈ A+(p, q).

(ii) M+,k
α,b is bounded from Lp(dx) to Lq(dx) for some pair (p, q) such

that 1
p − 1

q = α and 1 < p < q <∞.
(iii) b ∈ BMO.
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3. Proof of the Results

The main tools for proving our results are two extrapolation theorems
that appeared in [6], with slight modifications.

Theorem 3.1. Let T be a sublinear operator defined in C∞c (R). Assume
that for all ω such that ω−1 ∈ A−1 , there exists C = C(ω) such that

||ωTf ||∞ ≤ C||fω||∞.

Then, for all ω ∈ A+
p , 1 < p <∞, there exists C = C(ω) such that

(∫
|Tf |pω

)1/p

≤ C

(∫
|f |pω

)1/p

,

provided that the left hand side is finite.

Theorem 3.2. Let 1 < p0 <∞ and T be a sublinear operator defined in
C∞c (R). Assume that for all ω ∈ A+(p0,∞) there exists C = C(ω) such
that

||ωTf ||∞ ≤ C||fω||p0 .

Then, for all pairs (p, q) such that 1 < p < p0, 1
p − 1

q = 1
p0

and all
ω ∈ A+(p, q), there exists C = C(ω) such that

||ωTf ||q ≤ C||fω||p ,

provided that the left hand side is finite.

We will also need the following result of Mart́ın–Reyes and de la Torre
(theorem 4 in [11]):

Theorem 3.3. Let 1 < p <∞. If ω ∈ A+
p and M+f ∈ Lp(ω), then there

exists C = C(w) such that
∫

R
(M+f)pω ≤ C

∫

R
(f#,+)pω.

An other result that will be used often is the following (see [15]):

Theorem 3.4. Let ω ∈ A−1 . Then there exists s > 1 such that ωr ∈ A−1 ,
for all r such that 1 < r ≤ s.
Proof of Theorem 2.8. Let ω ∈ A+

p . For b ∈ L∞ ⊂ BMO and f bounded
of compact support, we have that S+,k

b f ∈ Lp(ω). Then, by Theorem 3.3,

(3.1)
∫

R
|S+,k
b f |pω ≤ C

∫

R
|M+(S+,k

b f)|pω ≤ C
∫

R
|(S+,k

b f)#,+|pω.

To prove the theorem for any b ∈ BMO we proceed in the same way as
in [5]. We will control (S+,k

b f)#,+ by some one-sided maximal operators.
Using Theorem 3.1, we shall prove that they are bounded from Lp(ω) to
Lp(ω).
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Let λ be an arbitrary constant. Then b(x)−b(y) = (b(x)−λ)−(b(y)−λ)
and
(3.2)

S+,k
b f(x) =

∣∣∣∣
∣∣∣∣
∫

R
(b(x)− b(y))kH(x− y)f(y)dy

∣∣∣∣
∣∣∣∣
`2

=

∣∣∣∣∣∣

∣∣∣∣∣∣

k∑

j=0

Cj,k(b(x)− λ)j
∫

R
(b(y)− λ)k−jH(x− y)f(y)dy

∣∣∣∣∣∣

∣∣∣∣∣∣
`2

≤
∣∣∣∣
∣∣∣∣
∫

R
(b(y)− λ)kH(x− y)f(y)dy

∣∣∣∣
∣∣∣∣
`2

+

∣∣∣∣∣∣

∣∣∣∣∣∣

k∑

j=1

Cj,k (b(x)− λ)j
∫

R
(b(y)− λ)k−jH(x− y)f(y)dy

∣∣∣∣
∣∣∣∣
`2

= S+((b− λ)kf)(x)

+

∣∣∣∣∣∣

∣∣∣∣∣∣

k∑

j=1

k−j∑
s=0

Cj,k,s(b(x)− λ)s+j
∫

R
(b(x)− b(y))k−j−sH(x− y)f(y)dy

∣∣∣∣
∣∣∣∣
`2

≤ S+((b− λ)kf)(x) +
k−1∑
m=0

Ck,m|b(x)− λ|k−mS+,m
b f(x) ,

where Cj,k (respectively Cj,k,s) are absolute constants depending only on
j and k (respectively j, k and s). Let x ∈ R, h > 0. Let i ∈ Z be such
that 2i ≤ h < 2i+1 and set J = [x, x + 2i+3]. Then, write f = f1 + f2,
where f1 = fχJ and set λ = bJ . Then

(3.3)

1
h

∫ x+2h

x

|S+,k
b f(y)− S+((b− bJ)kf2)(x)|dy

≤ 1
h

∫ x+2h

x

|S+((b− bJ)kf1)(y)|dy

+
1
h

∫ x+2h

x

∣∣S+((b− bJ )kf2)(y)− S+((b− bJ)kf2)(x)
∣∣ dy

+
k−1∑
m=0

Ck,m
1
h

∫ x+2h

x

|b(y)− bJ |k−m|S+,m
b f(y)|dy

= I(x) + II(x) + III(x).

