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Abstract. In this paper we study the relationship between one-sided reverse Hölder classes
RH+r and the A+p classes. We find the best possible range of RH+r to which an A+1 weight
belongs, in terms of the A+1 constant. Conversely, we also find the best range of A+p to
which a RH+∞ weight belongs, in terms of the RH+∞ constant. Similar problems for A+p ,
1 < p < ∞ and RH+r , 1 < r < ∞ are solved using factorization.
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1. Introduction

It is well known that there is a relationship between the Ap classes and the so called

reverse Hölder classes RHr. C. J. Neugebauer [8] studied the following problems:

(1) For w ∈ Ap, find the precise range of r′s such that w ∈ RHr, the precise

range of q < p for which w ∈ Aq, and the precise range of s > 1 such that
ws ∈ Ap.

(2) Conversely, for a fixed w ∈ RHr, find the precise range of p′s such that
w ∈ Ap, and the precise range of q > r for which w ∈ RHq.

For the one-sided Hardy-Littlewood maximal operator

M+f(x) = sup
h>0

1
h

∫ x+h

x

|f |,

the A+
p classes were introduced by E. Sawyer [9]. He proved that M+ is bounded in

Lp(w) (p > 1) if, and only if, the weight satisfies A+
p , i.e., there exists a constant C
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such that for any three points a < b < c we have

∫ b

a

w

(∫ c

b

w1−p′
)p−1

� C(c− a)p.

The smallest constant for which this is satisfied will be called the A+
p constant of w

and will be denoted by A+
p (w). For p = 1 the weak type of the operator holds if, and

only if, the weight w satisfies A+
1 , i.e., there exists C such that for any a and almost

every b > a, ∫ b

a

w � C(b − a)w(b).

The smallest such constant will be called the A+
1 constant of w and will be denoted by

A+
1 (w). For later reference we point out that it is an easy consequence of Lebesgue’s

differentiation theorem that the constant in the definiton of A+
1 is always greater

than, or equal to, one.

These classes are of interest, not only because they control the boundedness of

the one-sided Hardy-Littlewood maximal operator, but they are the right classes for
the weighted estimates for one-sided singular integrals [1] and they also appear in

PDE [4]. In contrast to the Muckenhoupt weights, the one-sided weights are not
doubling, but they possess a one-sided doubling property, namely if w ∈ A+

p then

there exists C such that for any a ∈ R and h > 0,
∫ a+2h

a
w � C

∫ a+2h

a+h
w. The

reverse Hölder property is not satisfied by these weights, either, but nevertheless,
Martín-Reyes [5] proved that there is a weak substitute of this notion, that we will

denote by RH+
r , which is good enough to prove the “p− ε′′ property. In [7] the class

A+
∞ was introduced and it was proved that A+

∞ =
⋃

p<∞
A+

p =
⋃

1<r
RH+

r .

In this note we solve the problems of the Neugebauer paper in this context. In

the proofs we will make essential use of the one-sided minimal operator introduced
by Cruz-Uribe, Neugebauer and Olesen [3]. It is defined as m+f(x) = inf

c>x

1
c−x

∫ c

x
|f |.

We will also use the fact that for any positive function g, the maximal operator
Mgf(x) = sup

x∈I

1
g(I)

∫
I
|f |g dx is of weak type one-one with respect to the measure

g dx. Note that for g = 1 we have the classical Hardy-Littlewood maximal operator,
which is denoted by Mf .

The paper is organized as follows: in Section 2 we give definitions and characteri-
zations of RH+

r , 1 < r < ∞. In Section 3 we prove two theorems of the best range

for the extreme classes A+
1 and RH+

∞. In Section 4 we give a factorization theorem
for weights in RH+

r , and finally in Section 5 we extend the theorems of Section 3

to A+
p and RH+

r , using the factorization proved in Section 4. We shall see that the
index range depends on the factorization of the weight.
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We end this introduction with some notation: for a given interval I = (a, a + h)
we denote by I− the interval (a− h, a), I+ the interval (a+ h, a+ 2h), and I++ the
interval (a+ 2h, a+ 3h). For any 1 < p <∞, p′ will be its conjugate exponent, if g
is locally integrable and E is a measurable set, g(E) will stand for

∫
E
g and C will

represent a constant that may change from time to time. Finally, we remark that
we can change the orientation on the real line obtaining similar results for classes

RH−
r , A

−
p , 1 < r � ∞ and 1 � p � ∞.

2. Definition, charaterization of RH+
r for 1 < r <∞

We start this section with the definiton of RH+
r , 1 < r <∞.

Definition 2.1. A weight w satisfies the one-sided reverse Hölder RH+
r condi-

tion, if there exists C such that for any a < b,

(2.2)
∫ b

a

wr � C
(
M(wχ(a,b))(b)

)(r−1)
∫ b

a

w.

