WEIGHTS FOR COMMUTATORS OF THE ONE-SIDED DISCRETE SQUARE FUNCTION, THE WEYL FRACTIONAL INTEGRAL AND OTHER ONE-SIDED OPERATORS.

M. Lorente and M.S. Riveros

Abstract. The purpose of this paper is to prove strong type inequalities with one-sided weights for commutators (with symbol $b \in BMO$) of several one-sided operators, such as the one-sided discrete square function, the one-sided fractional operators, or one-sided maximal operators given by the convolution with a smooth function. We also prove that $b \in BMO$ is a necessary condition for the boundedness of commutators of these one-sided operators.

1. Introduction

There is a great amount of works that deal with the topic of commutators of different operators with BMO functions. If T is the operator given by convolution with a kernel K, the commutator of T, with a locally integrable function b, called the symbol, is the operator

$$T_b f(x) = \int_{\mathbb{R}^n} (b(x) - b(y)) K(x - y) f(y) dy.$$

Sometimes the symbol appears inside the integral with absolute values (see Section 2 for precise definitions).

In 1976, Coifman, Rochberg and Weiss, [4], introduced the higher order commutators,

$$T_b^k f(x) = \int_{\mathbb{R}^n} (b(x) - b(y))^k K(x - y) f(y) dy, \quad k = 0, 1, 2, ...$$

Notice that $T_b^0 = T$. In [4], it is proved that if K is a Calderón-Zygmund kernel then T_b^k is bounded from $L^p(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$, for $1 < p < \infty$ when $b \in BMO$. In fact, the condition $b \in BMO$ is also necessary in order to have T_b bounded on $L^p(\mathbb{R}^n)$.

Later, many authors have studied strong and weak type inequalities for commutators with weights (see [3], [13], [14]). Furthermore, many of the

2000 Mathematics Subject Classification. Primary 42B20.

Key words and phrases. One-sided weights, one-sided discrete square function, one-sided fractional operators, one-sided maximal functions, commutators.

This research has been supported by Ministerio de Ciencia y Tecnología (BFM 2001-1638), Junta de Andalucía Universidad Nacional de Córdoba and CONICET.
results have been generalized to commutators of other operators, not only Calderón-Zygmund operators (see [16], [17], [18]).

In this paper we are interested in studying commutators of certain one-sided operators, such as the one-sided discrete square function that appears in [19], the fractional integrals of Weyl and Riemann-Liouville and a class of one-sided maximal operators given by the convolution with a smooth function. This work is highly inspired in the works of C. Segovia and J. L. Torrea [17] and [18]. The main tools for proving the weighted inequalities for these one-sided operators are extrapolation theorems proved by R. Macías and M.S. Riveros in [6]. We also prove that the condition $b \in BMO$ is necessary, i.e., even though we have one-sided operators and our weights are one-sided A_p weights, the condition $b \in BMO$ can’t be weakened (is a two-sided condition).

Throughout this paper the letter C will be a positive constant, not necessarily the same at each occurrence. If $1 \leq p \leq \infty$, then its conjugate exponent will be denoted by p' and A_p will be the classical Muckenhoupt’s class of weights (see [12]).

2. Definitions and statement of the results

Definition 2.1. For f locally integrable, we define the one-sided discrete square function applied to f by

$$S^+ f(x) = \left(\sum_{n \in \mathbb{Z}} |A_n f(x) - A_{n-1} f(x)|^2 \right)^{1/2},$$

where $A_n f(x) = \frac{1}{2^n} \int_x^{x+2^n} f(y) dy$.

It is not difficult to see that $S^+ f(x) = ||U^+ f(x)||_{l^2}$, where U^+ is the sequence valued operator

$$U^+ f(x) = \int_{\mathbb{R}} H(x-y) f(y) dy,$$

where

$$H(x) = \left\{ \frac{1}{2^n} \chi(-2^n,0)(x) - \frac{1}{2^{n-1}} \chi(-2^{n-1},0)(x) \right\}_{n \in \mathbb{Z}}.$$

(See [19].)

Definition 2.2. The one-sided Hardy-Littlewood maximal operators M^+ and M^- are defined for locally integrable functions f by

$$M^+ f(x) = \sup_{h > 0} \frac{1}{h} \int_x^{x+h} |f| \quad \text{and} \quad M^- f(x) = \sup_{h > 0} \frac{1}{h} \int_{x-h}^x |f|.$$

The good weights for these operators are the one-sided weights, A^+_p and A^-_p:

$$\left(A^+_p \right) \sup_{a < b < c} \frac{1}{(c-a)^p} \int_a^b \omega \left(\int_b^c \omega'^{-p'} \right)^{p-1} < \infty, \quad 1 < p < \infty,$$
\((A^+_1) \)
\[M^- \omega(x) \leq C \omega(x) \quad \text{a.e.} \]
and
\((A^+_\infty) \)
\[A^+_\infty = \cup_{p \geq 1} A^+_p. \]

The classes \(A^+_p \) are defined in a similar way. It is interesting to note that \(A_p = A^+_p \cap A^-_p, A_p \not\subseteq A^+_p \) and \(A_p \not\subseteq A^-_p. \) (See [15], [7], [8], [9] for more definitions and results.)

It is proved in [19], that \(\omega \in A^+_p, \ 1 < p < \infty, \) if, and only if, \(S^+ \) is bounded from \(L^p(\omega) \) to \(L^p(\omega) \) and that \(\omega \in A^+_1 \), if, and only if, \(S^+ \) is of weak-type \((1,1)\) with respect to \(\omega \).

We shall also use for our purposes the following variant of the one-sided Hardy-Littlewood maximal operator:

Definition 2.3. Let \(\varphi \in C_c^\infty((-\infty,0], \varphi \geq 0 \) nondecreasing in \((-\infty,0]. \) For \(\varepsilon > 0 \) let \(\varphi_\varepsilon(x) = \varepsilon^{-1} \varphi(\varepsilon^{-1} x). \) The maximal operator associated to \(\varphi \) is defined by

\[M_\varphi f(x) = \sup_{\varepsilon > 0} \varphi_\varepsilon * |f|(x). \]

It is not difficult to see that \(M_\varphi^+ f \) is pointwise equivalent to \(M^+ f. \) As a consequence, \(M_\varphi^+ \) is bounded from \(L^p(\omega) \) to \(L^p(\omega) \), for \(1 < p < \infty \) and \(\omega \in A^+_p. \)

Definition 2.4. The one-sided maximal fractional operator \(M^+_\alpha, \ 0 < \alpha < 1, \) is defined, for locally integrable functions \(f, \) by

\[M^+_\alpha f(x) = \sup_{h > 0} \frac{1}{h^{1-\alpha}} \int_x^{x+h} |f|. \]