Let U+ be as in (2.1). Then

(3.4) II(x) ≤ 1
h

∫ x+2i+3

x

||U+((b−bJ)kf2)(y)−U+((b−bJ)kf2)(x)||`2dy,

and

(3.5)
||U+((b− bJ)kf2)(y)− U+((b− bJ)kf2)(x)||`2

≤
∫ ∞
x+2i+3

|b(t)− bJ |k|f(t)|||H(y − t)−H(x− t)||`2dt.
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Consider the following sublinear operators defined in C∞c :

M+
1 f(x) = sup

i∈Z

1
2i

∫ x+2i+2

x

|S+((b− bJ)kfχJ )(y)|dy ;

M+
2 f(x)= sup

i∈Z

1
2i

∫ x+2i+3

x

∫ ∞
x+2i+3

|b(t)−bJ |k|f(t)|||H(y−t)−H(x−t)||`2dtdy ;

and

M+
3,mf(x) = sup

h>0

1
h

∫ x+2h

x

|b(y)− b[x,x+8h]|k−m|f(y)|dy , 0 ≤ m ≤ k − 1,

where, for each i, J denotes the interval [x, x+ 2i+3].
Inequalities (3.3), (3.4), (3.5) and the above definitions give that

(S+,k
b f)#,+(x) ≤ C

(
M+

1 f(x) +M+
2 f(x) +

k−1∑
m=0

M+
3,m(S+,m

b f)(x)

)
.

We shall prove, using Theorem 3.1, that these operators are bounded
from Lp(ω) to Lp(ω), ω ∈ A+

p , 1 < p <∞ .
Boundedness of M+

1 : Let ω be a weight such that ω−1 ∈ A−1 . Let
1 < q < ∞ and 1 < s < ∞ be such that ω−qs ∈ A−1 (Theorem 3.4). By
Hölder’s and John-Nirenberg’s inequalities and the fact that S+ is bounded
from Lq(dx) to Lq(dx) we get
(3.6)

1
2i

∫ x+2i+2

x

|S+((b− bJ )kfχJ)(y)|dy

≤ C
(

1
2i

∫ x+2i+2

x

|S+((b− bJ)kfχJ)(y)|qdy
)1/q

≤ C
(

1
2i

∫ x+2i+3

x

|(b(y)− bJ)kf(y)|qdy
)1/q

≤ C||fω||∞
(

1
2i

∫ x+2i+3

x

|(b(y)− bJ)kω−1(y)|qdy
)1/q

≤ C||fω||∞
(

1
2i

∫ x+2i+3

x

|b− bJ |kqs
′
)1/qs′ (

1
2i

∫ x+2i+3

x

ω−qs
)1/sq

≤ C||fω||∞||b||kBMOω
−1(x).

Then, for all ω such that ω−1 ∈ A−1 ,

||ωM+
1 f ||∞ ≤ C||b||kBMO||fω||∞ ,

and by Theorem 3.1, we obtain that for all ω ∈ A+
p , 1 < p <∞,

||M+
1 f ||ω,p ≤ C||b||kBMO||f ||ω,p .
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Boundedness of M+
2 : Let ω be such that ω−1 ∈ A−1 . Then, if Ij =

[x, x+ 2j+1], we have that
(3.7)∫ ∞

x+2i+3
|b(t)− bJ |k|f(t)|||H(y − t)−H(x− t)||`2dt

≤ C
∞∑

j=i+3

∫ x+2j+1

x+2j
|b(t)− bIj |k|f(t)|||H(y − t)−H(x− t)||`2dt

+ C

∞∑

j=i+3

|bIj − bJ |k
∫ x+2j+1

x+2j
|f(t)|||H(y − t)−H(x− t)||`2dt

= IV (x) + V (x).

