ON THE BEST RANGES FOR A_p^+ AND RH_r^+

M. S. RIVEROS, Córdoba, and A. DE LA TORRE, Málaga

(Received May 28, 1998)

Abstract. In this paper we study the relationship between one-sided reverse Hölder classes RH_r^+ and the A_p^+ classes. We find the best possible range of RH_r^+ to which an A_1^+ weight belongs, in terms of the A_1^+ constant. Conversely, we also find the best range of A_p^+ to which a RH_∞^+ weight belongs, in terms of the RH_∞^+ constant. Similar problems for A_p^+ , $1 and <math>RH_r^+$, $1 < r < \infty$ are solved using factorization.

Keywords: one-sided weights, one-sided reverse Hölder, factorization

MSC 2000: 42B25

1. INTRODUCTION

It is well known that there is a relationship between the A_p classes and the so called reverse Hölder classes RH_r . C. J. Neugebauer [8] studied the following problems:

- (1) For $w \in A_p$, find the precise range of r's such that $w \in RH_r$, the precise range of q < p for which $w \in A_q$, and the precise range of s > 1 such that $w^s \in A_p$.
- (2) Conversely, for a fixed $w \in RH_r$, find the precise range of p's such that $w \in A_p$, and the precise range of q > r for which $w \in RH_q$.

For the one-sided Hardy-Littlewood maximal operator

$$M^{+}f(x) = \sup_{h>0} \frac{1}{h} \int_{x}^{x+h} |f|,$$

the A_p^+ classes were introduced by E. Sawyer [9]. He proved that M^+ is bounded in $L^p(w)$ (p > 1) if, and only if, the weight satisfies A_p^+ , i.e., there exists a constant C

Research supported by D.G.I.Y.T. (PB94-1496), Junta de Andalucía and Universidad Nacional de Córdoba.

such that for any three points a < b < c we have

$$\int_{a}^{b} w \left(\int_{b}^{c} w^{1-p'} \right)^{p-1} \leqslant C(c-a)^{p}.$$

The smallest constant for which this is satisfied will be called the A_p^+ constant of w and will be denoted by $A_p^+(w)$. For p = 1 the weak type of the operator holds if, and only if, the weight w satisfies A_1^+ , i.e., there exists C such that for any a and almost every b > a,

$$\int_{a}^{b} w \leqslant C(b-a)w(b).$$

The smallest such constant will be called the A_1^+ constant of w and will be denoted by $A_1^+(w)$. For later reference we point out that it is an easy consequence of Lebesgue's differentiation theorem that the constant in the definiton of A_1^+ is always greater than, or equal to, one.

These classes are of interest, not only because they control the boundedness of the one-sided Hardy-Littlewood maximal operator, but they are the right classes for the weighted estimates for one-sided singular integrals [1] and they also appear in PDE [4]. In contrast to the Muckenhoupt weights, the one-sided weights are not doubling, but they possess a one-sided doubling property, namely if $w \in A_p^+$ then there exists C such that for any $a \in \mathbb{R}$ and h > 0, $\int_a^{a+2h} w \leq C \int_{a+h}^{a+2h} w$. The reverse Hölder property is not satisfied by these weights, either, but nevertheless, Martín-Reyes [5] proved that there is a weak substitute of this notion, that we will denote by RH_r^+ , which is good enough to prove the " $p - \varepsilon$ " property. In [7] the class A_{∞}^+ was introduced and it was proved that $A_{\infty}^+ = \bigcup_{p < \infty} A_p^+ = \bigcup_{1 < r} RH_r^+$.

In this note we solve the problems of the Neugebauer paper in this context. In the proofs we will make essential use of the one-sided minimal operator introduced by Cruz-Uribe, Neugebauer and Olesen [3]. It is defined as $m^+f(x) = \inf_{c>x} \frac{1}{c-x} \int_x^c |f|$. We will also use the fact that for any positive function g, the maximal operator $M_g f(x) = \sup_{x \in I} \frac{1}{g(I)} \int_I |f| g \, dx$ is of weak type one-one with respect to the measure $g \, dx$. Note that for g = 1 we have the classical Hardy-Littlewood maximal operator, which is denoted by Mf.

