WEIGHTS FOR COMMUTATORS OF THE
ONE-SIDED DISCRETE SQUARE FUNCTION,
THE WEYL FRACTIONAL INTEGRAL
AND OTHER ONE-SIDED OPERATORS.

M. LORENTE AND M.S. RIVEROS

ABSTRACT. The purpose of this paper is to prove strong type inequalities
with one-sided weights for commutators (with symbol b € BM O) of several
one-sided operators, such as the one-sided discrete square function, the
one-sided fractional operators, or one-sided maximal operators given by
the convolution with a smooth function. We also prove that b € BMO is
a necessary condition for the boundedness of commutators of these one-
sided operators.

1. INTRODUCTION

There is a great amount of works that deal with the topic of commu-
tators of different operators with BMO functions. If T is the operator
given by convolution with a kernel K, the commutator of T', with a locally
integrable function b, called the symbol, is the operator

T(0) = | (00) = b)) Kz ) )y

Sometimes the symbol appears inside the integral with absolute values (see
Section 2 for precise definitions).

In 1976, Coifman, Rochberg and Weiss, [4], introduced the higher order
commutators,

1) = [ 0 - ) Ko - ) f0dy. b=0.12,..

Nottice that TP = T. In [4], it is proved that if K is a Calderén-Zygmund
kernel then T} is bounded from LP(R") to LP(R"), for 1 < p < oo when
b € BMO. In fact, the condition b € BMO is also necessary in order to
have T}, bounded on LP(R™).

Later, many authors have studied strong and weak type inequalities for
commutators with weights (see [3], [13], [14]). Furthermore, many of the
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results have been generalized to commutators of other operators, not only
Calderén-Zygmund operators (see [16], [17], [18]).

In this paper we are interested in studying commutators of certain one-
sided operators, such as the one-sided discrete square function that appears
in [19], the fractional integrals of Weyl and Riemann-Liouville and a class
of one-sided maximal operators given by the convolution with a smooth
function. This work is highly inspired in the works of C. Segovia and J. L.
Torrea [17] and [18]. The main tools for proving the weighted inequalities
for these one-sided operators are extrapolation theorems proved by R.
Macias and M.S. Riveros in [6]. We also prove that the condition b € BMO
is necessary, i.e., even though we have one-sided operators and our weights
are one-sided A, weights, the condition b € BMO can’t be weakened (is
a two-sided condition).

Throughout this paper the letter C' will be a positive constant, not
necessarily the same at each occurrence. If 1 < p < 0o, then its conjugate
exponent will be denoted by p’ and A, will be the classical Muckenhoupt’s
class of weights (see [12]).

2. DEFINITIONS AND STATEMENT OF THE RESULTS

Definition 2.1. For f locally integrable, we define the one-sided discrete
square function applied to f by

1/2
5* f(z) = (Z A f(2) —An_1f(w)l2> ,
nes

where A, f(z) = 5= f;”n f(y)dy.

It is not difficult to see that ST f(z) = ||[UT f(x)||s2, where Ut is the
sequence valued operator

@.1) Ut @) = [ B = s

where

22) 1@ = {Fxcr o - prrceoa@)
(See [19].)

Definition 2.2. The one-sided Hardy-Littlewood maximal operators M ™
and M~ are defined for locally integrable functions f by

1 x+h 1 T
Mt = — nd M~ = — .
Fa)=supz [ U1 and Mf@) s [ 1A

h>0 N h>0 h

The good weights for these operators are the one-sided weights, A; and

1 b C , p_]-
At S 1=p <00, 1<p<oo,
e ([ ) e e
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(Af) M w(z) < Cw(z) a.e.
and
(AL) AL = Ups1 AT

The classes A, are defined in a similar way. It is interesting to note that
Ay = ArYNAS Ay C A and A, C A (See [15], [7], [8], [9] for more
definitions and results.)

It is proved in [19], that w € Af, 1 < p < oo, if, and only if, ST is
bounded from LP(w) to LP(w) and that w € AT, if, and only if, S is of
weak-type (1,1) with respect to w.