We choose (s, s′) and (t, t′) such that ω−s ∈ A−1 and ω−st
′ ∈ A−1 . Then,

by Hölder’s inequality with exponents (s, s′) and (t, t′),

(3.8)

IV (x) ≤ C
∞∑

j=i+3

(∫

Ij

|b− bIj |ksω−sωs|f |s
)1/s

×
(∫ x+2j+1

x+2j
||H(y − t)−H(x− t)||s′`2dt

)1/s′

≤ C||fω||∞
∞∑

j=i+3

(∫

Ij

|b− bIj |kst
)1/st(∫

Ij

ω−st
′
)1/st′

×
(∫ x+2j+1

x+2j
||H(y − t)−H(x− t)||s′`2dt

)1/s′

.

It is proved in theorem 1.6 of [19] that for all y ∈ [x, x + 2i+3] the kernel
H satisfies

(3.9)

(∫ x+2j+1

x+2j
||H(y − t)−H(x− t)||s′`2dt

)1/s′

≤ C 2i/s
′

2j
.

Then, using that b ∈ BMO, the fact that ω−st
′ ∈ A−1 and (3.9), we get

(3.10)

IV (x) ≤ C||fω||∞
∞∑

j=i+3

||b||kBMO(2j)1/stω−1(x)(2j+1)1/st′ 2
i/s′

2j

≤ Cω−1(x)||fω||∞||b||kBMO

∞∑

j=i+3

(
2i

2j

)1/s′

≤ Cω−1(x)||fω||∞||b||kBMO.

Using again Hölder’s inequality, (3.9), the fact that w−s ∈ A−1 and lemma
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1 in [5], we get

(3.11)

V (x)= C

∞∑

j=i+3

|bIj − bJ |k
∫ x+2j+1

x+2j
|f(t)|||H(y − t)−H(x− t)||`2dt

≤ C
∞∑

j=i+3

||b||kBMO(2(j − i))k||fω||∞
(∫

Ij

ω−s
)1/s

×
(∫ x+2j+1

x+2j
||H(y − t)−H(x− t)||s′`2dt

)1/s′

≤ C||b||kBMO||fω||∞ω−1(x)
∞∑

j=i+3

(2(j − i))k(2j+1)1/s 2i/s
′

2j

≤ Cω−1(x)||b||kBMO||fω||∞
∞∑

j=i+3

(j − i)k2i/s
′

2j/s′

≤ Cω−1(x)||b||kBMO||fω||∞.

Then, by (3.7), (3.10) and (3.11), we get that, for all ω such that ω−1 ∈ A−1 ,

||ωM+
2 f ||∞ ≤ C||fω||∞.

Then, by Theorem 3.1, for all 1 < p <∞ and ω ∈ A+
p ,

||M+
2 f ||p,ω ≤ C||f ||p,ω .

Boundedness of M+
3,m: Let ω be such that ω−1 ∈ A−1 and let q > 1 be

such that ω−q ∈ A−1 . Then, using again Hölder’s and John-Nirenberg’s
inequalities we obtain

1
h

∫ x+2h

x

|b(y)− b[x,x+8h]|k−m|f(y)|dy

≤
(

1
h

∫ x+2h

x

|b(y)− b[x,x+8h]|(k−m)q′dy

)1/q′ (
1
h

∫ x+2h

x

|f(y)|qdy
)1/q

≤ C||b||k−mBMO

(
1
h

∫ x+2h

x

|f(y)|qdy
)1/q

≤ C||b||k−mBMO||fω||∞
(

1
h

∫ x+2h

x

ω−qdy

)1/q

≤ C||b||k−mBMO||fω||∞ω−1(x).

Then, for all ω such that ω−1 ∈ A−1 ,

||ωM+
3,mf ||∞ ≤ C||b||k−mBMO||ωf ||∞.



WEIGHTS FOR COMMUTATORS OF ONE-SIDED... 11

Therefore, by Theorem 3.1, we have that, for all ω ∈ A+
p , 1 < p <∞,

||M+
3,mf ||ω,p ≤ C||b||k−mBMO||f ||ω,p.