The smallest such constant will be called the RH+
r constant of w and will be

denoted by RH+
r (w).

Definition 2.3. A weight satisfies the one-sided reverse Hölder RH+
∞ condition,

if there exists C such that

(2.4) w(x) � Cm+w(x)

for almost all x ∈ R.

The smallest such constant will be called the RH+
∞ constant of w and will be

denoted by RH+
∞(w). It is clear that C � 1.

The following lemma gives several characterizations of RH+
r . The constants are

not necessarily the same.

Lemma 2.5. Let a < b < c < d, 1 < r <∞, and let w � 0 be locally integrable.
Then the following staments are equivalent.

(i)
∫ b

a

wr � C
(
M(wχ(a,b))(b)

)(r−1)
∫ b

a

w.

(ii)
1

b− a

∫ b

a

wr � C
(

1
c− b

∫ c

b

w

)r

with b− a = 2(c− b).

(iii)
1

b− a

∫ b

a

wr � C
(

1
d− c

∫ d

c

w

)r

with b− a = d− b = 2(d− c).
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(iv)
1

b− a

∫ b

a

wr � C
(

1
c− b

∫ c

b

w

)r

with b− a = c− b.

(v)
1

b− a

∫ b

a

wr � C
(

1
d− c

∫ d

c

w

)r

with b− a = d− c = γ(d− a), 0 < γ � 1
2 .

Proof. To see i) =⇒ ii), we fix a < b < c, b − a = 2(c − b) and take any
x ∈ (b, c). Then

∫ b

a

wr �
∫ x

a

wr � C
(
M(wχ(a,x))(x)

)r−1
∫ x

a

w � C
(
M(wχ(a,c))(x)

)r−1
∫ c

a

w.

Therefore (b, c) ⊂ {x :
(
M(wχ(a,c))(x)

)r−1 � 1
C
R

c
a

w

∫ b

a
wr}. The weak type (1, 1) of

the Hardy-Littlewood maximal operator yields

(c− b)
(∫ b

a

wr

) 1
r−1

� C
(∫ c

a

w

) r
r−1

,

which implies

1
b− a

∫ b

a

wr � C
(

1
c− b

∫ c

a

w

)r

� C
(

1
c− b

∫ c

b

w

)r

;

the last inequality follows from the fact, proved in [7], that a weight satisfying i)

satisfies A+
p for some p and thus it satisfies the one-sided doubling condition.

We will prove now that ii) =⇒ i). Let us fix a < b and define a sequence (xk) as

follows: x0 = a and b−xk = 2(b−xk+1). In particular, xk+1−xk = 2(xk+2−xk+1) =
(b− xk+1). Using condition ii) for the points xk, xk+1, xk+2, we have

∫ b

a

wr =
∞∑
0

∫ xk+1

xk

wr � C
∞∑
0

(xk+1 − xk)1−r

(∫ xk+2

xk+1

w

)r

� C
∞∑
0

∫ xk+2

xk+1

w

(
1

b− xk+1

∫ b

xk+1

w

)r−1

�
(
M(wχ(a,b))(b)

)r−1
C

∫ b

a

w.

To see ii) =⇒ iii) let a < b < c < d with b − a = d − b = 2(d − c). Using that w
satisfies the one-sided doubling condition, we have

1
b− a

∫ b

a

wr � C
(

1
c− b

∫ c

b

w

)r

� C
(
d− c
c− b

1
d− c

∫ d

b

w

)r

� C
(

1
d− c

∫ d

c

w

)r

.

iii) =⇒ iv) is immediate.
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First of all we observe that iv) easily implies that the weight w satisfies the one-

sided doubling condition. To see that iv) =⇒ v), let 0 < γ � 1
2 and a < b < c < d,

b− a = d− c = γ(d− a). Then if x is the midpoint between a and d we have

1
b− a

∫ b

a

wr � 1
2γ

1
x− a

∫ x

a

wr � C

2γ

(
1

d− x

∫ d

x

w

)r

,

but it follows from the one-sided doubling condition that
∫ d

x w � Cγ

∫ d

c w.

Suppose v) holds, let a < b < c, b−a = c−b = h and let us define for k = 0, 1, . . . , N
xk = a + ksh and yk = b + ksh where s = γ

1−γ and N is the first integer such that

(N + 1)s > 1. We observe that the choice of xk, yk has been made so that for any
0 � k � (N − 1) we have xk+1 − xk = yk+1 − yk = γ(yk+1 − xk). Applying v), using

that r > 1 and the fact that the intervals (yk, yk+1) are disjoint, we have

∫ b

a

wr �
N−1∑
k=0

∫ xk+1

xk

wr +
∫ b

b−sh

wr

� C(sh)1−r
N−1∑
k=0

(∫ yk+1

yk

w

)r

+ C(sh)1−r

(∫ c

c−sh

w

)r

� Cγ(c− a)1−r

(∫ c

b

w

)r

.