We shall also use for our purposes the following variant of the one-sided
Hardy-Littlewood maximal operator:

Definition 2.3. Let ¢ € C°(—00,0], ¢ > 0 nondecreasing in (—oo,0].
For € > 0 let . (1) = e 1p(e1x). The maximal operator associated to ¢
is defined by

MJ f(z) = sup pe * | f|(2).
e>0
It is not difficult to see that M} f is pointwise equivalent to M* f. As

a consequence, M is bounded from LP(w) to LP(w), for 1 < p < oo and
we Al

Definition 2.4. The one-sided maximal fractional operator M}, 0 < a <
1, is defined, for locally integrable functions f, by

x-+h
M () = sup / 5l

h>0 hi=«

It is proved in [2] that [|(M[ fw|l, < Cl|fw||, if and only if w €
A*(p, q),for 1 <p<gq,1/p—1/q =, where

1 e Va (1 path /v
+ _ q _ —-p <
(A% (p.0) (] «) (h/ ' ) <c

1 z+h 1/p/
(A+(p7 OO)) ||WX[$—h,a:}||oo <E/ u)_p> S C,

for all A > 0 and =z € R.
We also have a variant of the operator M} :

Definition 2.5. Let 0 < o < 1 and let ¢, € C*®((—00,0]), ¢o > 0, non-
decreasing in (—oo, 0] and such that | (x—y) — o (z)] < Cly||z| 72T, for
all z,y such that || > 2|y|. For each & > 0, set 4 -(z) = e 1%, (e712).
We define the maximal operator associated to ¢, by

MJ f(x) = SUP G ¢ * |fI(x).

It is very easy to see that M7 f(x) < CMJ f(x).
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Definition 2.6. Let b € L} (R). We say that b € BMO if

loc
1
16| Bro =sup — [ |b—br] < o0,
r U J;

where I denotes any bounded interval and by = ﬁ 1) b

Definition 2.7. Let f be a locally integrable function. The one-sided
sharp maximal function is defined by

#, o b 1
f +($)_§i€h/x (f(y) h/;v+h f) dy.

It is proved in [11] that

z+h z+2h
) <swpint 5 [ (G =@ty g [ = sy

h>0 a€R +h
< C||fllBmo-
Now we shall state our results.
Theorem 2.8. Let b€ BMO, H as in (2.2) and k =0,1,.... The k-th

order commutator of the one-sided discrete square function is defined by
[ bla) = b @ =) f(0)ay

Then for 1 < p < oo and w € A},

[1sitsre<ce [ irpw,
R R

for all bounded functions f with compact support.

Theorem 2.9. Let 0 < aa < 1, b € BMO, and k = 0,1,.... The k-th
order commutator of the Weyl fractional integral is defined by

ke [ r f)
@ = [ e ) LS
(The Weyl fractional integral is the corresponding one for k = 0) Then for
alwe AT (p,q), 1 <p<qg<oo,1/p—1/q=a, we have

1/q 1/p
( / \Ii,;ff!qw‘Z) <c ( / |f|Pwp) ,
R R

for all bounded f with compact support.

Sk fa) =

é2

In the following theorems we prove that for commutators of one-sided
operators given by convolution with a smooth function, b € BMO is also
a necessary condition in order to have the commutator bounded on LP(w).

Let ¢ € C°(—00,0], ¢ > 0 nondecreasing in (—oo,0]. Then it is easy
to see that there exists C' > 0 such that |p(z —y) — ¢(z)| < Cly||x|~2, for
all z,y such that |z| > 2|y|.

For £ = 0,1, ..., the k-th order commutator of MJ with symbol b is
defined by

MEE @) = s [ 100e) = ) oo - 9l .
e>0 Jyx
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Theorem 2.10. Let 1 <p < oo, b€ BMO andw € Af. Then

[gftro<c [
R R

If we consider ¢ as before and such that x|_; o) < ¢, then we have
M, f(x) < M3 f (),
where

x+h
M @) = sup g [ b)) L)

Therefore, if b € BM O, Theorem 2.10 gives that Mb+ * is bounded from
LP(w) to LP(w), for 1 < p < oo and w € Af. In fact, more can be said,
the converse is also true.

Theorem 2.11. The following conditions are equivalent:
(i) M,j"k is bounded from LP(w) to LP(w), for all p with 1 < p < oo
and w € A},
(ii) MbJr’k is bounded from LP(dx) to LP(dx), for some p > 1.
(iii) b€ BMO.