Using now the induction principle (the case k = 0 was proved in [19]), we
obtain that, for all ω ∈ A+

p , 1 < p <∞,

||M+
3,m(S+,m

b f)||ω,p ≤ C||b||k−mBMO||S+,m
b f ||ω,p ≤ C||b||kBMO||f ||ω,p. �

Proof of Theorem 2.9. This proof follows the same pattern as the preceding
one. Let b ∈ BMO bounded, and λ ∈ R, then, as in (3.2), we can write

Ik,+α,b f(x) = I+
α ((b− λ)kf)(x) +

k−1∑
m=0

Ck,m(b(x)− λ)k−mI+,m
α,b f(x).

Let x ∈ R, h > 0 and J = [x, x+ 4h]. Write f = f1 + f2, where f1 = fχJ
and set λ = bJ . Then,
(3.12)

1
h

∫ x+2h

x

∣∣∣I+,k
α,b f(y)− I+

α ((b− bJ )kf2)(x+ 2h)
∣∣∣ dy

≤ 1
h

∫ x+2h

x

|I+
α ((b− bJ)kf1)(y)|dy

+
1
h

∫ x+2h

x

∣∣I+
α ((b− bJ)kf2)(y)− I+

α ((b− bJ)kf2)(x+ 2h)
∣∣ dy

+
k−1∑
m=0

Ck,m
1
h

∫ x+2h

x

|b(y)− bJ |k−m|I+,m
α,b f(y)|dy

= I(x) + II(x) + III(x).

It is clear that

III(x) ≤
k−1∑
m=0

Ck,mM
+
3,m(I+,m

α,b f)(x),

where M+
3,m is as in the proof of Theorem 2.8. Then, we already know that

M+
3,m is bounded from Lp(ω) to Lp(ω), provided ω ∈ A+

p and 1 < p <∞.
So, if ω ∈ A+(p, q), 1/p − 1/q = α, then ωq ∈ A+

q , and by induction (see
k=0 in [10]), we obtain

||M+
3,m(I+,m

α,b f)||ωq,q ≤ C||b||k−mBMO||I+,m
α,b f ||ωq,q ≤ C||b||kBMO||f ||ωp,p,

for all f ∈ C∞c (R).
To control I(x) let us define

M+
4 f(x) = sup

h>0

1
h

∫ x+2h

x

|I+
α ((b− bJ)kfχJ)(y)|dy,
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where, for each h > 0, J = [x, x + 4h]. It is not difficult to see that M+
4

is a sublinear operator in C∞c and it is clear that I(x) ≤ M+
4 f(x). Let us

prove that M+
4 is bounded from Lp(ωp) to Lq(ωq) using Theorem 3.2.

Let ω ∈ A+( 1
α ,∞), then ω

−1
1−α ∈ A−1 . Therefore, there exist t1 > 1 and

t2 > 1 such that ω
−t1
1−α ∈ A−1 and ω

−t1t2
1−α ∈ A−1 . Let s > 1 and r > 1

be such that s = t1/(1 − α) and 1/r − 1/s = α. Then, using Hölder’s
inequality and the fact that I+

α is bounded from Lr(R) to Ls(R), we get

(3.13)

1
h

∫ x+2h

x

|I+
α ((b− bJ)kfχJ)(y)|dy

≤
(

1
h

∫ x+2h

x

|I+
α ((b− bJ)kfχJ )(y)|sdy

)1/s

≤ Chα
(

1
h

∫ x+4h

x

|(b(y)− bJ )kf(y)|rωrω−rdy
)1/r

≤ Chα
(

1
h

∫ x+4h

x

|(b− bJ)k|r sr ω−r sr
) 1
s
(

1
h

∫ x+4h

x

|f | 1αω 1
α

)α
.

Therefore, using Hölder’s and John-Nirenberg’s inequalities and the fact
that ω−st2 ∈ A−1 , the chain of inequalities in (3.13) can be continued as
follows:

(3.14)

≤ C||fω|| 1
α

(
1
h

∫ x+4h

x

|b− bJ |ksω−s
) 1
s

≤ C||fω|| 1
α

(
1
h

∫ x+4h

x

|b− bJ |kst
′
2

) 1
st′2
(

1
h

∫ x+4h

x

ω−st2
) 1
st2

≤ C||fω|| 1
α
||b||kBMOω

−1(x).

As a consequence,

||ωM+
4 f ||∞ ≤ C||b||kBMO||fω|| 1α .

Then, by Theorem 3.2, for all ω ∈ A+(p, q), 1
p − 1

q = α,

||M+
4 f ||ωq,q ≤ C||b||kBMO||f ||ωp,p .