So we have proved that v) =⇒ iv).

Finally, we will show that iv) =⇒ ii). Let a < b < c with b − a = 2(c− b). Let x
be the midpoint between a, b. Using the one-sided doubling property we have

1
b− a

∫ b

a

wr =
1

b− a

(∫ x

a

wr +
∫ b

x

wr

)

=
1
2

(
1

x− a

∫ x

a

wr +
1

b− x

∫ b

x

wr

)

� C

2

((
1

b− x

∫ b

x

w

)r

+
(

1
c− b

∫ c

b

w

)r)

� C

2

((
1
c− b

∫ c

x

w

)r

+
(

1
c− b

∫ c

b

w

)r)

� C
(

1
c− b

∫ c

b

w

)r

.

�

Remark. The equivalence of i) and iv) was first proved in [3].
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The following lemma tells us that in the definition of A+
p we can take two intervals

that are not contiguous. Note that in the case of RH+
r we have seen this in the

previous lemma.

Lemma 2.6. A weight w belongs to A+
p , p > 1 if, and only if, there exist

0 < γ � 1
2 and a constant Cγ such that b−a = d−c = γ(d−a) for any a < b < c < d,

then

(2.7)
∫ b

a

w

(∫ d

c

w1−p′
)p−1

� Cγ(b − a)p.

Proof. If w ∈ A+
p , 0 < γ � 1

2 and a < b < c < d, b− a = d− c = γ(d− a) then

∫ b

a

w

(∫ d

c

w1−p′
)p−1

�
∫ c

a

w

(∫ d

c

w1−p′
)p−1

� C(d − a)p = Cγ(b− a)p.

To prove that (2.7) implies A+
p we will show that (2.7) implies that for γ and

a, b, c, d as above we have

1
b− a

∫ b

a

w exp
(

1
d− c

∫ d

c

− log(w)
)

� C.

Indeed,

(2.8)
1

b− a

∫ b

a

w exp
(

1
d− c

∫ d

c

− log(w)
)

=
1

b− a

∫ b

a

[
w exp

(
1

d− c

∫ d

c

log(w)1−p′
)]p−1

� 1
b− a

∫ b

a

w

(
1

d− c

∫ d

c

w1−p′
)p−1

� C.

In the same way we prove that w1−p′
satisfies

(2.9) exp
(

1
b− a

∫ b

a

log(w)p′−1

)
1

d− c

∫ d

c

w1−p′ � C.

But, according to part j) of Theorem 1 in [7], (2.8) is equivalent to saying that
w ∈ A+

∞ while (2.9) means that w1−p′ ∈ A−
∞, and according to Theorem 2 in [7]

these two conditions imply w ∈ A+
p . �

Remark 2.10. We can easily see that w ∈ A+
1 if, and only if, there exists C > 0

such that 1
h

∫ a

a−h w � Cw(a + h) for almost every a ∈ R and h > 0.
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3. The extreme cases: A+
1 and RH+

∞

Theorem 3.1. Let w ∈ A+
1 with A

+
1 constant C > 1. Then w ∈ RH+

r for any

1 < r < C
C−1 , and this is the best possible range.

Proof. Let us fix the interval I = (a, b). We consider the truncation of w

at height N defined by wN = min(w,N), which also satisfies A+
1 with a constant

CN � C. We claim that if λI =M(wNχI)(b) and Eλ = {x ∈ I : wN (x) > λ} then

(3.2)
∫

Eλ

wN � CNλ|Eλ| ∀λ � λI .

Indeed, if Eλ = I we do not even need the A+
1 condition, since

wN (Eλ) =
∫ b

a

wN �M(wNχI)(b)(b − a) = λI(b − a) � CNλ|Eλ|.

If Eλ 
= I we fix ε > 0 and an open set O such that Eλ ⊂ O ⊂ I and |O| � ε+ |Eλ|.
Let Jk = (c, d), be one of the connected components of O. There are two cases:

(1) a � c < d < b,
(2) a � c < d = b.

In the first case d /∈ Eλ and then wN (d) � λ. Now A+
1 gives

∫ d

c
wN � CNwN (d)(d−

c) � CNλ(d − c). The second case is handled as the case Eλ = I, since
∫ b

c wN �
M(wNχI)(b)(b− c) � Cλ(b− c). In any case wN (Jk) � CNλ|Jk|. Adding up we get

wN (Eλ) � wN (O) � CNλ|O| � CNλ(ε+ |Eλ|).

Since ε was arbitrary we are done. Now we proceed in the standard way, i.e., we
fix s > −1, multiply both sides of (3.2) by λs and integrate from λI to infinity to

obtain,
1

s+ 1

∫
I

(ws+2
N − λs+1

I wN ) � CN

s+ 2

∫
I

ws+2
N .