It is proved in [2] that \(||(M^+_\alpha f)\omega||_q \leq C ||f\omega||_p \) if and only if \(\omega \in A^+(p,q), \) for \(1 < p < q, \ 1/p - 1/q = \alpha, \) where

\[(A^+(p,q)) \quad \left(\frac{1}{h} \int_{x-h}^{x} \omega^q \right)^{1/q} \left(\frac{1}{h} \int_{x}^{x+h} \omega^{-p'} \right)^{1/p'} \leq C; \]

\[(A^+(p,\infty)) \quad ||\omega \chi_{[x-h,x]}||_\infty \left(\frac{1}{h} \int_{x}^{x+h} \omega^{-p'} \right)^{1/p'} \leq C, \]

for all \(h > 0 \) and \(x \in \mathbb{R}. \)

We also have a variant of the operator \(M^+_\alpha: \)

Definition 2.5. Let \(0 < \alpha < 1 \) and let \(\varphi_\alpha \in C_c^\infty((-\infty,0]), \varphi_\alpha \geq 0, \) nondecreasing in \((-\infty,0] \) and such that \(|\varphi_\alpha(x-y) - \varphi_\alpha(x)| \leq C|y||x|^{-2+\alpha}, \) for all \(x, y \) such that \(|x| > 2|y|. \) For each \(\varepsilon > 0, \) set \(\varphi_{\alpha,\varepsilon}(x) = \varepsilon^{-1+\alpha} \varphi_\alpha(\varepsilon^{-1} x). \) We define the maximal operator associated to \(\varphi_\alpha \) by

\[M_{\varphi_\alpha}^+ f(x) = \sup_{\varepsilon > 0} \varphi_{\alpha,\varepsilon} * |f|(x). \]

It is very easy to see that \(M_{\varphi_\alpha}^+ f(x) \leq CM_{\alpha}^+ f(x). \)
Definition 2.6. Let $b \in L^1_{loc}(\mathbb{R})$. We say that $b \in BMO$ if
\[
||b||_{BMO} = \sup_I \frac{1}{|I|} \int_I |b - b_I| < \infty,
\]
where I denotes any bounded interval and $b_I = \frac{1}{|I|} \int_I b$.

Definition 2.7. Let f be a locally integrable function. The one-sided sharp maximal function is defined by
\[
f^{\#,+}(x) = \sup_{h>0} \frac{1}{h} \int_x^{x+h} \left(f(y) - \frac{1}{h} \int_{x+h}^{x+2h} f \right)^+ dy.
\]

It is proved in [11] that
\[
f^{\#,+}(x) \leq \sup_{h>0} \inf_{a \in \mathcal{A}} \frac{1}{h} \int_x^{x+h} (f(y) - a)^+ dy + \frac{1}{h} \int_{x+h}^{x+2h} (a - f(y))^+ dy
\]
\[
\leq C||f||_{BMO}.
\]

Now we shall state our results.

Theorem 2.8. Let $b \in BMO$, H as in (2.2) and $k = 0, 1, \ldots$. The k-th order commutator of the one-sided discrete square function is defined by
\[
S_{b,\cdot}^{+,k} f(x) = \left| \int_R (b(x) - b(y))^k H(x - y) f(y) dy \right|_{\ell^2}.
\]
Then for $1 < p < \infty$ and $\omega \in A_p^+$,
\[
\int_R |S_{b,\cdot}^{+,k} f|^p \omega \leq C \int_R |f|^p \omega,
\]
for all bounded functions f with compact support.

Theorem 2.9. Let $0 < \alpha < 1$, $b \in BMO$, and $k = 0, 1, \ldots$. The k-th order commutator of the Weyl fractional integral is defined by
\[
I_{\alpha,b}^{+,k} f(x) = \int_x^\infty (b(x) - b(y))^k \frac{f(y)}{(y-x)^{1-\alpha}} dy.
\]
(The Weyl fractional integral is the corresponding one for $k = 0$) Then for all $\omega \in A^+(p,q)$, $1 < p < q < \infty$, $1/p - 1/q = \alpha$, we have
\[
\left(\int_R |I_{\alpha,b}^{+,k} f|^q \omega^q \right)^{1/q} \leq C \left(\int_R |f|^p \omega^p \right)^{1/p},
\]
for all bounded f with compact support.

In the following theorems we prove that for commutators of one-sided operators given by convolution with a smooth function, $b \in BMO$ is also a necessary condition in order to have the commutator bounded on $L^p(\omega)$.

Let $\varphi \in C_c^\infty(-\infty,0]$, $\varphi \geq 0$ nondecreasing in $(-\infty,0]$. Then it is easy to see that there exists $C > 0$ such that $|\varphi(x-y) - \varphi(x)| \leq C|y||x|^{-2}$, for all x, y such that $|x| > 2|y|$.

For $k = 0, 1, \ldots$, the k-th order commutator of M_{φ}^+ with symbol b is defined by
\[
M_{\varphi,b}^{+,k} f(x) = \sup_{\varepsilon > 0} \int_x^\infty |b(x) - b(y)|^k \varphi(\varepsilon(x-y)) f(y) dy.
\]
Theorem 2.10. Let $1 < p < \infty$, $b \in \text{BMO}$ and $\omega \in A^+_p$. Then
\[\int_{\mathbb{R}} |M_{\varphi,b}^{+,k} f|^p \omega \leq C \int_{\mathbb{R}} |f|^p \omega. \]

If we consider φ as before and such that $\chi_{[-1,0]} \leq \varphi$, then we have
\[M_{\varphi,b}^{+,k} f(x) \leq M_{\varphi,b} f(x), \]
where
\[M_{\varphi,b} f(x) = \sup_{h>0} \frac{1}{h} \int_{x}^{x+h} |b(x) - b(y)| |f(y)| \, dy. \]

Therefore, if $b \in \text{BMO}$, Theorem 2.10 gives that $M_{\varphi,b}^{+,k}$ is bounded from $L^p(\omega)$ to $L^p(\omega)$, for $1 < p < \infty$ and $\omega \in A^+_p$. In fact, more can be said, the converse is also true.

Theorem 2.11. The following conditions are equivalent:

(i) $M_{\varphi,b}^{+,k}$ is bounded from $L^p(\omega)$ to $L^p(\omega)$, for all p with $1 < p < \infty$ and $\omega \in A^+_p$.

(ii) $M_{\varphi,b}^{+,k}$ is bounded from $L^p(dx)$ to $L^p(dx)$, for some $p > 1$.

(iii) $b \in \text{BMO}$.

Analogous results hold for $M_{\varphi,\alpha}^+$. Let $0 < \alpha < 1$. Suppose $\varphi_\alpha \in C^\infty((-\infty,0])$, $\varphi_\alpha \geq 0$, nondecreasing in $(-\infty,0]$ and such that $|\varphi_\alpha(x-y) - \varphi_\alpha(x)| \leq C \|y\| |x|^{\alpha-2}$, for all x,y such that $|x| > 2|y|$.