The paper is organized as follows: in Section 2 we give definitions and characterizations of RH_r^+ , $1 < r < \infty$. In Section 3 we prove two theorems of the best range for the extreme classes A_1^+ and RH_{∞}^+ . In Section 4 we give a factorization theorem for weights in RH_r^+ , and finally in Section 5 we extend the theorems of Section 3 to A_p^+ and RH_r^+ , using the factorization proved in Section 4. We shall see that the index range depends on the factorization of the weight. We end this introduction with some notation: for a given interval I = (a, a + h)we denote by I^- the interval (a - h, a), I^+ the interval (a + h, a + 2h), and I^{++} the interval (a + 2h, a + 3h). For any 1 , <math>p' will be its conjugate exponent, if gis locally integrable and E is a measurable set, g(E) will stand for $\int_E g$ and C will represent a constant that may change from time to time. Finally, we remark that we can change the orientation on the real line obtaining similar results for classes $RH_r^-, A_p^-, 1 < r \leq \infty$ and $1 \leq p \leq \infty$.

2. Definition, charaterization of RH_r^+ for $1 < r < \infty$

We start this section with the definiton of RH_r^+ , $1 < r < \infty$.

Definition 2.1. A weight w satisfies the one-sided reverse Hölder RH_r^+ condition, if there exists C such that for any a < b,

(2.2)
$$\int_{a}^{b} w^{r} \leq C \left(M(w\chi_{(a,b)})(b) \right)^{(r-1)} \int_{a}^{b} w.$$

The smallest such constant will be called the RH_r^+ constant of w and will be denoted by $RH_r^+(w)$.

Definition 2.3. A weight satisfies the one-sided reverse Hölder RH^+_{∞} condition, if there exists C such that

(2.4)
$$w(x) \leqslant Cm^+ w(x)$$

for almost all $x \in \mathbb{R}$.

The smallest such constant will be called the RH_{∞}^+ constant of w and will be denoted by $RH_{\infty}^+(w)$. It is clear that $C \ge 1$.

The following lemma gives several characterizations of RH_r^+ . The constants are not necessarily the same.

Lemma 2.5. Let a < b < c < d, $1 < r < \infty$, and let $w \ge 0$ be locally integrable. Then the following staments are equivalent.

(i)
$$\int_{a}^{b} w^{r} \leq C \left(M(w\chi_{(a,b)})(b) \right)^{(r-1)} \int_{a}^{b} w.$$

(ii) $\frac{1}{b-a} \int_{a}^{b} w^{r} \leq C \left(\frac{1}{c-b} \int_{b}^{c} w \right)^{r}$ with $b-a = 2(c-b).$
(iii) $\frac{1}{b-a} \int_{a}^{b} w^{r} \leq C \left(\frac{1}{d-c} \int_{c}^{d} w \right)^{r}$ with $b-a = d-b = 2(d-c)$

(iv)
$$\frac{1}{b-a} \int_{a}^{b} w^{r} \leq C \left(\frac{1}{c-b} \int_{b}^{c} w \right)^{r} \text{ with } b-a=c-b.$$

(v)
$$\frac{1}{b-a} \int_{a}^{b} w^{r} \leq C \left(\frac{1}{d-c} \int_{c}^{d} w \right)^{r} \text{ with } b-a=d-c=\gamma(d-a), \ 0<\gamma \leq \frac{1}{2}.$$

Proof. To see $i \implies ii$, we fix a < b < c, b - a = 2(c - b) and take any $x \in (b, c)$. Then

$$\int_{a}^{b} w^{r} \leqslant \int_{a}^{x} w^{r} \leqslant C \left(M(w\chi_{(a,x)})(x) \right)^{r-1} \int_{a}^{x} w \leqslant C \left(M(w\chi_{(a,c)})(x) \right)^{r-1} \int_{a}^{c} w^{r} dx$$