Now if r = s+ 2 < CN

CN−1 then 1
s+1 − CN

s+2 > 0, and we get

∫
wr

N � CNλ
r−1
I

∫
I

wN = CN (M(wNχI)(b))r−1

∫
I

wN .

Now CN � C implies CN

CN−1 � C
C−1 , and therefore if r � C

C−1 then

∫ b

a

wr
N � CN (M(wNχ(a,b))(b))r−1

∫ b

a

wN � C(M(wχ(a,b))(b))r−1

∫ b

a

w
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and the monotone convergence theorem gives w ∈ RH+
r . To see that this is the best

possible range we consider the function

w(x) = x
1
C −1χ(0,∞)(x).

It is clear that w does not satisfy RH+
C

C−1
because w

C
C−1 (x) = 1

x for x > 0. To see

that it satisfies A+
1 with the constant C, we consider three cases:

(1) a < b � 0,
(2) a � 0 < b,
(3) 0 < a < b.

In the first case there is nothing to check. In the second case 1
b−a

∫ b

a
w < 1

b

∫ b

0
w(x) =

C
b b

1
C = Cw(b). Finally, if 0 < a < b, then

∫ b

a w = C(b
1
C − a 1

C ) � C(b − a)w(b). �

Remark. Note that if C = 1, then w(x) = M−w(x), and this implies that w is
non-decreasing. This tells us that w ∈ RH+

∞.

Theorem 3.3. If w satisfies RH+
∞ with a constant C > 1, then w ∈ A+

p for all

p > C, and this is the best possible range.

Proof. A truncation argument as in Theorem 3.1 allows us to suppose that
w is bounded away from zero, i.e. there exists β > 0 such that w(x) � β for all x.

Let us fix I = (a, b) and consider λI = m+(w 1
χI

)(a). We claim that if λ < λI and
Eλ = {x ∈ I : w(x) < λ}, then

(3.4) λ|Eλ| � C
∫

Eλ

w.

As before, if Eλ = I then λ|Eλ| = λ(b − a) < λI(b − a) =
∫ b

a
w � w(Eλ). If

Eλ 
= I then we aproximate it by an open set O =
⋃
Jk where Eλ ⊂ O ⊂ I and

w(O) < ε+ w(Eλ). Let us fix Jk = (c, d). There are two cases:

(1) a < c,

(2) a = c.

In the first case c /∈ Eλ and then λ(d−c) � w(c)(d−c) � Cm+w(c)(d−c) � C
∫ d

c w.

In the second case λ(d − c) � λI(d − a) �
∫ d

a
w, and (3.4) follows. If we multiply

both sides of (3.4) by λ−r with r > 2 and integrate we have

∫ λI

0

λ1−r

∫
χEλ

(x) dxdλ � C
∫ ∞

0

λ−r

∫
Eλ

w(x) dxdλ.
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For the left hand side we obtain

∫ λI

β

λ1−r

∫
χEλ

(x) dxdλ =
1

2 − r

∫
{x∈I: w(x)<λI}

λ2−r
I − w2−r dx

� 1
2 − r

∫
I

λ2−r
I − w2−r dx =

1
r − 2

∫
I

w2−r − |I|
r − 2

λ2−r
I ,

while the right hand side is equal to C
r−1

∫
I w

2−r . Therefore

1
r − 2

∫
I

w2−r � C

r − 1

∫
I

w2−r +
|I|
r − 2

λ2−r
I .

If we choose r > 2 such that C(r − 2) < (r − 1), we obtain that there exists C such
that

(3.5)
1
|I|

∫
I

w2−r � C
(
m+

(
w

χI

)
(a)

)2−r

.

We now claim that (3.5) implies that w ∈ A+
p with p = r−1

r−2 . Let us fix a < b < c
and choose x ∈ (a, b). If we keep in mind that 1 − p′ = 2 − r we may write

(
1

c− a

∫ c

b

w1−p′
)p−1

�
(

1
c− x

∫ c

x

w1−p′
)p−1

� C
(
m+(

w

χ(x,c)
)(x)

)−1

,

but

(
m+(

w

χ(x,c)
)(x)

)−1

=
(

inf
x<d<c

1
d− x

∫ d

x

w

)−1

= sup
x<d<c

d− x∫ d

x w
=Mw

(χ(a,c)

w

)
(x).