For $k = 0,1,\ldots$, the k-th order commutator of $M_{\varphi,\alpha}^+$ with symbol b is defined by
\[M_{\varphi,\alpha,b}^{+,k} f(x) = \sup_{\varepsilon>0} \int_{x}^{\infty} |b(x) - b(y)|^k \varphi_{\alpha,\varepsilon}(x-y) |f(y)| \, dy. \]

Then we have the following:

Theorem 2.12. Let $b \in \text{BMO}$ and let (p,q) be such that $1 < p < q < \infty$ and $\frac{1}{p} - \frac{1}{q} = \alpha$. Then, for all $\omega \in A^+(p,q)$, we have that
\[\left(\int_{\mathbb{R}} |M_{\varphi,\alpha,b}^{+,k} f|^q \omega^q \right)^{1/q} \leq C \left(\int_{\mathbb{R}} |f|^p \omega^p \right)^{1/p}. \]

Since $M_{\varphi,\alpha}^+ f(x) \leq CM_{\varphi,\alpha}^+ f(x)$, the case $k = 0$ is a consequence of a result of Andersen and Sawyer [2]. And if we choose φ_α such that $\chi_{[-1,0]} \leq \varphi_\alpha$, then $M_{\varphi,\alpha,b}^{+,k} f(x) \leq M_{\varphi,\alpha}^{+,k} f(x)$, where
\[M_{\varphi,\alpha,b}^{+,k} f(x) = \sup_{h>0} \frac{1}{h^{1-\alpha}} \int_{x}^{x+h} |b(x) - b(y)|^k |f(y)| \, dy. \]

For this operator we can also prove that $b \in \text{BMO}$ is a necessary condition.

Theorem 2.13. The following conditions are equivalent:

(i) $M_{\varphi,b}^{+,k}$ is bounded from $L^p(\omega^p)$ to $L^q(\omega^q)$ for all pairs (p,q) such that $\frac{1}{p} - \frac{1}{q} = \alpha$, $1 < p < q < \infty$ and $\omega \in A^+(p,q)$.

(ii) $M_{\varphi,b}^{+,k}$ is bounded from $L^p(dx)$ to $L^q(dx)$ for some pair (p,q) such that $\frac{1}{p} - \frac{1}{q} = \alpha$ and $1 < p < q < \infty$.

(iii) $b \in \text{BMO}$.
3. Proof of the Results

The main tools for proving our results are two extrapolation theorems that appeared in [6], with slight modifications.

Theorem 3.1. Let T be a sublinear operator defined in $C^\infty_c(\mathbb{R})$. Assume that for all ω such that $\omega^{-1} \in A_{-1}$, there exists $C = C(\omega)$ such that
\[
|||\omega Tf|||_\infty \leq C|||f\omega|||_\infty.
\]
Then, for all $\omega \in A_1^+$, $1 < p < \infty$, there exists $C = C(\omega)$ such that
\[
\left(\int |Tf|^p \omega\right)^{1/p} \leq C \left(\int |f|^p \omega\right)^{1/p},
\]
provided that the left hand side is finite.

Theorem 3.2. Let $1 < p_0 < \infty$ and T be a sublinear operator defined in $C^\infty_c(\mathbb{R})$. Assume that for all $\omega \in A_{p_0}^+$ there exists $C = C(\omega)$ such that
\[
|||\omega Tf|||_\infty \leq C|||f\omega|||_{p_0}.
\]
Then, for all pairs (p, q) such that $1 < p < p_0$, $\frac{1}{p} - \frac{1}{q} = \frac{1}{p_0}$ and all $\omega \in A_{p, q}^+$, there exists $C = C(\omega)$ such that
\[
|||\omega Tf|||_q \leq C|||f\omega|||_p,
\]
provided that the left hand side is finite.

We will also need the following result of Martín–Reyes and de la Torre (theorem 4 in [11]):

Theorem 3.3. Let $1 < p < \infty$. If $\omega \in A_1^+$ and $M^+ f \in L^p(\omega)$, then there exists $C = C(\omega)$ such that
\[
\int_{\mathbb{R}} (M^+ f)^p \omega \leq C \int_{\mathbb{R}} (f^{#,+})^p \omega.
\]

An other result that will be used often is the following (see [15]):

Theorem 3.4. Let $\omega \in A_1^{-1}$. Then there exists $s > 1$ such that $\omega^r \in A_1^{-1}$, for all r such that $1 < r \leq s$.

Proof of Theorem 2.8. Let $\omega \in A_1^+$. For $b \in L^\infty \subset BMO$ and f bounded of compact support, we have that $S_{b}^{+, k} f \in L^p(\omega)$. Then, by Theorem 3.3,
\[
\int_{\mathbb{R}} |S_{b}^{+, k} f|^p \omega \leq C \int_{\mathbb{R}} |M^+(S_{b}^{+, k} f)|^p \omega \leq C \int_{\mathbb{R}} |(S_{b}^{+, k} f)^{#,+}|^p \omega.
\]

To prove the theorem for any $b \in BMO$ we proceed in the same way as in [5]. We will control $(S_{b}^{+, k} f)^{#,+}$ by some one-sided maximal operators. Using Theorem 3.1, we shall prove that they are bounded from $L^p(\omega)$ to $L^p(\omega)$.
Let \(\lambda \) be an arbitrary constant. Then \(b(x) - b(y) = (b(x) - \lambda) - (b(y) - \lambda) \) and

\[
S_{b}^{+,k} f(x) = \left\| \int_{\mathbb{R}} (b(x) - b(y))^k H(x - y)f(y)dy \right\|_{\ell^2} \\
= \left\| \sum_{j=0}^{k} C_{j,k} (b(x) - \lambda)^j \int_{\mathbb{R}} (b(y) - \lambda)^{k-j} H(x - y)f(y)dy \right\|_{\ell^2} \\
\leq \left\| \int_{\mathbb{R}} (b(y) - \lambda)^k H(x - y)f(y)dy \right\|_{\ell^2} \\
+ \left\| \sum_{j=1}^{k} C_{j,k} (b(x) - \lambda)^j \int_{\mathbb{R}} (b(y) - \lambda)^{k-j} H(x - y)f(y)dy \right\|_{\ell^2} \\
= S^+((b - \lambda)^k f)(x) \\
+ \sum_{j=1}^{k} C_{j,k} (b(x) - \lambda)^j \int_{\mathbb{R}} (b(y) - \lambda)^{k-j} H(x - y)f(y)dy \\
\leq S^+((b - \lambda)^k f)(x) + \sum_{m=0}^{k-1} C_{k,m} |b(x) - \lambda|^{k-m} S_{b}^{+,m} f(x),
\]

where \(C_{j,k} \) (respectively \(C_{j,k,s} \)) are absolute constants depending only on \(j \) and \(k \) (respectively \(j, k \) and \(s \)). Let \(x \in \mathbb{R}, h > 0 \). Let \(i \in \mathbb{Z} \) be such that \(2^i \leq h < 2^{i+1} \) and set \(J = [x, x + 2^{i+3}] \). Then, write \(f = f_1 + f_2 \), where \(f_1 = f \chi_J \) and set \(\lambda = b_j \). Then

\[
\frac{1}{h} \int_{x}^{x+2h} |S_{b}^{+,k} f(y) - S^+((b - b_j)^k f_2)(x)|dy \\
\leq \frac{1}{h} \int_{x}^{x+2h} |S^+((b - b_j)^k f_1)(y)|dy \\
+ \frac{1}{h} \int_{x}^{x+2h} |S^+((b - b_j)^k f_2)(y) - S^+((b - b_j)^k f_2)(x)|dy \\
+ \sum_{m=0}^{k-1} C_{k,m} \frac{1}{h} \int_{x}^{x+2h} |b(y) - b_j|^{k-m} |S_{b}^{+,m} f(y)|dy \\
= I(x) + II(x) + III(x).
\]