Finally, we shall estimate II(x). We have that

II(x) =
1
h

∫ x+2h

x

∣∣∣∣
∫ ∞
x+4h

σ(t, y)dt
∣∣∣∣ dy,

where

σ(t, y) = (b(t)− bJ)kf(t)
(

1
(y − t)1−α −

1
(x+ 2h− t)1−α

)
.
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Consider the following sublinear operator in C∞c (R):

M+
5 f(x) = sup

h>0

1
h

∫ x+2h

x

∣∣∣∣
∫ ∞
x+4h

σ(t, y)dt
∣∣∣∣ dy.

For each j ∈ N, set Ij = [x, x+ 2j+1h]. Then,

(3.15)

1
h

∫ x+2h

x

∣∣∣∣
∫ ∞
x+4h

σ(t, y)dt
∣∣∣∣ dy

≤ 1
h

∫ x+2h

x

∞∑

j=2

∫ x+2j+1h

x+2jh

|σ(t, y)| dtdy

≤ C
∞∑

j=2

∫ x+2j+1h

x+2jh

|b(t)− bJ |k|f(t)| 2h
(h(2j − 2))2−α dt

≤ C
∞∑

j=2

hα

(2j−1)1−α

(
2

2j−1h

∫ x+2j+1h

x+2jh

|b(t)− bJ |k|f(t)|dt
)

≤ C
∞∑

j=2

hα

(2j−1)1−α

(
2

2j−1h

∫ x+2j+1h

x+2jh

|b(t)− bIj |k|f(t)|dt
)

+ C

∞∑

j=2

hα

(2j−1)1−α

(∫ x+2j+1h

x+2jh

|bIj − bJ |k|f(t)|dt
)

≤ C
∞∑

j=2

hα

(2j−1)1−α (IV (x) + V (x)).

Let ω ∈ A+( 1
α ,∞). Then ω

−1
1−α ∈ A−1 . Choose r > 1 such that ω

−r
1−α ∈

A−1 . Then, by Hölder’s and John-Nirenberg’s inequalities,

(3.16)

IV (x) ≤
(

2
2j−1h

∫ x+2j+1h

x+2jh

|f | 1αω 1
α

)α

×
(

2
2j−1h

∫ x+2j+1h

x+2jh

|b(t)− bIj |
k

1−αω
−1

1−α

)1−α

≤ C(2jh)−α||fω|| 1
α

(
1

2jh

∫ x+2j+1h

x

|b(t)− bIj |
kr′
1−α

) 1−α
r′

×
(

1
2jh

∫ x+2j+1h

x

ω
−r

1−α

) 1−α
r

≤ C||b||kBMO(2jh)−α||fω|| 1
α
ω−1(x).
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Using again lemma 1 in [5] and Hölder’s inequality,

(3.17)

V (x) ≤ 1
2jh
|bIj − bJ |k

∫ x+2j+1h

x

|f(t)|dt

≤ C(2j)k||b||kBMO

(
1

2jh

∫ x+2j+1h

x

|f | 1αω 1
α

)α

×
(

1
2jh

∫ x+2j+1h

x

ω
−1

1−α

)1−α

≤ C(2j)k(2jh)−α||b||kBMO||fω|| 1αω
−1(x).

Putting together inequalities (3.15), (3.16) and (3.17), we get that

1
h

∫ x+2h

x

∣∣∣∣
∫ ∞
x+4h

σ(t, y)dt
∣∣∣∣ dy

≤ C||b||kBMO||fω|| 1αω
−1(x)

∞∑

j=2

(
21−α

2j
+

21−α(2j)k

2j

)

≤ C||b||kBMO||fω|| 1αω
−1(x).

Taking supremums first on h > 0 and then on x ∈ R, we get

||ωM+
5 f ||∞ ≤ C||b||kBMO||fω|| 1α .

So, by Theorem 3.2, for all ω ∈ A+(p, q), 1
p − 1

q = α,

||M+
5 f ||ωq,q ≤ C||b||kBMO||f ||ωp,p .

�
Proof of Theorem 2.10.

This proof also follows the same pattern as the preceding ones. Let
b ∈ BMO bounded and let λ ∈ R. Then, as in (3.2), we have

M+,k
ϕ,b f(x) ≤M+

ϕ ((b− λ)kf)(x) +
k−1∑
m=0

Ck,m|b(x)− λ|k−mM+,m
ϕ,b f(x).