Therefore $(b,c) \subset \{x \colon (M(w\chi_{(a,c)})(x))^{r-1} \ge \frac{1}{C\int_a^c w} \int_a^b w^r\}$. The weak type (1,1) of the Hardy-Littlewood maximal operator yields

$$(c-b)\left(\int_{a}^{b}w^{r}\right)^{\frac{1}{r-1}} \leqslant C\left(\int_{a}^{c}w\right)^{\frac{r}{r-1}}$$

which implies

$$\frac{1}{b-a}\int_{a}^{b}w^{r} \leqslant C\left(\frac{1}{c-b}\int_{a}^{c}w\right)^{r} \leqslant C\left(\frac{1}{c-b}\int_{b}^{c}w\right)^{r};$$

the last inequality follows from the fact, proved in [7], that a weight satisfying i) satisfies A_p^+ for some p and thus it satisfies the one-sided doubling condition.

We will prove now that ii) \implies i). Let us fix a < b and define a sequence (x_k) as follows: $x_0 = a$ and $b - x_k = 2(b - x_{k+1})$. In particular, $x_{k+1} - x_k = 2(x_{k+2} - x_{k+1}) = (b - x_{k+1})$. Using condition ii) for the points x_k, x_{k+1}, x_{k+2} , we have

$$\int_{a}^{b} w^{r} = \sum_{0}^{\infty} \int_{x_{k}}^{x_{k+1}} w^{r} \leqslant C \sum_{0}^{\infty} (x_{k+1} - x_{k})^{1-r} \left(\int_{x_{k+1}}^{x_{k+2}} w \right)^{r}$$
$$\leqslant C \sum_{0}^{\infty} \int_{x_{k+1}}^{x_{k+2}} w \left(\frac{1}{b - x_{k+1}} \int_{x_{k+1}}^{b} w \right)^{r-1} \leqslant \left(M(w\chi_{(a,b)})(b) \right)^{r-1} C \int_{a}^{b} w.$$

To see ii) \implies iii) let a < b < c < d with b - a = d - b = 2(d - c). Using that w satisfies the one-sided doubling condition, we have

$$\frac{1}{b-a} \int_{a}^{b} w^{r} \leq C \left(\frac{1}{c-b} \int_{b}^{c} w \right)^{r} \leq C \left(\frac{d-c}{c-b} \frac{1}{d-c} \int_{b}^{d} w \right)^{r}$$
$$\leq C \left(\frac{1}{d-c} \int_{c}^{d} w \right)^{r}.$$

iii) \implies iv) is immediate.

First of all we observe that iv) easily implies that the weight w satisfies the onesided doubling condition. To see that iv) \implies v), let $0 < \gamma \leq \frac{1}{2}$ and a < b < c < d, $b - a = d - c = \gamma(d - a)$. Then if x is the midpoint between a and d we have

$$\frac{1}{b-a}\int_{a}^{b}w^{r} \leqslant \frac{1}{2\gamma}\frac{1}{x-a}\int_{a}^{x}w^{r} \leqslant \frac{C}{2\gamma}\left(\frac{1}{d-x}\int_{x}^{d}w\right)^{r},$$

but it follows from the one-sided doubling condition that $\int_x^d w \leq C_\gamma \int_c^d w$.

Suppose v) holds, let a < b < c, b-a = c-b = h and let us define for k = 0, 1, ..., N $x_k = a + ksh$ and $y_k = b + ksh$ where $s = \frac{\gamma}{1-\gamma}$ and N is the first integer such that (N+1)s > 1. We observe that the choice of x_k, y_k has been made so that for any $0 \le k \le (N-1)$ we have $x_{k+1} - x_k = y_{k+1} - y_k = \gamma(y_{k+1} - x_k)$. Applying v), using that r > 1 and the fact that the intervals (y_k, y_{k+1}) are disjoint, we have

$$\int_{a}^{b} w^{r} \leq \sum_{k=0}^{N-1} \int_{x_{k}}^{x_{k+1}} w^{r} + \int_{b-sh}^{b} w^{r}$$
$$\leq C(sh)^{1-r} \sum_{k=0}^{N-1} \left(\int_{y_{k}}^{y_{k+1}} w \right)^{r} + C(sh)^{1-r} \left(\int_{c-sh}^{c} w \right)^{r}$$
$$\leq C_{\gamma}(c-a)^{1-r} \left(\int_{b}^{c} w \right)^{r}.$$

So we have proved that $v \implies iv$).