Let \(U^+ \) be as in (2.1). Then

\[
II(x) \leq \frac{1}{h} \int_{x}^{x+2^{i+3}} ||U^+((b - b_j)^k f_2)(y) - U^+((b - b_j)^k f_2)(x)||_{\ell^2} dy,
\]

and

\[
||U^+((b - b_j)^k f_2)(y) - U^+((b - b_j)^k f_2)(x)||_{\ell^2} \\
\leq \int_{x+2^{i+3}}^{\infty} |b(t) - b_j|^k |f(t)||H(y - t) - H(x - t)||_{\ell^2} dt.
\]
Consider the following sublinear operators defined in C^∞_c:

$$M_1^+ f(x) = \sup_{i \in \mathbb{Z}} \frac{1}{2^i} \int_{x}^{x+2^{i+2}} |S^+((b - b_J)^k f \chi_J)(y)|dy;$$

$$M_2^+ f(x) = \sup_{i \in \mathbb{Z}} \frac{1}{2^i} \int_{x}^{x+2^{i+3}} \int_{x+2^{i+3}}^{\infty} |b(t) - b_{J_J}^i|^k |f(t)||H(y-t) - H(x-t)||_{L^2} dt dy;$$

and

$$M_{3,m}^+ f(x) = \sup_{h>0} \frac{1}{h} \int_{x}^{x+2h} |b(y) - b_{[x,x+8h]}(y)|^{k-m} |f(y)|dy, \quad 0 \leq m \leq k-1,$$

where, for each i, J denotes the interval $[x,x+2^{i+3}]$.

Inequalities (3.3), (3.4), (3.5) and the above definitions give that

$$(S_b^{+,k} f)_{#,+}(x) \leq C \left(M_1^+ f(x) + M_2^+ f(x) + \sum_{m=0}^{k-1} M_{3,m}^+ (S_b^{+,m} f)(x) \right).$$

We shall prove, using Theorem 3.1, that these operators are bounded from $L^p(\omega)$ to $L^p(\omega)$, $\omega \in A^+_p$, $1 < p < \infty$.

Boundedness of M_1^+: Let ω be a weight such that $\omega^{-1} \in A^-_1$. Let $1 < q < \infty$ and $1 < s < \infty$ be such that $\omega^{-qs} \in A^-_1$ (Theorem 3.4). By Hölder’s and John-Nirenberg’s inequalities and the fact that S^+ is bounded from $L^q(dx)$ to $L^q(dx)$ we get

$$(3.6) \quad \frac{1}{2^i} \int_{x}^{x+2^{i+2}} |S^+((b - b_J)^k f \chi_J)(y)|dy \leq C \left(\frac{1}{2^i} \int_{x}^{x+2^{i+2}} |S^+((b - b_J)^k f \chi_J)(y)|^q dy \right)^{1/q}$$

$$\leq C \left(\frac{1}{2^i} \int_{x}^{x+2^{i+3}} |(b(y) - b_J)^k f(y)|^q dy \right)^{1/q}$$

$$\leq C ||f\omega||_{L^q} \left(\frac{1}{2^i} \int_{x}^{x+2^{i+3}} |(b(y) - b_J)^{k-1}(y)|^q dy \right)^{1/q}$$

$$\leq C ||f\omega||_{L^q} \left(\frac{1}{2^i} \int_{x}^{x+2^{i+3}} |b - b_J|^{kqs'} \right)^{1/qs'} \left(\frac{1}{2^i} \int_{x}^{x+2^{i+3}} \omega^{-qs} \right)^{1/sq}$$

$$\leq C ||f\omega||_{L^q} ||b||_{BMO} \omega^{-1}(x).$$

Then, for all ω such that $\omega^{-1} \in A^-_1$,

$$||\omega M_1^+ f||_{L^p} \leq C ||b||_{BMO} ||f\omega||_{L^p},$$

and by Theorem 3.1, we obtain that for all $\omega \in A^+_p$, $1 < p < \infty$,

$$||M_1^+ f||_{L^p,\omega} \leq C ||b||_{BMO} ||f||_{L^p,\omega,p}.$$
Boundedness of M_2^+: Let ω be such that $\omega^{-1} \in A_1^−$. Then, if $I_j = [x, x + 2^{j+1}]$, we have that

\begin{equation}
(3.7)
\int_{x+2^{j+3}}^{\infty} |b(t) - b_{I_j}|^k |f(t)||H(t) - H(x-t)||_{L^2} dt \\
\leq C \sum_{j = i+3}^\infty \int_{x+2^{j}}^{x+2^{j+1}} |b(t) - b_{I_j}|^k |f(t)||H(t) - H(x-t)||_{L^2} dt \\
+ C \sum_{j = i+3}^\infty |b_{I_j} - b_{I_j}|^k \int_{x+2^{j}}^{x+2^{j+1}} |f(t)||H(t) - H(x-t)||_{L^2} dt \\
= IV(x) + V(x).
\end{equation}

We choose (s, s') and (t, t') such that $\omega^{-s} \in A_1^–$ and $\omega^{-st'} \in A_1^–$. Then, by Hölder’s inequality with exponents (s, s') and (t, t'),

\begin{equation}
IV(x) \leq C \sum_{j = i+3}^\infty \left(\int_{I_j} |b - b_{I_j}|^{k\omega^{-s} \omega^s |f|^s} \right)^{1/s} \\
\times \left(\int_{x+2^{j}}^{x+2^{j+1}} |H(t) - H(x-t)||_{L^2} dt \right)^{1/s'}
\end{equation}

\begin{equation}
(3.8)
\leq C ||f\omega||_\infty \sum_{j = i+3}^\infty \left(\int_{I_j} |b - b_{I_j}|^{kst} \right)^{1/st} \left(\int_{I_j} \omega^{-st'} \right)^{1/st'} \\
\times \left(\int_{x+2^{j}}^{x+2^{j+1}} |H(t) - H(x-t)||_{L^2} dt \right)^{1/s'}.
\end{equation}

It is proved in theorem 1.6 of [19] that for all $y \in [x, x + 2^{i+3}]$ the kernel H satisfies

\begin{equation}
(3.9)
\left(\int_{x+2^{j}}^{x+2^{j+1}} |H(t) - H(x-t)||_{L^2} dt \right)^{1/s'} \leq C \frac{2^{j/s'}}{2^{j}}.
\end{equation}