Let us fix x ∈ R and h > 0 and let J = [x, x + 8h]. Write f = f1 + f2,
where f1 = fχJ , and also write λ = bJ . Then, as in (3.3) and (3.12), it
follows that

1
h

∫ x+2h

x

∣∣∣M+,k
ϕ,b f(y)−M+

ϕ ((b− bJ)kf2)(x+ 2h)
∣∣∣ dy

≤ 1
h

∫ x+2h

x

|M+
ϕ ((b− bJ)kf1)(y)|dy

+
1
h

∫ x+2h

x

∣∣M+
ϕ ((b− bJ)kf2)(y)−M+

ϕ ((b− bJ)kf2)(x+ 2h)
∣∣ dy

+
k−1∑
m=0

Ck,m
1
h

∫ x+2h

x

|b(y)− bJ |k−m|M+,m
ϕ,b f(y)|dy

= I(x) + II(x) + III(x).
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It is clear that III(x) ≤ ∑k−1
m=0 Ck,mM

+
3,m(M+,m

ϕ,b f)(x), being M+
3,m the

same as in the proofs of Theorems 2.8 and 2.9, and

(3.18) II(x) ≤ C 1
h

∫ x+2h

x

∫ ∞
x+8h

x+ 2h− y
(z − (x+ 2h))2

|b(z)− bJ |k|f(z)|dzdy,

by the conditions imposed on the kernel ϕ.
Consider the following sublinear operators defined on C∞c :

M+
6 f(x) = sup

h>0

1
h

∫ x+2h

x

|M+
ϕ ((b− bJ)kfχJ )(y)|dy

and

M+
7 f(x) = sup

h>0

1
h

∫ x+2h

x

∫ ∞
x+8h

x+ 2h− y
(z − (x+ 2h))2

|b(z)− bJ |k|f(z)|dzdy,

where, for each h > 0, J is the interval [x, x+ 8h].
The above inequalities and definitions give that

(3.19)

(M+,k
ϕ,b f)#,+(x) ≤ C

(
M+

6 f(x) +M+
7 f(x) +

k−1∑
m=0

M+
3,m(M+,m

ϕ,b f)(x)

)
.

Let ω ∈ A+
p , 1 < p < ∞. Then, acting as in the boundedness of M+

1 ,
in the proof of Theorem 2.8, we get that M+

6 is bounded from Lp(ω) to
Lp(ω). On the other hand, we already know that M+

3,m is bounded from
Lp(ω) to Lp(ω) and, to proceed with the induction, we observe that the
case k = 0 is a consequence of the fact that M+

ϕ f is pointwise equivalent to
M+f . Therefore, we only have to prove that M+

7 is bounded from Lp(ω)
to Lp(ω), for ω ∈ A+

p , 1 < p <∞.
Let us use again Theorem 3.1. Let ω be such that ω−1 ∈ A−1 . For each

j ∈ N, let Ij = [x, x+ 2jh]. Then

(3.20)

1
h

∫ x+2h

x

∫ ∞
x+8h

x+ 2h− y
(z − (x+ 2h))2

|b(z)− bJ |k|f(z)|dzdy

≤ C 1
h

∫ x+2h

x

h

∞∑

j=3

∫ x+2j+1h

x+2jh

|b(z)− bJ |k
(z − (x+ 2h))2

|f(z)|dzdy

≤ Ch||fω||∞
∞∑

j=3

2j+1

(2j − 2)2h2

1
2j+1

∫

Ij

|b(z)− bJ |kω−1(z)dz

≤ C||fω||∞
∞∑

j=3

2j+1

(2j − 2)2

(
1

2j+1h

∫

Ij

|b(z)− bIj |kω−1(z)dz

+
1

2j+1h

∫

Ij

|bIj − bJ |kω−1(z)dz

)

= C||fω||∞
∞∑

j=3

2j+1

(2j − 2)2
(IV (x) + V (x)) .
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Let q > 1 be such that ω−q ∈ A−1 (Theorem 3.4). Then, Hölder’s and
John-Nirenberg’s inequalities give
(3.21)

IV (x) ≤
(

1
2j+1h

∫ x+2j+1h

x

|b− bIj |kq
′
)1/q′(

1
2j+1h

∫ x+2j+1h

x

ω−q
)1/q

≤ C||b||kBMOω
−1(x).