We have thus proved that if λ =
(

1
c−a

∫ c

b w
1−p′)p−1

then

(a, b) ⊂
{
x : CMw

(χ(a,c)

w

)
(x) > λ

}
,

and the weak type of Mw with respect to the measure w dx yields
∫ b

a w � C(c −
a)p

(∫ c

b
w1−p′)1−p

which is A+
p . Finally, it can be checked that the function w(x)

which is 0 for x < −1, identically one for x > 0 and |x|C−1 between −1 and 0,
satisfies RH+

∞ with a constant C, but is not in A+
C . �

Remark. Note that if C = 1, then w(x) = m+w(x), and this implies that w is
non-decreasing. This tells us that w ∈ A+

1 .
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We have had several different characterizations of RH+
r , one involved the maximal

operator, but dealt with one interval, and the others involved two intervals but
no operator. We can now prove that for RH+

∞ the situation is the same, we can
characterize RH+

∞ using two intervals instead of the minimal operator.

Corollary 3.6. We have w ∈ RH+
∞ if, and only if, there exists C such that for

any interval I,

(3.7) ess sup
I

w � C 1
|I+|

∫
I+
w.

Proof. It is immediate that (3.7) implies RH+
∞. Assume now that w ∈ RH+

∞.

The preceding theorem tells us that w ∈ Ap for some p, and therefore it satisfies the
one-sided doubling condition. Therefore if I = (a, b) is any interval, I+ = (b, c) and

x ∈ I, we have

w(x) � C

c− x

∫ c

x

w � C

c− b

∫ c

b

w,

which is (3.7). �

Remark. Note that with this definition, we have RH+
∞ ⊂ ∩r>1RH

+
r .

4. Factorization of weights in RH+
r , 1 < r � ∞

The theorems on the best range for weights in A+
p (p > 1) or in RH+

r , r <∞ will
be stated in terms of factorizations of the given weight. Therefore this section will

be devoted to proving a factorization of functions in RH+
r . The bilateral case was

studied in [2].

Definition 4.1. A function w is said to be essentially increasing if there exists

C such that w(x) � Cw(y) for any x < y.

Lemma 4.2. A function belongs to RH+
∞ ∩ A+

1 if, and only if, it is essentially

increasing.

Proof. Assume that w ∈ RH+
∞ ∩ A+

1 and x < y, then w(x) � C 1
y−x

∫ y

x w �
Cw(y) and w is essentially increasing. Conversely, if w is essentially increasing then

for any x and h > 0 we have w(x) � C
h

∫ x+h

x w, hence w ∈ RH+
∞. On the other

hand, 1
h

∫ x

x−h
w � Cw(x), so w ∈ A+

1 �
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Lemma 4.3. Let 1 < r � ∞ and 1 � p <∞.
(1) If u is essentially increasing and v ∈ RH+

r then uv ∈ RH+
r .

(2) If u is essentially increasing and v ∈ A+
p then uv ∈ A+

p .

Proof. This proof follows immediately from Definition 4.1. �

Lemma 4.4. Let 1 < r � ∞ and 1 � p < ∞. We have w ∈ RH+
r ∩ A+

p if, and

only if, wr ∈ A+
q , with q = r(p− 1) + 1.

Proof. Let C1 = RH+
r (w) and C2 = A+

p (w), w ∈ RH+
r ∩A+

p and q = r(p−1)+1.
Also note that 1 − q′ = 1 − r(p−1)+1

r(p−1) = 1
r(1−p) ,

(
1

|I−|

∫
I−
wr

)(
1

|I+|

∫
I+
wr(1−q′)

)q−1

� C1

(
1
|I|

∫
I

w

)r( 1
|I+|

∫
I+
w1−p′

)r(p−1)

� C1C
r
2 ,

and by Lemma 2.6 we have that wr ∈ A+
q .

If wr ∈ A+
q , then by Hölder’s inequality

(
1
|I|

∫
I

w

)(
1

|I+|

∫
I+
w−1/(p−1)

)p−1

�
(

1
|I|

∫
I

wr

)1/r( 1
|I+|

∫
I+
w−r/(q−1)

)(q−1)/r

� C1/r,

and we obtain in this way that w ∈ A+
p . Now again by Hölder’s inequality

1 =
1

|I+|

∫
I+
w−1/pw1/p �

(
1

|I+|

∫
I+
w

)1/p( 1
|I+|

∫
I+
w−p′/p

)1/p′

,

so (
1

|I+|

∫
I+
w−1/(p−1)

)1−p

� 1
|I+|

∫
I+
w,

and we get

(
1
|I|

∫
I

wr

)1/r

� C
(

1
|I+|

∫
I+
w−r/(q−1)

)−(q−1)/r

= C
(

1
|I+|

∫
I+
w−1/(p−1)

)1−p

� C 1
|I+|

∫
I+
w,

proving that w ∈ RH+
r . �
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Factorization Theorem for weights in RH+
r ∩ A+

p . A weight w satisfies

w ∈ RH+
r ∩ A+

p with 1 � p < ∞, 1 < r � ∞ if, and only if, there exist weights w0

and w1 such that w0 ∈ RH+
r ∩A+

1 , w1 ∈ RH+
∞ ∩A+

p and w = w0w1.