Finally, we will show that iv) \implies ii). Let a < b < c with b - a = 2(c - b). Let x be the midpoint between a, b. Using the one-sided doubling property we have

$$\frac{1}{b-a} \int_{a}^{b} w^{r} = \frac{1}{b-a} \left(\int_{a}^{x} w^{r} + \int_{x}^{b} w^{r} \right)$$
$$= \frac{1}{2} \left(\frac{1}{x-a} \int_{a}^{x} w^{r} + \frac{1}{b-x} \int_{x}^{b} w^{r} \right)$$
$$\leqslant \frac{C}{2} \left(\left(\frac{1}{b-x} \int_{x}^{b} w \right)^{r} + \left(\frac{1}{c-b} \int_{b}^{c} w \right)^{r} \right)$$
$$\leqslant \frac{C}{2} \left(\left(\frac{1}{c-b} \int_{x}^{c} w \right)^{r} + \left(\frac{1}{c-b} \int_{b}^{c} w \right)^{r} \right)$$
$$\leqslant C \left(\frac{1}{c-b} \int_{b}^{c} w \right)^{r}.$$

Remark. The equivalence of i) and iv) was first proved in [3].

The following lemma tells us that in the definition of A_p^+ we can take two intervals that are not contiguous. Note that in the case of RH_r^+ we have seen this in the previous lemma.

Lemma 2.6. A weight w belongs to A_p^+ , p > 1 if, and only if, there exist $0 < \gamma \leq \frac{1}{2}$ and a constant C_{γ} such that $b-a = d-c = \gamma(d-a)$ for any a < b < c < d, then

(2.7)
$$\int_{a}^{b} w \left(\int_{c}^{d} w^{1-p'} \right)^{p-1} \leq C_{\gamma} (b-a)^{p}$$

 ${\rm P} \ {\rm r} \ {\rm o} \ {\rm o} \ {\rm f}. \quad {\rm If} \ w \in A_p^+, \ 0 < \gamma \leqslant \frac{1}{2} \ {\rm and} \ a < b < c < d, \ b-a = d-c = \gamma(d-a) \ {\rm then} \ {\rm f} \ {\rm f} \ {\rm f} \ {\rm o} \ {\rm f} \$

$$\int_{a}^{b} w \left(\int_{c}^{d} w^{1-p'} \right)^{p-1} \leqslant \int_{a}^{c} w \left(\int_{c}^{d} w^{1-p'} \right)^{p-1} \leqslant C(d-a)^{p} = C_{\gamma}(b-a)^{p}.$$

To prove that (2.7) implies A_p^+ we will show that (2.7) implies that for γ and a, b, c, d as above we have

$$\frac{1}{b-a}\int_{a}^{b}w\exp\left(\frac{1}{d-c}\int_{c}^{d}-\log(w)\right)\leqslant C.$$

Indeed,

(2.8)
$$\frac{1}{b-a} \int_{a}^{b} w \exp\left(\frac{1}{d-c} \int_{c}^{d} -\log(w)\right)$$
$$= \frac{1}{b-a} \int_{a}^{b} \left[w \exp\left(\frac{1}{d-c} \int_{c}^{d} \log(w)^{1-p'}\right) \right]^{p-1}$$
$$\leqslant \frac{1}{b-a} \int_{a}^{b} w \left(\frac{1}{d-c} \int_{c}^{d} w^{1-p'}\right)^{p-1} \leqslant C.$$

In the same way we prove that $w^{1-p'}$ satisfies

(2.9)
$$\exp\left(\frac{1}{b-a}\int_{a}^{b}\log(w)^{p'-1}\right)\frac{1}{d-c}\int_{c}^{d}w^{1-p'} \leqslant C.$$

But, according to part j) of Theorem 1 in [7], (2.8) is equivalent to saying that $w \in A_{\infty}^+$ while (2.9) means that $w^{1-p'} \in A_{\infty}^-$, and according to Theorem 2 in [7] these two conditions imply $w \in A_p^+$.