Analogous results hold for M[;a. Let 0 < a < 1. Suppose ¢, €
C>®((—00,0]), va = 0, nondecreasing in (—o0,0] and such that
|00 (T — y) — pa(z)| < Cly||z|*~2, for all z,y such that |x| > 2|y|.

For k = 0,1,..., the k-th order commutator of M} with symbol b is
defined by

M) =sup [ ) = o) eaclz = )W) dy.
S x

Then we have the following:

Theorem 2.12. Let b € BMO and let (p,q) be such that 1 <p < q¢ < o0

and % — é = «. Then, for allw € At (p,q), we have that

ok 1/q 1/p
( / |M%,bf|qwq> <c ( / |f|pwp)

Since M} f(x) < CM f(z), the case k = 0 is a consequence of a result
of Andersen and Sawyer [2]. And if we choose ¢, such that x[_10 < ¥a,

then M;’bkf( ) < MJ*: f(x), where

x+h
o [ ) b))l

For this operator we can also prove that b € BM O is a necessary condition.

M f(x) = sup

Theorem 2.13. The following conditions are equivalent:
(i) M;f is bounded from LP(wP) to L9(w?) for all pairs (p,q) such
that%—%:a, l<p<g<ooandw e AT (p,q).
(ii) Merk is bounded from LP(dz) to Li(dx) for some pair (p,q) such
that 1— =aandl<p<qg<oo.
(ifi) b e BMO.
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3. PROOF OF THE RESULTS

The main tools for proving our results are two extrapolation theorems
that appeared in [6], with slight modifications.

Theorem 3.1. Let T be a sublinear operator defined in C2°(R). Assume
that for all w such that w=1 € A7, there exists C = C(w) such that

|wT flloo < Clfw|oo-

Then, for all w € A;, 1 < p < o0, there exists C = C'(w) such that

</|Tf|pw)1/p <c </|f|”w>1/p 7

provided that the left hand side is finite.

Theorem 3.2. Let 1 < pg < oo and T be a sublinear operator defined in
CE(R). Assume that for all w € A™(pg,00) there exists C = C(w) such
that

T flloe < Cllfwllp,-

Then, for all pairs (p,q) such that 1 < p < po,
w e AT (p,q), there exists C = C(w) such that

T fllg < Cllfwllp

provided that the left hand side is finite.

We will also need the following result of Martin—Reyes and de la Torre
(theorem 4 in [11]):

Theorem 3.3. Let 1 <p <oo. Ifw e Al and M™* f € LP(w), then there
exists C' = C(w) such that

[orppos<c [

R

An other result that will be used often is the following (see [15]):

Theorem 3.4. Let w € A} . Then there exists s > 1 such that w™ € A,
for all r such that 1 < r < s.

Proof of Theorem 2.8. Let w € A;. For b € L>° € BMO and f bounded
of compact support, we have that S:’ ok f € LP(w). Then, by Theorem 3.3,

(3.1) / 57t fPw < © / MR Pw < C / (SiF* Fy#t P

To prove the theorem for any b € BMO we proceed in the same way as
in [5]. We will control (S, F £)#:+ by some one-sided maximal operators.
Using Theorem 3.1, we shall prove that they are bounded from LP(w) to
LP(w).
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Let A be an arbitrary constant. Then b(z)—b(y) = (b(z)—A)—(b(y) — )
and
(3.2)

S0 (i) -2y / (bly) — NI H(x — ) (y)dy
R /2
— 5H((b— M) (@)
k k—j
HE Y Conatla) =0 [ (bla) ~ b)) I H e~ 9) )y
j=1s=0 R Y2

< SHB- NN+ Y Comlbla) — AFS f(a).

where Cj ;, (respectively C; i s) are absolute constants depending only on
j and k (respectively j, k and s). Let x € R, h > 0. Let ¢ € Z be such
that 2° < h < 27! and set J = [z, 2 + 2!73]. Then, write f = fi + fo,
where fi = fxs and set A = b;. Then

z+2h
%/ 1S7F F(y) — ST (b — by)* f2) ()| dy
z+2h
< % / ST (b= b2)" 1) ()| dy
z+2h
53 L s = b ) — 8 (0= b o)

k-1 1 z+2h i "
# 32 Cny [ b el
=I(z)+ II(x)+ I1I(x).
Let UT be as in (2.1). Then

z+2i13

B 1@ <5 [ I O-00) R0 =T (=0 )0 ey
and

17— b)* ) o) — U (b — )" ) &) o
(3.5)