Observe that since
⋃

p<∞
A+

p = ∩1<rRH
∗
r , every weight in RH+

r is in some A+
p .

See [7].

Proof. Let us first consider the cases p = 1 or r = ∞.
If p = 1 and r � ∞, we put w1 = 1 and w0 = w, then obviously w0 ∈ RH+

r ∩A+
1

and w1 ∈ RH+
∞ ∩A+

1 .

If p � 1 and r = ∞, we put w0 = 1 and w1 = w, obtaining w0 ∈ RH+
∞ ∩ A+

1 ,
w1 ∈ RH+

∞ ∩A+
p .

Conversely, given w0 and w1, at least one of them belongs to RH+
∞ ∩A+

1 (because
p = 1 or r = ∞), so one of them is essentially increasing, therefore w0w1 ∈ RH+

r ∩A+
p

(Lemma 4.3).
Let us now suppose p > 1 and r <∞. Let w = w0w1 with w0 ∈ RH+

r ∩ A+
1 , and

w1 ∈ RH+
∞ ∩A+

p . We want to see that w ∈ RH+
r ∩A+

p . Note that for w1 we have

1
|I|

∫
I

w1−p′

1 � C
(

1
|I−|

∫
I−
w1

)1−p′

� Cw1(a− h)1−p′
,

which implies w1−p′

1 ∈ A−
1 (Remark 2.10). Let v = w1−p′

1 , then w1 = v1−p with
v ∈ A−

1 , so w = w0w1 = w0v
1−p with w0 ∈ A+

1 and v ∈ A−
1 (see [7]), and this implies

w ∈ A+
p .

Now

1
|I|

∫
I

wr =
1
|I|

∫
I

wr
0w

r
1 � (sup

I
w1)rC

(
1

|I+|

∫
I+
w0

)r

� C
(

1
|I+|

∫
I++

w1

)r (
inf
I++

w0

)r

� C
(

1
|I++|

∫
I++

w0w1

)r

,

and by Lemma 2.5 we have w ∈ RH+
r . Conversely, let w ∈ RH+

r ∩ A+
p , then by

Lemma 4.4 wr ∈ A+
q with q = r(p − 1) + 1, there exists v0 ∈ A+

1 and v1 ∈ A−
1

such that wr = v0v
1−q
1 (see [7]), or equivalently w = v

1/r
0 v

(1−q)/r
1 = v

1/r
0 v1−p

1 . Let
w0 = v1/r

0 and w1 = v1−p
1 . We will see that w0 ∈ RH+

r ∩A+
1 . We note,

1
|I|

∫
I

wr
0 =

1
|I|

∫
I

v0 � C inf
I+
v0

� C
(

1
|I+|

∫
I+
v
1/r
0

)r

= C
(

1
|I+|

∫
I+
w0

)r

,
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and also

1
|I|

∫
I

w0 =
1
|I|

∫
I

v
1/r
0 �

(
1
|I|

∫
I

v0

)1/r

� C inf
I+
v
1/r
0 = C inf

I+
w0.

We only have to see now that w1 ∈ RH+
∞ ∩A+

p and we are done.

First we claim

(4.5) if w ∈ A−
1 then w−γ ∈ RH+

∞ for all γ > 0.

In fact, by Hölder’s inequality we have
(

1
|I|

∫
I w

)−γ � 1
|I|

∫
I w

−γ for any interval
I = (a, b), and as w ∈ A−

1 we have that Cw(x) � 1
|I|

∫
I
w for almost every x ∈ I−,

and therefore

w(x)−γ � C
(

1
|I|

∫
I

w

)−γ

� 1
|I|

∫
I

w−γ � C 1
b− x

∫ b

x

w−γ .

Let w1 = v1−p
1 . As v1 ∈ A−

1 , then w1 ∈ RH+
∞. Moreover,

1
|I|

∫
I

w1

(
1

|I+|

∫
I+
w1−p′

1

)p−1

=
1
|I|

∫
I

v1−p
1

(
1

|I+|

∫
I+
v1

)p−1

� 1
|I|

∫
I

v1−p
1 (C inf

I
v1)p−1

� C

|I|

∫
I

v1−p
1 vp−1

1 � C,

i.e. w1 ∈ A+
p . �

Factorization Theorem for weights in A+
∞. A weight w satisfies w ∈ A+

∞ if,

and only if, there exist w1 ∈ RH+
∞ and w0 ∈ A+

1 such that w = w0w1.

Proof. If w ∈ A+
∞ then w ∈ A+

q for some 1 < q <∞, so there exist v0 ∈ A+
1 and

v1 ∈ A−
1 such that w = v0v

1−q
1 . Let w0 = v0 and w1 = v1−q

1 . By (4.5), w1 ∈ RH+
∞.