Remark 2.10. We can easily see that $w \in A_1^+$ if, and only if, there exists C > 0 such that $\frac{1}{h} \int_{a-h}^{a} w \leq Cw(a+h)$ for almost every $a \in \mathbb{R}$ and h > 0.

Theorem 3.1. Let $w \in A_1^+$ with A_1^+ constant C > 1. Then $w \in RH_r^+$ for any $1 < r < \frac{C}{C-1}$, and this is the best possible range.

Proof. Let us fix the interval I = (a, b). We consider the truncation of w at height N defined by $w_N = \min(w, N)$, which also satisfies A_1^+ with a constant $C_N \leq C$. We claim that if $\lambda_I = M(w_N \chi_I)(b)$ and $E_{\lambda} = \{x \in I : w_N(x) > \lambda\}$ then

(3.2)
$$\int_{E_{\lambda}} w_N \leqslant C_N \lambda |E_{\lambda}| \quad \forall \lambda \geqslant \lambda_I.$$

Indeed, if $E_{\lambda} = I$ we do not even need the A_1^+ condition, since

$$w_N(E_{\lambda}) = \int_a^b w_N \leqslant M(w_N \chi_I)(b)(b-a) = \lambda_I(b-a) \leqslant C_N \lambda |E_{\lambda}|.$$

If $E_{\lambda} \neq I$ we fix $\varepsilon > 0$ and an open set O such that $E_{\lambda} \subset O \subset I$ and $|O| \leq \varepsilon + |E_{\lambda}|$. Let $J_k = (c, d)$, be one of the connected components of O. There are two cases:

(1) $a \leqslant c < d < b$, (2) $a \leqslant c < d = b$.

In the first case $d \notin E_{\lambda}$ and then $w_N(d) \leq \lambda$. Now A_1^+ gives $\int_c^d w_N \leq C_N w_N(d)(d-c) \leq C_N \lambda(d-c)$. The second case is handled as the case $E_{\lambda} = I$, since $\int_c^b w_N \leq M(w_N \chi_I)(b)(b-c) \leq C \lambda(b-c)$. In any case $w_N(J_k) \leq C_N \lambda |J_k|$. Adding up we get

$$w_N(E_\lambda) \leqslant w_N(O) \leqslant C_N \lambda |O| \leqslant C_N \lambda (\varepsilon + |E_\lambda|).$$

Since ε was arbitrary we are done. Now we proceed in the standard way, i.e., we fix s > -1, multiply both sides of (3.2) by λ^s and integrate from λ_I to infinity to obtain,

$$\frac{1}{s+1} \int_{I} (w_N^{s+2} - \lambda_I^{s+1} w_N) \leqslant \frac{C_N}{s+2} \int_{I} w_N^{s+2}.$$

Now if $r = s + 2 < \frac{C_N}{C_N - 1}$ then $\frac{1}{s+1} - \frac{C_N}{s+2} > 0$, and we get

$$\int w_N^r \leqslant C_N \lambda_I^{r-1} \int_I w_N = C_N (M(w_N \chi_I)(b))^{r-1} \int_I w_N.$$

Now $C_N \leqslant C$ implies $\frac{C_N}{C_{N-1}} \ge \frac{C}{C-1}$, and therefore if $r \leqslant \frac{C}{C-1}$ then

$$\int_{a}^{b} w_{N}^{r} \leqslant C_{N}(M(w_{N}\chi_{(a,b)})(b))^{r-1} \int_{a}^{b} w_{N} \leqslant C(M(w\chi_{(a,b)})(b))^{r-1} \int_{a}^{b} w$$

and the monotone convergence theorem gives $w \in RH_r^+$. To see that this is the best possible range we consider the function

$$w(x) = x^{\frac{1}{C}-1}\chi_{(0,\infty)}(x).$$

It is clear that w does not satisfy $RH_{\frac{C}{C-1}}^+$ because $w^{\frac{C}{C-1}}(x) = \frac{1}{x}$ for x > 0. To see that it satisfies A_1^+ with the constant C, we consider three cases:

- (1) $a < b \leq 0$,
- (2) $a \leq 0 < b$,
- (3) 0 < a < b.