Then, using that $b \in BMO$, the fact that $\omega^{-st'} \in A_1^–$ and (3.9), we get

\begin{equation}
IV(x) \leq C ||f\omega||_\infty \sum_{j = i+3}^\infty ||b||_{BMO}^k (2^{j})^{1/st} \omega^{-1}(x)(2^{j+1})^{1/st'} \frac{2^{j/s'}}{2^{j}}
\end{equation}

\begin{equation}
(3.10)
\leq C \omega^{-1}(x)||f\omega||_\infty ||b||_{BMO}^k \sum_{j = i+3}^\infty \left(\frac{2^{j}}{2^{j}} \right)^{1/s'}
\end{equation}

\begin{equation}
\leq C \omega^{-1}(x)||f\omega||_\infty ||b||_{BMO}^k.
\end{equation}

Using again Hölder’s inequality, (3.9), the fact that $w^{-s} \in A_1^–$ and lemma
1 in [5], we get

\[V(x) = C \sum_{j=i+3}^{\infty} |b_{I_j} - b_j|^k \int_{x+2^j}^{x+2^{j+1}} |f(t)|||H(y-t) - H(x-t)||_{L^2} dt \]

\[\leq C \sum_{j=i+3}^{\infty} ||b||_{BMO}^k (2(j-i))^k ||f\omega||_\infty \left(\int_{I_j} \omega^{-s} \right)^{1/s} \]

\[\times \left(\int_{x+2^j}^{x+2^{j+1}} ||H(y-t) - H(x-t)||_{L^2}^{s'} dt \right)^{1/s'} \]

\[\leq C ||b||_{BMO}^k ||f\omega||_\infty \omega^{-1}(x) \sum_{j=i+3}^{\infty} (2(j-i))^k (2^{j+1})^{1/s} \frac{2i/s'}{2^j} \]

\[\leq C \omega^{-1}(x) ||b||_{BMO}^k ||f\omega||_\infty \sum_{j=i+3}^{\infty} \frac{(j-i)^{k2i/s'}}{2^{j/s'}} \]

\[\leq C \omega^{-1}(x) ||b||_{BMO}^k ||f\omega||_\infty. \]

Then, by (3.7), (3.10) and (3.11), we get that, for all \(\omega \) such that \(\omega^{-1} \in A_1^- \),

\[||\omega M^+_2 f||_\infty \leq C ||f\omega||_\infty. \]

Then, by Theorem 3.1, for all \(1 < p < \infty \) and \(\omega \in A_p^+ \),

\[||M^+_2 f||_{p,\omega} \leq C ||f||_{p,\omega}. \]

Boundedness of \(M^+_{3,m} \): Let \(\omega \) be such that \(\omega^{-1} \in A_1^- \) and let \(q > 1 \) be such that \(\omega^{-q} \in A_1^- \). Then, using again Hölder’s and John-Nirenberg’s inequalities we obtain

\[\frac{1}{h} \int_{x}^{x+2h} |b(y) - b_{[x,x+8h]}|^{k-m} |f(y)| dy \]

\[\leq \left(\frac{1}{h} \int_{x}^{x+2h} |b(y) - b_{[x,x+8h]}|^{(k-m)q'} dy \right)^{1/q'} \left(\frac{1}{h} \int_{x}^{x+2h} |f(y)|^q dy \right)^{1/q} \]

\[\leq C ||b||_{BMO}^{k-m} \left(\frac{1}{h} \int_{x}^{x+2h} |f(y)|^q dy \right)^{1/q} \]

\[\leq C ||b||_{BMO}^{k-m} ||f\omega||_\infty \left(\frac{1}{h} \int_{x}^{x+2h} \omega^{-q} dy \right)^{1/q} \]

\[\leq C ||b||_{BMO}^{k-m} ||f\omega||_\infty \omega^{-1}(x). \]

Then, for all \(\omega \) such that \(\omega^{-1} \in A_1^- \),

\[||\omega M^+_{3,m} f||_\infty \leq C ||b||_{BMO}^{k-m} ||f\omega||_\infty. \]
Therefore, by Theorem 3.1, we have that, for all \(\omega \in A^+_p \), \(1 < p < \infty \),

\[
||M^+_{3,m}f||_{\omega,p} \leq C ||b||^{k-m}_{BMO} ||f||_{\omega,p}.
\]

Using now the induction principle (the case \(k = 0 \) was proved in [19]), we obtain that, for all \(\omega \in A^+_p \), \(1 < p < \infty \),

\[
||M^+_{3,m}(S^+_bf)||_{\omega,p} \leq C ||b||^{k-m}_{BMO} ||S^+_bf||_{\omega,p} \leq C ||b||^{k}_{BMO} ||f||_{\omega,b}.
\]

Proof of Theorem 2.9. This proof follows the same pattern as the preceding one. Let \(b \in BMO \) bounded, and \(\lambda \in \mathbb{R} \), then, as in (3.2), we can write

\[
I^{k+}_m f(x) = I^+_\alpha((b - \lambda)^k f)(x) + \sum_{m=0}^{k-1} C_{k,m}(b(x) - \lambda)^{k-m} I^{+,m}_\alpha f(x).
\]

Let \(x \in \mathbb{R} \), \(h > 0 \) and \(J = [x, x + 4h] \). Write \(f = f_1 + f_2 \), where \(f_1 = f \chi_J \) and set \(\lambda = b_J \). Then,

\[
(3.12)
\]

\[
\frac{1}{h} \int_x^{x+2h} |I^{+,k}_\alpha f(y) - I^{+,k}_\alpha((b - b_J)^k f_2)(x + 2h)| dy
\]

\[
\leq \frac{1}{h} \int_x^{x+2h} |I^{+,k}_\alpha((b - b_J)^k f_1)(y)| dy
\]

\[
+ \frac{1}{h} \int_x^{x+2h} |I^{+,k}_\alpha((b - b_J)^k f_2)(y) - I^{+,k}_\alpha((b - b_J)^k f_2)(x + 2h)| dy
\]

\[
+ \sum_{m=0}^{k-1} C_{k,m} \frac{1}{h} \int_x^{x+2h} |b(y) - b_J|^{k-m} |I^{+,m}_\alpha f(y)| dy
\]

\[
= I(x) + II(x) + III(x).
\]

It is clear that

\[
III(x) \leq \sum_{m=0}^{k-1} C_{k,m} M^+_{3,m}(I^{+,m}_\alpha f)(x),
\]

where \(M^+_{3,m} \) is as in the proof of Theorem 2.8. Then, we already know that \(M^+_{3,m} \) is bounded from \(L^p(\omega) \) to \(L^p(\omega) \), provided \(\omega \in A^+_p \) and \(1 < p < \infty \). So, if \(\omega \in A^+(p,q) \), \(1/p - 1/q = \alpha \), then \(\omega^q \in A^+_{q'} \), and by induction (see \(k=0 \) in [10]), we obtain

\[
||M^+_{3,m}(I^{+,m}_\alpha f)||_{\omega^q,p} \leq C ||b||^{k-m}_{BMO} ||I^{+,m}_\alpha f||_{\omega^q,q} \leq C ||b||^k_{BMO} ||f||_{\omega^p,p},
\]

for all \(f \in C^\infty_c(\mathbb{R}) \).