So we are done. Conversely, if w1 ∈ RH+
∞, then w1 ∈ A+

q for some 1 < q, i.e., there
exists C such that (

1
|I|

∫
I

w1

)q′−1 1
|I|

∫
I+
w1−q′

1 � C,

but then

(sup
I−
w1)q′−1 1

|I|

∫
I+
w1−q′

1 �
(

1
|I|

∫
I

w1

)q′−1 1
|I|

∫
I+
w1−q′

1 � C,
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and we get
1
|I|

∫
I+
w1−q′

1 � C inf
I−
w1−q′

1 ,

and it is easy to see that this inequality implies w1−q′

1 ∈ A−
1 . Then v1 = w1−q′

1 ∈ A−
1 ,

so w = w0w1 = w0v
1−q
1 ∈ A+

q ⊂ A+
∞. �

5. Classes A+
p and RH+

r

In this section we will use Theorems 3.1 and 3.3 and the factorization theorems

to obtain the best ranges for the classes A+
p and RH+

r . As we shall see, the range of
the index will depend on the factorization of the weights.

The following theorem gives us the precise range in A+
p for weights in RH+

r .

Theorem 5.1. Let w ∈ RH+
r , w = w0w

1
r
1 with w0 ∈ RH+

∞ and w1 ∈ A+
1 . Then

w ∈ A+
p for all p > C where C = RH+

∞(w0), and this is the best possible range.

Proof. Let w0 ∈ RH+
∞ and w1 ∈ A+

1 . By Theorem 3.3, w0 ∈ A+
p for all p > C.

Let p > C, then there exists ε > 0 such that w0 ∈ A+
p−ε, so we choose s > 1 satisfying

1 − (p− ε)′ = s(1 − p′), and by Hölder’s inequality

1
|I−|

∫
I−
w0w1

(
1

|I+|

∫
I+

(w0w1)1−p′
)p−1

�
(

1
|I|

∫
I

w0

)(
1

|I−|

∫
I−
w1

)(
1

|I+|

∫
I+
w

s(1−p′)
0

) (p−1)
s

(
1

|I+|

∫
I+
w

s′(1−p′)
1

) (p−1)
s′

� C.

To see that this is the best range, we consider w0 as in Theorem 3.3 and w1 = 1.
�

Remark 5.2. Given w ∈ RH+
r there exist u ∈ RH+

∞, and v ∈ A+
1 such that

w = uv
1
r . We only have to consider the factorization theorem and choose u = w1

and v = wr
0. We have to prove that v ∈ A+

1 . Keeping in mind that w0 ∈ RH+
r ∩A+

1

we have

1
|I−|

∫
|I−|

v =
1

|I−|

∫
|I−|

wr
0 � C

(
1
|I|

∫
|I|
w0

)r

� Cwr
0(x) = Cv(x)

for almost every x ∈ I+, i.e., v ∈ A+
1 .

298



The next theorem shows us the precise range of the higher integrability of w ∈
RH+

r .

Theorem 5.3. Let w ∈ RH+
r , w = uv1/r with u ∈ RH+

∞ and v ∈ A+
1 . If

C = A+
1 (v) then w ∈ RH+

s for all r � s < Cr
C−1 . The range of s is the best possible.

Proof. Let r < s < Cr
C−1 , let us choose q > 1 such that s < Cr

q(C−1) . As

1 < qs
r <

C
C−1 , by Theorem 3.1 we have v ∈ RH+

qs
r
, and using Hölder’s inequality we

obtain that us ∈ RH+
∞ and v ∈ A+

1 which yields

1
|I|

∫
I

ws =
1
|I|

∫
I

usvs/r �
(

1
|I|

∫
I

uq′s

)1/q′(
1
|I|

∫
I

vqs/r

)1/q

� sup
I
usC

(
1

|I+|

∫
I+
v

)s/r

� C

|I+|

∫
I+
us

(
inf
I++

v

)s/r

� C sup
I+
us inf

I++
vs/r � C

(
1

|I++|

∫
I++

u

)s

inf
I++

vs/r

� C
(

1
|I++|

∫
I++

uv1/r

)s

= C
(

1
|I++|

∫
I++

w

)s

,

and we get that w ∈ RH+
s (Lemma 2.5).

To see this is the best range possible, we choose v ∈ A+
1 as in Theorem 3.1 and

u = 1, then w = v1/r ∈ RH+
s for all r � s < Cr

C−1 (C = A+
1 (v)). If s = Cr

C−1

and w ∈ RH+
s then v ∈ RH+

C
C−1

, but we have seen (Theorem 3.1) that this can not

happen. �

The next theorem shows us which is the best range in RH+
r for a given weight in

A+
p .