In the first case there is nothing to check. In the second case $\frac{1}{b-a} \int_a^b w < \frac{1}{b} \int_0^b w(x) = \frac{C}{b} b^{\frac{1}{C}} = Cw(b)$. Finally, if 0 < a < b, then $\int_a^b w = C(b^{\frac{1}{C}} - a^{\frac{1}{C}}) \leq C(b-a)w(b)$. \Box

Remark. Note that if C = 1, then $w(x) = M^-w(x)$, and this implies that w is non-decreasing. This tells us that $w \in RH^+_{\infty}$.

Theorem 3.3. If w satisfies RH_{∞}^+ with a constant C > 1, then $w \in A_p^+$ for all p > C, and this is the best possible range.

Proof. A truncation argument as in Theorem 3.1 allows us to suppose that w is bounded away from zero, i.e. there exists $\beta > 0$ such that $w(x) \ge \beta$ for all x. Let us fix I = (a, b) and consider $\lambda_I = m^+(w\frac{1}{\chi_I})(a)$. We claim that if $\lambda < \lambda_I$ and $E_{\lambda} = \{x \in I : w(x) < \lambda\}$, then

(3.4)
$$\lambda |E_{\lambda}| \leqslant C \int_{E_{\lambda}} w$$

As before, if $E_{\lambda} = I$ then $\lambda |E_{\lambda}| = \lambda(b-a) < \lambda_I(b-a) = \int_a^b w \leq w(E_{\lambda})$. If $E_{\lambda} \neq I$ then we approximate it by an open set $O = \bigcup J_k$ where $E_{\lambda} \subset O \subset I$ and $w(O) < \varepsilon + w(E_{\lambda})$. Let us fix $J_k = (c, d)$. There are two cases:

(1) a < c, (2) a = c.

In the first case $c \notin E_{\lambda}$ and then $\lambda(d-c) \leqslant w(c)(d-c) \leqslant Cm^+w(c)(d-c) \leqslant C \int_c^d w$. In the second case $\lambda(d-c) \leqslant \lambda_I(d-a) \leqslant \int_a^d w$, and (3.4) follows. If we multiply both sides of (3.4) by λ^{-r} with r > 2 and integrate we have

$$\int_0^{\lambda_I} \lambda^{1-r} \int \chi_{E_\lambda}(x) \, \mathrm{d}x \, \mathrm{d}\lambda \leqslant C \int_0^\infty \lambda^{-r} \int_{E_\lambda} w(x) \, \mathrm{d}x \, \mathrm{d}\lambda$$

For the left hand side we obtain

$$\int_{\beta}^{\lambda_{I}} \lambda^{1-r} \int \chi_{E_{\lambda}}(x) \, \mathrm{d}x \, \mathrm{d}\lambda = \frac{1}{2-r} \int_{\{x \in I: \, w(x) < \lambda_{I}\}} \lambda_{I}^{2-r} - w^{2-r} \, \mathrm{d}x$$
$$\geqslant \frac{1}{2-r} \int_{I} \lambda_{I}^{2-r} - w^{2-r} \, \mathrm{d}x = \frac{1}{r-2} \int_{I} w^{2-r} - \frac{|I|}{r-2} \lambda_{I}^{2-r},$$

while the right hand side is equal to $\frac{C}{r-1}\int_I w^{2-r}$. Therefore

$$\frac{1}{r-2} \int_{I} w^{2-r} \leq \frac{C}{r-1} \int_{I} w^{2-r} + \frac{|I|}{r-2} \lambda_{I}^{2-r}.$$

If we choose r > 2 such that C(r-2) < (r-1), we obtain that there exists C such that

(3.5)
$$\frac{1}{|I|} \int_{I} w^{2-r} \leq C \left(m^{+} \left(\frac{w}{\chi_{I}} \right) (a) \right)^{2-r}$$