< [ b0 - bl -0 - - 0)ed:
r+2it3
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Consider the following sublinear operators defined in C°:

42 t2

M fo >—§gzp; SH( = ba)* Fo) o) ldy:

x+2tt3
Mff=swa [ [ -t -0 Ha-Dl|edrdy;
1EZ m+21+3

and

1
M, f(x) = sup —

z+2h
sup [ ) = bWy, 0<m < k-1
>

where, for each i, J denotes the interval [z, z + 2¢73].
Inequalities (3.3), (3.4), (3.5) and the above definitions give that

(S pHFHa) <c (Mff( ) + My f(2) Z n(Sy " )(flf)) :

We shall prove, using Theorem 3.1, that these operators are bounded
from LP(w) to LP(w), w € Af, 1 <p<oo.

Boundedness of M;": Let w be a weight such that w™! € A7. Let
1 <g<ooand 1l < s < oo besuch that w™9 € A] (Theorem 3.4). By
Holder’s and John-Nirenberg’s inequalities and the fact that S is bounded
from L?(dx) to L9(dzx) we get
(3.6)

1 o422

2i

1 et 1/a
<C <§/m ST ((b— bJ)kfXJ)(y)|qdy>

x+2i+3 l/q
<C (21/1 (b(y) — bJ)kf(qudy)

1 o 0it3 1/q
< Ol full (2— [ 10m- b.»’“w—l(y)wdy)

1 x42it3 / 1/qs’ 1 z4-20+3 1/sq
<Cllfellw (5 [ B=bal 5[ e
x X

< CllfwllsclbllBarow™ (2).

1ST((b—b,)" fxs)(y)|dy

Then, for all w such that w™! € A7,

lwMi" flloo < ClblBaroll follss

and by Theorem 3.1, we obtain that for all w € A;,L, 1<p<oo,

1M fllop < ClOIEB MO e -
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Boundedness of M;: Let w be such that w™' € A]. Then, if I; =
[z, 2 + 2771], we have that

(3.7)
[ o) = b PO~ 1) - Bz = D)
> z429+1
<C > [ - b AN~ )~ H = Dl|ad
j=it3 T+
oo x4 1t
+C 3 by bl [ OIHG - ) - H b ede
j=i+3 r+27

= IV (z) + V().

We choose (s, s') and (t,t') such that w™* € A7 and w™*" € A]. Then,
by Hoélder’s inequality with exponents (s, s’) and (¢,t),

0o 1/s
W) <c Y (/ \b—sz\ksw‘swslfP)
I

j=i+3 \’1j
421 1/3/
>< (/ | HH(y—t)—H<x—t>||szt>
x+27
<38) 00 1/st 1/st’
< Cl|lfw||oo Z (/ |b— bIj|kSt> (/ u)_St/>
j=i+3 \/1i I
z420+1 , 1/s'
X (/ | HH(y—t)—H(m—t)Hszt) )
T+27

It is proved in theorem 1.6 of [19] that for all y € [z, z + 2'73] the kernel
H satisfies

z+27 11 , 1/s' 22’/3’
(3.9) / IH(y—1t)— H(z —)|[ndt| <O

+2i 27

Then, using that b € BMO, the fact that w=* € A7 and (3.9), we get

> \1/st — ) . /21’/3’
IV(2) < Cllfelloe 3 lllEaro(2)! ™ (@) S
Jj=1+3
(310) _ oo 22 1/5/
< co@lfellelblbuo 3 (5)
Jj=1+3

< Cw™ (@)l fwlloo bl Baro-

Using again Holder’s inequality, (3.9), the fact that w™° € A] and lemma
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1 in [5], we get