In [5], it is proved that |bIj − bJ |k ≤ C|2j|k||b||kBMO for all 3 ≤ j. Then,
using this fact and using that ω−1 ∈ A−1 , we obtain

(3.22) V (x) =
1

2j+1h

∫

Ij

|bIj − bJ |kω−1 ≤ C|2j|k||b||kBMOω
−1(x).

Then by (3.20), (3.21) and (3.22) we get that, for all ω such that ω−1 ∈
A−1 ,

||ωM+
7 f ||∞ ≤ C||b||kBMO||fω||∞,

and, by Theorem 3.1, for all ω ∈ A+
p , 1 < p <∞,

||M+
7 f ||ω,p ≤ C||b||kBMO||f ||ω,p .

Now, we only have to take into account (3.19) and Theorem 3.3 to conclude
the proof of Theorem 2.10. �

Remark 3.5. Following the same steps as in the proof of Theorem 2.10
we get Corollary 1 of [5], i.e., the boundedness of the commutator of one-
sided singular integrals (introduced in [1]), from Lp(ω) to Lp(ω), ω ∈ A+

p ,
1 < p <∞.

Proof of Theorem 2.11.
(iii)⇒ (i) It is a consequence of Theorem 2.10.
(i)⇒ (ii) Let p > 1 and set ω ≡ 1.
(ii)⇒ (iii) Set I = (a, b), I+ = (b, c), and |I| = |I+|. Then

1
|I|
∫

I

|b(y)− bI+ |dy ≤
(

1
|I|
∫

I

|b(y)− bI+ |kdy
)1/k

=

(
1
|I|
∫

I

∣∣∣∣
1
|I+|

∫

I+
(b(y)− b(x))dx

∣∣∣∣
k

dy

)1/k

≤
(

1
|I|
∫

I

(
1
|I+|

∫

I+
|b(y)− b(x)|kdx

)
dy

)1/k

.

Observe that, for y ∈ I,

1
|I+|

∫

I+
|b(x)− b(y)|kdx =

1
|I+|

∫ c

y

|b(x)− b(y)|kχI+(x)dx

≤ CM+,k
b χI+(y).
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Then, by Hölder’s inequality and (ii),

1
|I|
∫

I

|b(y)− bI+ |dy ≤ C
(

1
|I|
∫

I

M+,k
b χI+(y)dy

)1/k

≤ C
(

1
|I|
∫

I

|M+,k
b χI+(y)|pdy

)1/pk

≤ C
(

1
|I|
∫

R
|χI+(y)|pdy

)1/pk

≤ C
( |I+|
|I|
)1/pk

= C.

So b ∈ BMO. �
Proof of Theorem 2.12. Observe that by the conditions given on ϕα, M+,k

ϕα,b

can be treated in the same way as I+,k
α,b , the commutator of the one-sided

fractional operator. Observe that the case k = 0 is a consequence of the
fact that M+

ϕαf(x) ≤ CM+
α f(x) and the result in [2]. �

Proof of Theorem 2.13.
(iii)⇒ (i) It is a consequence of Theorem 2.12.
(i)⇒ (ii) Given an appropriate pair (p, q), set ω ≡ 1.
(ii)⇒ (iii) Set I = (a, b), I+ = (b, c), and |I| = |I+|. Then

1
|I|
∫

I

|b− bI+ |dy ≤
(

1
|I|
∫

I

(
1
|I+|

∫

I+
|b(x)− b(y)|kdx

)
dy

)1/k

=
( |I|−α
|I|

∫

I

(
1

|I+|1−α
∫

I+
|b(x)− b(y)|kdx

)
dy

)1/k

.

Observe that, for y ∈ I,

1
|I+|1−α

∫

I+
|b(x)− b(y)|kdx =

1
|I+|1−α

∫ c

y

|b(x)− b(y)|kχI+(x)dx

≤ CM+,k
α,b χI+(y).

Then, by Hölder’s inequality and (ii),

1
|I|
∫

I

|b− bI+ |dy ≤ C
( |I|−α
|I|

∫

I

M+,k
α,b χI+(y)dy

) 1
k

≤ C
(
|I|−α

(
1
|I|
∫

I

|M+,k
α,b χI+(y)|qdy

) 1
q

) 1
k

≤ C
(
|I|−α− 1

q

(∫

R
|χI+(y)|pdy

) 1
p

) 1
k

≤ C
(
|I|−α− 1

q+ 1
p

)1/k

= C.

So b ∈ BMO. �
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