To control \(I(x) \) let us define

\[
M^+_1 f(x) = \sup_{h>0} \frac{1}{h} \int_x^{x+2h} |I^+_\alpha((b - b_J)^k f \chi_J)(y)| dy,
\]

WEIGHTS FOR COMMUTATORS OF ONE-SIDED... 11
where, for each $h > 0$, $J = [x, x + 4h]$. It is not difficult to see that M^+_4 is a sublinear operator in C_c^∞ and it is clear that $I(x) \leq M^+_4 f(x)$. Let us prove that M^+_4 is bounded from $L^p(\omega^\mu)$ to $L^q(\omega^\nu)$ using Theorem 3.2.

Let $\omega \in A^+\left(\frac{1}{\alpha}, \infty\right)$, then $\omega^{1/h} \in A_1^\ast$. Therefore, there exist $t_1 > 1$ and $t_2 > 1$ such that $\omega^{-1/h} \in A_1^\ast$ and $\omega^{-1/t_2} \in A_1^-$. Let $s > 1$ and $r > 1$ be such that $s = t_1/(1 - \alpha)$ and $1/r - 1/s = \alpha$. Then, using Hölder’s inequality and the fact that I^+_α is bounded from $L^r(\mathbb{R})$ to $L^s(\mathbb{R})$, we get

\begin{equation}
\frac{1}{h} \int_x^{x+2h} |I^+_{\alpha}(b - b_J)^k f \chi_J(y)| \, dy \leq \left(\frac{1}{h} \int_x^{x+2h} |I^+_{\alpha}(b - b_J)^k f \chi_J(y)|^s \, dy \right)^{1/s} \leq C h^\alpha \left(\frac{1}{h} \int_x^{x+4h} |(b(y) - b_J)^k f(y)|^{r \omega^r} \omega^{-r} \, dy \right)^{1/r} \leq C h^\alpha \left(\frac{1}{h} \int_x^{x+4h} |(b - b_J)^k^{r \omega^{-r}} \omega^{-r} \right)^{1/r} \left(\frac{1}{h} \int_x^{x+4h} |f|^\frac{1}{s} \omega^\frac{1}{s} \right)^{\alpha}.
\end{equation}

(3.13)

Therefore, using Hölder’s and John-Nirenberg’s inequalities and the fact that $\omega^{-st_2} \in A_1^\ast$, the chain of inequalities in (3.13) can be continued as follows:

\begin{equation}
\begin{aligned}
&\leq C ||f\omega||^\frac{1}{\alpha} \left(\frac{1}{h} \int_x^{x+4h} |b - b_J|^{k \omega^{-s}} \right)^{\frac{1}{\alpha}} \\
&\leq C ||f\omega||^\frac{1}{\alpha} \left(\frac{1}{h} \int_x^{x+4h} |b - b_J|^{k s t_2} \right)^{\frac{1}{\alpha t_2}} \left(\frac{1}{h} \int_x^{x+4h} \omega^{-s t_2} \right)^{\frac{1}{\alpha t_2}} \\
&\leq C ||f\omega||^\frac{1}{\alpha} ||b||^k_{BMO} \omega^{-1}(x).
\end{aligned}
\end{equation}

(3.14)

As a consequence,

$$||\omega M^+_4 f||_{\infty} \leq C ||b||^k_{BMO} ||f\omega||^\frac{1}{\alpha}.$$

Then, by Theorem 3.2, for all $\omega \in A^+(p, q), \frac{1}{p} - \frac{1}{q} = \alpha$,

$$||M^+_4 f||_{\omega^{p}, q} \leq C ||b||^k_{BMO} ||f||_{\omega^{p}, p}.$$

Finally, we shall estimate $II(x)$. We have that

$$II(x) = \frac{1}{h} \int_x^{x+2h} \left| \int_{x+4h}^{\infty} \sigma(t,y) dt \right| dy,$$

where

$$\sigma(t,y) = (b(t) - b_J)^k f(t) \left(\frac{1}{(y-t)^{1-\alpha}} - \frac{1}{(x+2h-t)^{1-\alpha}} \right).$$
Consider the following sublinear operator in $C^\infty_c(\mathbb{R})$:

$$M^+_h f(x) = \sup_{h > 0} \frac{1}{h} \int_x^{x+2h} \left| \int_x^\infty \sigma(t,y)dy \right| dt.$$

For each $j \in \mathbb{N}$, set $I_j = [x, x + 2^{j+1}h]$. Then,

$$\frac{1}{h} \int_x^{x+2h} \left| \int_x^\infty \sigma(t,y)dy \right| dt \leq \frac{1}{h} \int_x^{x+2h} \sum_{j=2}^{\infty} \int_{x+2^j h}^{x+2^{j+1}h} |\sigma(t,y)|dtdy \leq C \sum_{j=2}^{\infty} \int_{x+2^j h}^{x+2^{j+1}h} |b(t) - b_{I_j}|^k |f(t)| \frac{2h}{(h(2^j - 2) - 2)^{\alpha/2}} dt$$

(3.15)

$$\leq C \sum_{j=2}^{\infty} \frac{h^\alpha}{(2^{j-1})^{1-\alpha}} \left(\frac{2}{2^{j-1}} \int_{x+2^j h}^{x+2^{j+1}h} |b(t) - b_{I_j}| |f(t)| dt \right)$$

$$\leq C \sum_{j=2}^{\infty} \frac{h^\alpha}{(2^{j-1})^{1-\alpha}} \left(\int_{x+2^j h}^{x+2^{j+1}h} |b(t) - b_{I_j}|^k |f(t)| dt \right) + C \sum_{j=2}^{\infty} \frac{h^\alpha}{(2^{j-1})^{1-\alpha}} \left(\int_{x+2^j h}^{x+2^{j+1}h} |b_{I_j} - b_{I_j}|^k |f(t)| dt \right)$$

$$\leq C \sum_{j=2}^{\infty} \frac{h^\alpha}{(2^{j-1})^{1-\alpha}} (IV(x) + V(x)).$$

Let $\omega \in A^+(\frac{1}{\alpha}, \infty)$. Then $\omega^{\frac{1}{\alpha}} \in A_1^-$. Choose $r > 1$ such that $\omega^{\frac{1}{r-\alpha}} \in A_1^-$. Then, by Hölder’s and John-Nirenberg’s inequalities,

$$IV(x) \leq \left(\frac{2}{2^{j-1}} \int_{x+2^j h}^{x+2^{j+1}h} |f|^{\frac{1}{\alpha}} \omega^{\frac{1}{\alpha}} \right)^{\alpha} \times \left(\frac{2}{2^{j-1}} \int_{x+2^j h}^{x+2^{j+1}h} |b(t) - b_{I_j}|^{\frac{k}{1-\alpha}} \omega^{\frac{1}{1-\alpha}} \right)^{1-\alpha}$$