We now claim that (3.5) implies that $w \in A_p^+$ with $p = \frac{r-1}{r-2}$. Let us fix a < b < cand choose $x \in (a, b)$. If we keep in mind that 1 - p' = 2 - r we may write

$$\left(\frac{1}{c-a}\int_{b}^{c}w^{1-p'}\right)^{p-1} \leqslant \left(\frac{1}{c-x}\int_{x}^{c}w^{1-p'}\right)^{p-1} \leqslant C\left(m^{+}(\frac{w}{\chi_{(x,c)}})(x)\right)^{-1},$$

but

$$\left(m^{+}(\frac{w}{\chi_{(x,c)}})(x)\right)^{-1} = \left(\inf_{x < d < c} \frac{1}{d - x} \int_{x}^{d} w\right)^{-1} = \sup_{x < d < c} \frac{d - x}{\int_{x}^{d} w} = M_{w}\left(\frac{\chi_{(a,c)}}{w}\right)(x).$$

We have thus proved that if $\lambda = \left(\frac{1}{c-a}\int_b^c w^{1-p'}\right)^{p-1}$ then

$$(a,b) \subset \Big\{ x : CM_w \Big(\frac{\chi_{(a,c)}}{w} \Big)(x) > \lambda \Big\},$$

and the weak type of M_w with respect to the measure $w \, dx$ yields $\int_a^b w \leq C(c-a)^p \left(\int_b^c w^{1-p'}\right)^{1-p}$ which is A_p^+ . Finally, it can be checked that the function w(x) which is 0 for x < -1, identically one for x > 0 and $|x|^{C-1}$ between -1 and 0, satisfies RH_{∞}^+ with a constant C, but is not in A_C^+ .

Remark. Note that if C = 1, then $w(x) = m^+w(x)$, and this implies that w is non-decreasing. This tells us that $w \in A_1^+$.

We have had several different characterizations of RH_r^+ , one involved the maximal operator, but dealt with one interval, and the others involved two intervals but no operator. We can now prove that for RH_{∞}^+ the situation is the same, we can characterize RH_{∞}^+ using two intervals instead of the minimal operator.

Corollary 3.6. We have $w \in RH_{\infty}^+$ if, and only if, there exists C such that for any interval I,

(3.7)
$$\operatorname{ess\,sup}_{I} w \leqslant C \frac{1}{|I^+|} \int_{I^+} w$$

Proof. It is immediate that (3.7) implies RH_{∞}^+ . Assume now that $w \in RH_{\infty}^+$. The preceding theorem tells us that $w \in A_p$ for some p, and therefore it satisfies the one-sided doubling condition. Therefore if I = (a, b) is any interval, $I^+ = (b, c)$ and $x \in I$, we have

$$w(x) \leqslant \frac{C}{c-x} \int_{x}^{c} w \leqslant \frac{C}{c-b} \int_{b}^{c} w,$$

which is (3.7).

Remark. Note that with this definition, we have $RH^+_{\infty} \subset \bigcap_{r>1} RH^+_r$.

4. Factorization of weights in RH_r^+ , $1 < r \leq \infty$

The theorems on the best range for weights in A_p^+ (p > 1) or in RH_r^+ , $r < \infty$ will be stated in terms of factorizations of the given weight. Therefore this section will be devoted to proving a factorization of functions in RH_r^+ . The bilateral case was studied in [2].

Definition 4.1. A function w is said to be essentially increasing if there exists C such that $w(x) \leq Cw(y)$ for any x < y.

Lemma 4.2. A function belongs to $RH^+_{\infty} \cap A^+_1$ if, and only if, it is essentially increasing.

Proof. Assume that $w \in RH_{\infty}^+ \cap A_1^+$ and x < y, then $w(x) \leq C \frac{1}{y-x} \int_x^y w \leq Cw(y)$ and w is essentially increasing. Conversely, if w is essentially increasing then for any x and h > 0 we have $w(x) \leq \frac{C}{h} \int_x^{x+h} w$, hence $w \in RH_{\infty}^+$. On the other hand, $\frac{1}{h} \int_{x-h}^x w \leq Cw(x)$, so $w \in A_1^+$

_	_

Lemma 4.3. Let $1 < r \leq \infty$ and $1 \leq p < \infty$.

- (1) If u is essentially increasing and $v \in RH_r^+$ then $uv \in RH_r^+$.
- (2) If u is essentially increasing and $v \in A_p^+$ then $uv \in A_p^+$.