0 42011
=0 Y b, bl [ @I 0~ Hi ~ 1)
j=i+3 z+2
00 1/s
<C Y bllBaro (26 = ))*ll fwll (/ ws)
J=i+3 I;
o429t 1/s’
(3.11) X (/Mj |1H(y — 1) —H(:c—t)||zzdt)
- N o kyogiiytys 27
< ClbllBarollfwlloew™ (x) Y (G =) (@)=~
Jj=1+3
_ ° (,] _ Z)k21/s/
< Cw™ Y (@)| bl Barol fwlloo ZHQJ—/
Jj=1

< Cw™ ! (@) bllEarol | fwllo-
Then, by (3.7), (3.10) and (3.11), we get that, for all w such that w™! € AT,
WMy flloo < Cllfwl]oo-

Then, by Theorem 3.1, for all 1 < p < oo and w € A,

M3 fllpw < ClIfllp

Boundedness of M;m: Let w be such that w™! € A7 and let ¢ > 1 be

such that w™? € A;. Then, using again Holder’s and John-Nirenberg’s
inequalities we obtain

[ ) = sl )y

1 [*T2h . /¢ 1 [e2n 1/q
<\ [ b b ) (5[ fway
1 .T+2h l/q
<clbliio (5 [ ey

1 $+2h l/q
< ClbllEazoll fwllo (—/ w‘qdy>

< ClbllBatoll fwlleow™ (2).

Then, for all w such that w™! € A7,

oM, fllee < ClIbI| 371w 1] -
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Therefore, by Theorem 3.1, we have that, for all w € A;F, 1 <p<oo,

1M, fllop < ClIDIERTO N fllup-

Using now the induction principle (the case k = 0 was proved in [19]), we
obtain that, for all w € Af, 1 < p < oo,

1M, (8" Pl < ClIbI 5ROy Fllow < ClIBIEMOIFllwp- O

Proof of Theorem 2.9. This proof follows the same pattern as the preceding
one. Let b € BMO bounded, and A\ € R, then, as in (3.2), we can write

k—1

Iyg (@) = 150 = NF) @) + Y Crm(blz) = N1 f(@).

m=0

Let x € R, h > 0 and J = [z, z + 4h]. Write f = f1 + fa, where f1 = fxs
and set A = by. Then,
(3.12)

1 x+2h
! / I F) = I (0 = b)) ) (w + 20) | dy

z+2h
<o [ - b)) wldy
ml x+2h
bp [ = ) — 1 (- b))+ 20| dy

k—1 1 z+2h
+mz_ock,mﬁfw b(y) = balF L ()l
=1I(x)+1I(zx)+11I(x).

It is clear that
ITI(x Z Crm M3, (I (),

where M; o, 18 as in the proof of Theorem 2.8. Then, we already know that
Mgfm is bounded from LP(w) to LP(w), provided w € A} and 1 < p < 0.
So, if w € A (p,q), 1/p — 1/q = «, then w? € A}, and by induction (see
k=0 in [10]), we obtain

1M (L0 " Pllwsq < ClIblIEazo oy fllusa < ClIblBarol fllor p.

for all f € C°(R).
To control I(x) let us define

1 x+2h
M) =suwp [ (b b)) w)ldy,
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where, for each h > 0, J = [z,z + 4h]. Tt is not difficult to see that M;"
is a sublinear operator in C2° and it is clear that I(x) < M, f(x). Let us
prove that M, is bounded from LP(wP) to L9(w?) using Theorem 3.2.

Let w € AT(L,00), then wie € A7 . Therefore, there exist ¢; > 1 and

to > 1 such that w% € A] and w_ltflff € A]. Let s >1andr > 1
be such that s = t;/(1 — a) and 1/r —1/s = «. Then, using Holder’s
inequality and the fact that I} is bounded from L"(R) to L*(R), we get

1

x+2h
DIl

x+2h 1/s
< (%/ 15 ((b— bJ)kfXJ)(y)\sdy>

«@ 1 wah k roro,—r v
<Ch (ﬁ/x [(0(y) = bs)"f(y)"w"w dy)

1 [rtah k33%1x+4h110‘
< Ch” E/ |(b—bs)* | rw™ " E/ Iflewa | .