Theorem 5.4. Let w ∈ A+
p , w = uv1−p with u ∈ A+

1 , v ∈ A−
1 and C = A+

1 (u),
then w ∈ RH+

r for all 1 < r <
C

C−1 , this range being the best possible.

Proof. By Theorem 3.1 we have u ∈ RH+
r for all 1 < r < C

C−1 and we know

that v1−p ∈ RH+
∞, hence

1
|I|

∫
I

wr � 1
|I|

∫
I

ur sup
I

(
v−r(p−1)

)

� C
(

1
|I+|

∫
I+
u

)r( 1
|I+|

∫
I+
v1−p

)r

� C
(
inf
I++

u
)r

(
sup
I+
v1−p

)r

� C
(
inf
I++

u
)r

(
1

|I++|

∫
I++

v1−p

)r

� C
(

1
|I++|

∫
I++

w

)r

.

By Lemma 2.5 we conclude w ∈ RH+
r .
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To see this is the best range we take u as in Theorem 3.1 and v = 1. So we have

w = u ∈ A+
p and w /∈ RH+

C
C−1

. �

Corollary 5.5. Let w = uv1−p ∈ A+
p with u ∈ A+

1 , v ∈ A−
1 and C =

max{A+
1 (u), A−

1 (v)}. Then wτ ∈ A+
p for all 1 � τ < C

C−1 and the range is the

best possible.

Proof. By Theorem 5.4 we have that w ∈ RH+
τ for all 1 � τ < C

C−1 and
w1−p′ ∈ RH−

τ for all 1 � τ < C
C−1 . Let a < d, let us choose b, c such that

b − a = d − c = 1
4 (d − a), and we also consider the point c+b

2 . Then we have four
intervals, namely, I− = (a, b), I = (b, b+c

2 ), I+ = ( b+c
2 , c), and I

++ = (c, d). Now

1
|I−|

∫
I−
wτ

(
1

|I++|

∫
I++

wτ(1−p′)

)p−1

�
(

1
|I|

∫
I

w

)τ(
1

|I+|

∫
I+
w1−p′

)τ(p−1)

,

� Cτ ,

thus wτ ∈ A+
p (Lemma 2.6). Considering u as in Theorem 3.1, we see this is the best

possible range. �

Using Theorem 5.4 we will show the exact range of q < p such that w ∈ A+
p implies

w ∈ A+
q .

Theorem 5.6. Let w = uv1−p ∈ A+
p with u ∈ A+

1 , v ∈ A−
1 and C = A−

1 (v).
Then w ∈ A+

q for all 1 + (p−1)(C−1)
C < q <∞ and this is the best range for q.

Proof. Note that w1−p′
= vu1−p′ ∈ A−

p′ , by Theorem 5.4 we have w1−p′ ∈ RH−
r

for all 1 < r < C
C−1 . For the classes RH−

r and A−
p we have from Lemma 4.4 that

w(1−p′)r ∈ A−
q′ where q′ = r(p′−1)+1 = r

p−1 +1. But this is the same as w1−q′ ∈ A−
q′ ,

i.e., w ∈ A+
q for all 1 + (p− 1)C−1

C < q.

To see this is the best range, let v(x) = x
1−C

C if x � 0 and equal to 0 if x > 0
and u = 1 for all x. Note that v ∈ A−

1 and A−
1 (v) = C. Then w = v1−p ∈ A+

p and
w ∈ A+

q for all q > 1 + (p− 1)C−1
C . Observe that w /∈ A+

1+(p−1) C−1
C

. �

Finally, the last theorem gives us the best possible range for a weight in A+
∞.

Theorem 5.7. Let w ∈ A+
∞, w = w0w1, w0 ∈ A+

1 , w1 ∈ RH+
∞ and C =

RH+
∞(w1). Then w ∈ A+

p for all p > C. The range of p
′s is the best possible.
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Proof. Note that w1 ∈ RH+
∞ implies w1 ∈ A+

p for all p > C, hence

1
|I|

∫
I

w0w1

(
1

|I|++

∫
I++

(w0w1)1−p′
)p−1

� sup
I

(w1)
1
|I|

∫
I

w0

(
sup
I++

w1−p′

0

)p−1 (
1

|I|++

∫
I++

w1−p′

1

)p−1

� C 1
|I|+

∫
I+
w1 inf

I+
(w0) sup

I++
(w−1

0 )
(

1
|I|++

∫
I++

w1−p′

1

)p−1

� C sup
I++

(w−1
0 )

1
|I+|

∫
I+
w0

� C 1
( inf
I++

w0)
inf
I++

w0 � C,

and by Lemma 2.6 we have w ∈ A+
p for all p > C.

To see this is the best range, we consider w(x) = 0 if x � −1, |x|C−1 if −1 < x � 0
and 1 if x � 0. �
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