(3.16)

$$\leq C(2^j h)^{-\alpha} ||f\omega||^{\frac{1}{\alpha}} \left(\frac{1}{2^j h} \int_{x+2^j h}^{x+2^{j+1}h} |b(t) - b_{I_j}|^{\frac{k}{1-\alpha}} \right)^{1-\alpha} \times \left(\frac{1}{2^j h} \int_{x+2^j h}^{x+2^{j+1}h} \omega^{\frac{1}{1-\alpha}} \right)^{\frac{1-\alpha}{r}}$$

$$\leq C ||b||_{BMO}^{k}(2^j h)^{-\alpha} ||f\omega||^{\frac{1}{\alpha}} \omega^{1}(x).$$
Using again lemma 1 in [5] and Hölder’s inequality,

\[V(x) \leq \frac{1}{2^j h} |b_{I_j} - b_J|^k \int_x^{x+2^{j+1}h} |f(t)| dt \]
\[\leq C(2j)^k ||b||_{BMO}^k \left(\frac{1}{2^j h} \int_x^{x+2^{j+1}h} |f| \theta^\alpha \right)^\alpha \]
\[\times \left(\frac{1}{2^j h} \int_x^{x+2^{j+1}h} \theta^{\frac{1}{1-\alpha}} \right)^{1-\alpha} \]
\[\leq C(2j)^k (2^j h)^{-\alpha} ||b||_{BMO}^k ||f\omega||_\frac{1}{\alpha} \omega^{-1}(x). \]

Putting together inequalities (3.15), (3.16) and (3.17), we get that

\[(3.17) \]

Taking supremums first on \(h > 0 \) and then on \(x \in \mathbb{R} \), we get

\[||\omega M_\sigma^+ f||_\infty \leq C ||b||_{BMO}^k ||f\omega||_\frac{1}{\alpha}. \]

So, by Theorem 3.2, for all \(\omega \in A^+(p,q), \frac{1}{p} - \frac{1}{q} = \alpha, \)

\[||M_\sigma^+ f||_{\omega^q,p} \leq C ||b||_{BMO}^k ||f||_{\omega^p,p}. \]

\[\square \]

Proof of Theorem 2.10.

This proof also follows the same pattern as the preceding ones. Let \(b \in BMO \) bounded and let \(\lambda \in \mathbb{R} \). Then, as in (3.2), we have

\[M_{\varphi,b}^{+,k} f(x) \leq M_\varphi^+ ((b - \lambda)^k f)(x) + \sum_{m=0}^{k-1} C_{k,m} |b(x) - \lambda|^{k-m} M_{\varphi,b}^{+,m} f(x). \]

Let us fix \(x \in \mathbb{R} \) and \(h > 0 \) and let \(J = [x,x+8h] \). Write \(f = f_1 + f_2 \),

where \(f_1 = f \chi_J \), and also write \(\lambda = b_J \). Then, as in (3.3) and (3.12), it follows that

\[\frac{1}{h} \int_x^{x+2h} |M_{\varphi,b}^{+,k} f(y) - M_\varphi^+ ((b - b_J)^k f_2)(x+2h) | dy \]
\[\leq \frac{1}{h} \int_x^{x+2h} |M_\varphi^+ ((b - b_J)^k f_1)(y) | dy \]
\[+ \frac{1}{h} \int_x^{x+2h} |M_\varphi^+ ((b - b_J)^k f_2)(y) - M_\varphi^+ ((b - b_J)^k f_2)(x+2h) | dy \]
\[+ \sum_{m=0}^{k-1} C_{k,m} \frac{1}{h} \int_x^{x+2h} |b(y) - b_J|^{k-m} |M_{\varphi,b}^{+,m} f(y) | dy \]
\[= I(x) + II(x) + III(x). \]
It is clear that $III(x) \leq \sum_{m=0}^{k-1} C_{k,m} M_{3,m}^+(M_{\varphi,b}^+ f)(x)$, being $M_{3,m}^+$ the same as in the proofs of Theorems 2.8 and 2.9, and

$$ (3.19) \quad \text{II}(x) \leq C \frac{1}{h} \int_x^{x+2h} \int_{x+8h}^{\infty} \frac{x + 2h - y}{(z - (x + 2h))^2} |b(z) - b_J|^k |f(z)| dz dy,$$

by the conditions imposed on the kernel φ.

Consider the following sublinear operators defined on C_{c}^∞:

$$ M_0^+ f(x) = \sup_{h > 0} \frac{1}{h} \int_x^{x+2h} |M_\varphi^+ ((b - b_J)^k f \chi_J)(y)| dy $$

and

$$ M_7^+ f(x) = \sup_{h > 0} \frac{1}{h} \int_x^{x+2h} \int_{x+8h}^{\infty} \frac{x + 2h - y}{(z - (x + 2h))^2} |b(z) - b_J|^k |f(z)| dz dy,$$

where, for each $h > 0$, J is the interval $[x, x + 8h]$.

The above inequalities and definitions give that

$$ (M_{\varphi,b}^+ f)^{(k)}(x) \leq C \left(M_6^+ f(x) + M_7^+ f(x) + \sum_{m=0}^{k-1} M_{3,m}^+(M_{\varphi,b}^{+m} f)(x) \right). $$

Let $\omega \in A_p^+$, $1 < p < \infty$. Then, acting as in the boundedness of M_1^+, in the proof of Theorem 2.8, we get that M_6^+ is bounded from $L^p(\omega)$ to $L^p(\omega)$. On the other hand, we already know that $M_{3,m}^+$ is bounded from $L^p(\omega)$ to $L^p(\omega)$ and, to proceed with the induction, we observe that the case $k = 0$ is a consequence of the fact that $M_7^+ f$ is pointwise equivalent to $M^+ f$. Therefore, we only have to prove that M_7^+ is bounded from $L^p(\omega)$ to $L^p(\omega)$, for $\omega \in A_p^+$, $1 < p < \infty$.

Let us use again Theorem 3.1. Let ω be such that $\omega^{-1} \in A_1^-$. For each $j \in \mathbb{N}$, let $I_j = [x, x + 2^j h]$. Then

$$ \frac{1}{h} \int_x^{x+2h} \int_{x+8h}^{\infty} \frac{x + 2h - y}{(z - (x + 2h))^2} |b(z) - b_J|^k |f(z)| dz dy $$

$$ \leq C \frac{1}{h} \int_x^{x+2h} h \sum_{j=3}^{\infty} \int_{x+2^j h}^{x+2^{j+1} h} \frac{|b(z) - b_J|^k}{(z - (x + 2h))^2} |f(z)| dz dy $$

$$ \leq C \int_{I_j} |f\omega| \sup_{j=3}^{\infty} \frac{2^{j+1}}{(2^j - 2)^2 h^2} \int_{I_j} |b(z) - b_J|^k \omega^{-1}(z) dz $$

$$ \leq C \int_{I_j} |f\omega| \sup_{j=3}^{\infty} \frac{2^{j+1}}{(2^j - 2)^2} \int_{I_j} |b_J|^k \omega^{-1}(z) dz $$

$$ + \frac{1}{2^{j+1} h} \int_{I_j} |b_J - b_J|^k \omega^{-1}(z) dz $$

(3.20) $$ \leq C \int_{I_j} |f\omega| \sum_{j=3}^{\infty} \frac{2^{j+1}}{(2^j - 2)^2} (IV(x) + V(x)). $$
Let \(q > 1 \) be such that \(\omega^{-q} \in A_1^- \) (Theorem 3.4). Then, Hölder’s and John-Nirenberg’s inequalities give

\[
IV(x) \leq \left(\frac{1}{2^{j+1}h} \int_x^{x+2^{j+1}h} |b - b_{I_j}|^{kq'} \left(\frac{1}{2^{j+1}h} \int_x^{x+2^{j+1}h} \omega^{-q} \right)^{1/q} \right)^{1/q'} \leq C ||b||_{BMO}^{k} \omega^{-1}(x).
\]