Therefore, using Holder’s and John-Nirenberg’s inequalities and the fact
that w2 € A7, the chain of inequalities in (3.13) can be continued as

follows:
<cliflly (3 [ =balew
1

(3.14) | patah N\ (1 patan e
SC”wa; (E/ |b—bJ|k8t2) (ﬁ/ w—st2>

< Ol fwllL bl Barow™" ().
As a consequence,
WM flloo < ClIblIEaroll foll s -
Then, by Theorem 3.2, for all w € A™(p, q), %
1M fllwag < ClIblErrol | Fllwrp -

Finally, we shall estimate II(x). We have that

/ O'(t,y)dt‘ dy,

+4h

where

o) = 00 =001 0) (s ~ o ran—ga )
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Consider the following sublinear operator in C2°(R):

/ o(t, y)dt‘ dy.
x+4h

For each j € N, set I; = [x,2 + 27T h]. Then,

1 x+2h o
—/ / a(t,y)dt‘ dy
h T x+4h

1 x+2h O 4271
< - lo(t,y)| dtdy
h /m Z /w+2jh

00 ppg2itlp . 9%
<C / b(t) — by |F|F (¢ . dt
jz; e2ih | ( ) J| | ( )| (h(23 _ 2))2—@

IN

2 I+2J+1h &
C 23 1 1—« (2] 1p |b(t)_bJ| ‘f(t)’dt

(3.15) 2ih

e 2 x+23+lh .
SCZ @ o 1h b(t) — by, [F] £ (2)]t

:2 r+27h
o0 he z4+27F1h N
+C / by, — by ¥ £(1)|dt
;2]11a<x+2jh |I J||()|>
00 ha

I
V)

J

Let w € AT(1,00). Then wie € AT . Choose r > 1 such that wTa €
A7 . Then, by Holder’s and John-Nirenberg’s inequalities,

2 24271k 101 “
) < |- / R w?
27-1h z+27h
J+1 1-a
9 /m—|—2 h k 1
X | —— b(t) — by, | T wT=a
(23_% w420k

(3.16) 1 e+ .
C27h) | fwllx (-/ [b(t) = by, |7

11—
2ih a)
1 et =
“\ 2n / Wi

< ClblBaro (@ h) | fwll zw™ (2).
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Using again lemma 1 in [5] and Hélder’s inequality,

1 N z+427 T
< —1b;. — b t)|dt
VG < gl bl [ 1r)

k k 1 w2/ h 101 “
<CMMlwo (5 [ Ihed

1 w+27 "k =1 e
_ 11—«
N

< C2)* (@ W)~ bllEaoll fwll sw™ ().

Putting together inequalities (3.15), (3.16) and (3.17), we get that
/ o(t, y)dt) dy

i)

Sy S (2T, 2"
< Clbllsarol el w™ () ( A )

(3.17)

J
< Clbll ol follLw™ ().

Taking supremums first on h > 0 and then on z € R, we get

lwM flloo < ClBlBarollfwl] 1 -

So, by Theorem 3.2, for all w € A" (p, q), % - % = a,

1M fllwsq < ClIblEol|fllwrp
O

Proof of Theorem 2.10.
This proof also follows the same pattern as the preceding ones. Let
b € BMO bounded and let A € R. Then, as in (3.2), we have

k—1
M f) < MI((b =N ) (@) + D Crumlb(x) = AP M f(2).
m=0

Let us fix € Rand h > 0 and let J = [x,z + 8h]. Write f = f1 + fo,
where f; = fxs, and also write A\ = b;. Then, as in (3.3) and (3.12), it
follows that

1 x+2h
! / M S () = ME((b = by)" f2) (@ + 28) | dy
z+2h
<7 / IME((b— b)* 1) (y)ldy
ml z+2h
n E/ |ME((b—bs)* f2) (y) — ME((b—by)* fo) (z + 2h)| dy

k—1 1 .’L‘+2h n
F3 Cumy [ b))y
m=0 z

= I(x) + II(x) + I1I(x).
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It is clear that I1I(x) < Z:;lo C’kymMgfm(MJ’bmf)(:z:), being Mgfm the
same as in the proofs of Theorems 2.8 and 2.9, and

x+2h
x+2h—y
@19) @ <og [ [ b by (),

by the conditions imposed on the kernel ¢.
Consider the following sublinear operators defined on CZ°:

MEF@) =swp s [ (b b)* d
S = s [ M@= b)) wldy

and

z+2h
+2h—y
M f(z) = / / L b(2) — by |¥| f(2)|dzdy,
7 f(x =supy o %Lzh))gl (2) = by[*[f(2)|dzdy

where, for each h > 0, J is the interval [z, z + 8h].
The above inequalities and definitions give that
(3.19)

<M§fn#*@>sc(M§ﬂ>+wﬁf }j va>>

Let w € A;, 1 < p < co. Then, acting as in the boundedness of Mf“,
in the proof of Theorem 2.8, we get that M is bounded from LP(w) to
LP(w). On the other hand, we already know that M, is bounded from

m

LP(w) to LP(w) and, to proceed with the induction, we observe that the
case k = 0 is a consequence of the fact that M ;F f is pointwise equivalent to

M+ f. Therefore, we only have to prove that M is bounded from LP(w)
to LP(w), for w € Af, 1 <p < o0.

Let us use again Theorem 3.1. Let w be such that w™! € A7 . For each
j €N, let I; =[x,z + 27h]. Then

x+2h
r+2h—y .
/ /th (z —( m+2h>)2‘b(z) bs|*|f(z)|dzdy

1 r+2h o x+29 T |b(Z) . bJ’k
gC—/ h / f(2)|d=dy
i) "o Gzl

oo

9j+1 1 3
< C’h||fw||oo Z (2j — 2)2h2 9j+1 /I |b(z) - bJ|kw 1(z)d2’
Jj=3 J

oo

27+1
§C||fw||ooz(2. <23+1h/ 1b(2) — by, [Fw ™Y (2)dz

. 9i+1

= Cl|fwll ) @22 IV (z) +V(z)).

(3.20)
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Let ¢ > 1 be such that w™? € A] (Theorem 3.4). Then, Holder’s and

John-Nirenberg’s inequalities give
(3.21)

1 z4+27T1h 1/d 1 4271 1/q
kq’ _
i< (g [ et} (G [T )
< Cllbl|rrow™ ()-

In [5], it is proved that |b, — bs|* < C1251%|[b]|% 0 for all 3 < j. Then,
using this fact and using that w=! € A7, we obtain

(322) V(z)=

s |, o — bl < ORIl asow™ (@)

Then by (3.20), (3.21) and (3.22) we get that, for all w such that w™1
AT,
lwM7F flloe < ClIbl a0l fwlls,

and, by Theorem 3.1, for all w € A}, 1 <p < oo,

1M7 fllop < ClOIEB MO e -

Now, we only have to take into account (3.19) and Theorem 3.3 to conclude
the proof of Theorem 2.10. [

Remark 3.5. Following the same steps as in the proof of Theorem 2.10
we get Corollary 1 of [5], i.e., the boundedness of the commutator of one-
sided singular integrals (introduced in [1]), from LP(w) to LP(w), w € A},
1<p<oo.

Proof of Theorem 2.11.
(7i1) = (i) It is a consequence of Theorem 2.10.
(1) = (i7) Let p > 1 and set w = 1.
(1) = (i4i) Set I = (a,b), I'" = (b,¢), and |I| = [I"|. Then

ﬁ/ﬁb( bf+|dy<(/ —bf+|dy)1/k
Lo\ /K
() )
(3o -y

b(y) — b(z))dz

I+

Observe that, for y € I,

!I_1+| B ]b(a:)—b(y)\kdxzﬁ “1b(a) — () [Fx e ()da
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Then, by Holder’s inequality and (ii),

1 ] i 1/k
H / Ib(y) — by |dy < C (m / M my)dy)

N 1/pk
<o [ v )

1/pk |I+‘ 1/pk
<c (— [ e <y>|pdy) <c (—) _c
1 Js 1

Sobe BMO. U
Proof of Theorem 2.12. Observe that by the conditions given on ¢, M, ;jb

can be treated in the same way as I;r’bk, the commutator of the one-sided

fractional operator. Observe that the case k = 0 is a consequence of the
fact that M} f(x) < CM] f(x) and the result in [2]. O

Proof of Theorem 2.13.
(1i1) = (i) It is a consequence of Theorem 2.12.
(1) = (ii) Given an appropriate pair (p,q), set w = 1.
(i1) = (ii1) Set I = (a,b), I = (b,c), and |I| = |I*|. Then

i [ o=ty < (ﬁ / (|I—1+| e —b<y>|’fdm) dy) l/k
(5 e - sore)a)”