In [5], it is proved that \(|b_{I_j} - b_{I_j}|^k \leq C|2^j|^k||b||_{BMO}^k \) for all \(3 \leq j \). Then, using this fact and using that \(\omega^{-1} \in A_1^- \), we obtain

\[
(3.22) \quad V(x) = \frac{1}{2^{j+1}h} \int_{I_j} |b_{I_j} - b_{I_j}|^k \omega^{-1} \leq C|2^j|^k||b||_{BMO}^k \omega^{-1}(x).
\]

Then by (3.20), (3.21) and (3.22) we get that, for all \(\omega \) such that \(\omega^{-1} \in A_1^- \),

\[
||\omega M_\tau^+ f||_\infty \leq C||b||_{BMO}^k||f||_\infty,
\]

and, by Theorem 3.1, for all \(\omega \in A_1^+, 1 < p < \infty \),

\[
||M_\tau^+ f||_{\omega,p} \leq C||b||_{BMO}^k||f||_{\omega,p}.
\]

Now, we only have to take into account (3.19) and Theorem 3.3 to conclude the proof of Theorem 2.10.

Remark 3.5. Following the same steps as in the proof of Theorem 2.10 we get Corollary 1 of [5], i.e., the boundedness of the commutator of one-sided singular integrals (introduced in [1]), from \(L^p(\omega) \) to \(L^p(\omega), \omega \in A_1^+, 1 < p < \infty \).

Proof of Theorem 2.11.

(iii) ⇒ (i) It is a consequence of Theorem 2.10.

(i) ⇒ (ii) Let \(p > 1 \) and set \(\omega \equiv 1 \).

(ii) ⇒ (iii) Set \(I = (a, b), I^+ = (b, c) \), and \(|I| = |I^+| \). Then

\[
\frac{1}{|I|} \int_I |b(y) - b_{I^+}| dy \leq \left(\frac{1}{|I|} \int_I |b(y) - b_{I^+}|^k dy \right)^{1/k} = \left(\frac{1}{|I|} \int_I \left(\frac{1}{|I^+|} \int_{I^+} (b(y) - b(x)) dx \right)^k \right)^{1/k} \leq \left(\frac{1}{|I|} \int_I \left(\frac{1}{|I^+|} \int_{I^+} |b(y) - b(x)|^k dx \right) dy \right)^{1/k}.
\]

Observe that, for \(y \in I \),

\[
\frac{1}{|I^+|} \int_{I^+} |b(x) - b(y)|^k dx = \frac{1}{|I^+|} \int_{I^+} |b(x) - b(y)|^k \chi_{I^+}(x) dx \leq CM_b^{+,k} \chi_{I^+}(y).
\]
Then, by Hölder’s inequality and (ii),

$$\frac{1}{|I|} \int_I |b(y) - b_{I^+}|dy \leq C \left(\frac{1}{|I|} \int_I M_{b,x}^{+,k} \chi_{I^+} \, dy \right)^{1/k} \leq C \left(\frac{1}{|I|} \int_I |M_{b,x}^{+,k} \chi_{I^+}| \, dy \right)^{1/pk} \leq C \left(\frac{|I^+|}{|I|} \right)^{1/pk} = C.$$

So $b \in BMO$. \hfill \square

Proof of Theorem 2.12. Observe that by the conditions given on φ_α, $M_{\varphi_\alpha,b}^{+,k}$ can be treated in the same way as $I_{\alpha,b}^{+,k}$, the commutator of the one-sided fractional operator. Observe that the case $k = 0$ is a consequence of the fact that $M_{\varphi_\alpha} f(x) \leq CM_{\alpha} f(x)$ and the result in [2]. \hfill \square

Proof of Theorem 2.13.

(iii) ⇒ (i) It is a consequence of Theorem 2.12.

(i) ⇒ (ii) Given an appropriate pair (p, q), set $\omega \equiv 1$.

(ii) ⇒ (iii) Set $I = (a, b)$, $I^+ = (b, c)$, and $|I| = |I^+|$. Then

$$\frac{1}{|I|} \int_I |b - b_{I^+}|dy \leq \left(\frac{1}{|I|} \int_I \left(\frac{1}{|I^+|} \int_{I^+} |b(x) - b(y)|^k \, dx \right)dy \right)^{1/k} \leq \left| \frac{|I|^{-\alpha}}{|I|} \int_I \left(\frac{1}{|I^+|^{1-\alpha}} \int_{I^+} |b(x) - b(y)|^k \, dx \right)dy \right|^{1/k}.$$

Observe that, for $y \in I$,

$$\frac{1}{|I^+|^{1-\alpha}} \int_{I^+} |b(x) - b(y)|^k \, dx = \frac{1}{|I^+|^{1-\alpha}} \int_y^c |b(x) - b(y)|^k \chi_{I^+} \, dx \leq CM_{\alpha,b}^{+,k} \chi_{I^+}(y).$$

Then, by Hölder’s inequality and (ii),

$$\frac{1}{|I|} \int_I |b - b_{I^+}|dy \leq C \left(\frac{|I|^{-\alpha}}{|I|} \int_I M_{\alpha,b}^{+,k} \chi_{I^+} \, dy \right)^{1/p} \leq C \left(\frac{1}{|I|} \int_I \left(\frac{1}{|I^+|} \int_{I^+} |M_{\alpha,b}^{+,k} \chi_{I^+}| \, dy \right)^{1/p} \right)^{1/p} \leq C \left(\frac{1}{|I|} \int_I \left(\int_{\mathbb{R}} |\chi_{I^+}| \, dy \right)^{1/p} \right)^{1/p} \leq C \left(|I|^{-\alpha - \frac{1}{q} + \frac{1}{p}} \right)^{1/k} = C.$$

So $b \in BMO$. \hfill \square

Acknowledgement. We want to thank A. de la Torre and J.L. Torrea for their helpful comments and indications.
References

(29071) Málaga, Spain

E-mail address: lorente@anamat.cie.uma.es

FAAMAT, Universidad Nacional de Córdoba, CIEM–Conicet. (5000) Córdoba, Argentina.

E-mail address: sriveros@mate.uncor.edu