Observe that, for y € I,

i L ) = b = s [ o) b e ()t

< CM+b X1+ (y)

Then, by Holder’s inequality and (ii),

’I|/|b—b1+ldy<0(‘ ’l /M+bXI (y)dy)k
(m (g [ )M)i)
<|f| e /|X1+ !”dy)1>

<cC (|f|—a—é+p)”k —c

x|

k

IN

C

Sobe BMO. U

Acknowledgement. We want to thank A. de la Torre and J.L. Torrea
for their helpful comments and indications.



18 M. LORENTE AND M.S. RIVEROS

REFERENCES

[1] H. Aimar, L. Forzani and F.J. Martin-Reyes, On weighted inequalities for one-sided
singular integrals, Proc. Amer. Math. Soc. 125 (1997), 2057-2064.

[2] K. F. Andersen and E. T. Sawyer, Weighted norm inequalities for the Riemann-
Liouville and Weyl fractional integral operators, Trans. Amer. Math. Soc. 308
(1988), no. 2, 547-558.

[3] S. Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc.
292 (1985), 103-122.

[4] R. Coifman, R. Rochberg, G.Weiss, Factorization theorems for Hardy spaces in
several variables, Ann. of Math. 103 (2) (1976), 611-635.

[6] M. Lorente and M.S. Riveros, Weighted inequalities for commutators of one-sided
singular integrals, Comment. Math. Univ. Carolinae 43 (1) (2002), 83-101.

[6] R. Macias and M.S. Riveros, One-sided extrapolation at infinity and singular in-
tegrals, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 1081-1102.

[7] F.J. Martin-Reyes, New proofs of weighted inequalities for the one-sided Hardy-
Littlewood mazimal functions, Proc. Amer. Math. Soc. 117 (1993), 691-698.

[8] F.J. Martin-Reyes, P. Ortega and A. de la Torre, Weighted inequalities for one-
sided mazimal functions, Trans. Amer. Math. Soc. 319 (2) (1990), 517-534.

[9] F.J. Martin-Reyes, L. Pick and A. de la Torre, AL condition,, Canad. J. Math.
45 (1993), 1231-1244.

[10] F.J. Martin-Reyes and A. de la Torre, Two weighted inequalities for fractional
one-sided mazimal operators, Proc. Amer. Math. Soc. 117 (2) (1993), 483-489.

, One-sided BMO spaces, J. London Math. Soc. 2 49 (1994), 529-542.

[12] B. Muckenhoupt, Weighted norm inequalities for classical operators, Proc. Sym-
pos. Pure Math. Amer. Math. Soc., Providence, R.I. 35 (1979), no. 1, 69-83.

[13] C. Pérez, Endpoint estimates for commutators of singular integral operators, J.
Funct. Anal. 128 (1) (1995), 163-185.

, Sharp estimates for commutators of singular integrals via iterations of the
Hardy-Littlewood mazimal function, J. Fourier Anal. Appl. 8 (6) (1997), 743-756.

[15] E. T. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood mazimal
functions, Trans. Amer. Math. Soc. 297 (1986), 53-61.

[16] C. Segovia and J.L. Torrea, Vector-valued commutators and applications, Indiana
Univ. Math. J. 38 (4) (1989), 959-971.

, Weighted inequalities for commutators of fracctional and singular inte-

grals., Publ. Mat. 35 (1991), 209-235.

, Higher order commutators for vector-valued Calderdén-Zygmund opera-
tors., Trans. Amer. Math. Soc. 336 (2) (1993), 537-556.

[19] A. de la Torre and J.L. Torrea, One-sided discrete square function, Studia Math.
156 (3) (2003), 243-260.

[14]

[17]

[18]

ANALISIS MATEMATICO. FACULTAD DE CIENCIAS. UNIVERSIDAD DE MALAGA.
(29071) MALAGA, SPAIN
FE-mail address: lorente@anamat.cie.uma.es

FAMAF, UNIVERSIDAD NAcioNAL DE COrRDOBA, CIEM-CoNICET. (5000)
CORDOBA, ARGENTINA.
E-mail address: sriveros@mate.uncor.edu