Proof. This proof follows immediately from Definition 4.1.

Lemma 4.4. Let $1 < r \leq \infty$ and $1 \leq p < \infty$. We have $w \in RH_r^+ \cap A_p^+$ if, and only if, $w^r \in A_q^+$, with q = r(p-1) + 1.

Proof. Let $C_1 = RH_r^+(w)$ and $C_2 = A_p^+(w)$, $w \in RH_r^+ \cap A_p^+$ and q = r(p-1)+1. Also note that $1 - q' = 1 - \frac{r(p-1)+1}{r(p-1)} = \frac{1}{r(1-p)}$,

$$\begin{split} \left(\frac{1}{|I^{-}|} \int_{I^{-}} w^{r}\right) & \left(\frac{1}{|I^{+}|} \int_{I^{+}} w^{r(1-q')}\right)^{q-1} \\ & \leqslant C_{1} \left(\frac{1}{|I|} \int_{I} w\right)^{r} \left(\frac{1}{|I^{+}|} \int_{I^{+}} w^{1-p'}\right)^{r(p-1)} \\ & \leqslant C_{1} C_{2}^{r}, \end{split}$$

and by Lemma 2.6 we have that $w^r \in A_q^+$.

If $w^r \in A_q^+$, then by Hölder's inequality

$$\left(\frac{1}{|I|} \int_{I} w\right) \left(\frac{1}{|I^{+}|} \int_{I^{+}} w^{-1/(p-1)}\right)^{p-1} \\ \leq \left(\frac{1}{|I|} \int_{I} w^{r}\right)^{1/r} \left(\frac{1}{|I^{+}|} \int_{I^{+}} w^{-r/(q-1)}\right)^{(q-1)/r} \\ \leq C^{1/r},$$

and we obtain in this way that $w \in A_p^+$. Now again by Hölder's inequality

$$1 = \frac{1}{|I^+|} \int_{I^+} w^{-1/p} w^{1/p} \leqslant \left(\frac{1}{|I^+|} \int_{I^+} w\right)^{1/p} \left(\frac{1}{|I^+|} \int_{I^+} w^{-p'/p}\right)^{1/p'},$$
$$\left(\frac{1}{|I^+|} \int_{I^+} w^{-1/(p-1)}\right)^{1-p} \leqslant \frac{1}{|I^+|} \int_{I^+} w,$$

 \mathbf{SO}

$$\begin{split} \left(\frac{1}{|I|} \int_{I} w^{r}\right)^{1/r} &\leqslant C \left(\frac{1}{|I^{+}|} \int_{I^{+}} w^{-r/(q-1)}\right)^{-(q-1)/r} = C \left(\frac{1}{|I^{+}|} \int_{I^{+}} w^{-1/(p-1)}\right)^{1-p} \\ &\leqslant C \frac{1}{|I^{+}|} \int_{I^{+}} w, \end{split}$$

proving that $w \in RH_r^+$.

Factorization Theorem for weights in $RH_r^+ \cap A_p^+$. A weight w satisfies $w \in RH_r^+ \cap A_p^+$ with $1 \leq p < \infty$, $1 < r \leq \infty$ if, and only if, there exist weights w_0 and w_1 such that $w_0 \in RH_r^+ \cap A_1^+$, $w_1 \in RH_\infty^+ \cap A_p^+$ and $w = w_0w_1$.

Observe that since $\bigcup_{p < \infty} A_p^+ = \bigcap_{1 < r} RH_r^*$, every weight in RH_r^+ is in some A_p^+ . See [7].

Proof. Let us first consider the cases p = 1 or $r = \infty$.

If p = 1 and $r \leq \infty$, we put $w_1 = 1$ and $w_0 = w$, then obviously $w_0 \in RH_r^+ \cap A_1^+$ and $w_1 \in RH_\infty^+ \cap A_1^+$.

If $p \ge 1$ and $r = \infty$, we put $w_0 = 1$ and $w_1 = w$, obtaining $w_0 \in RH_{\infty}^+ \cap A_1^+$, $w_1 \in RH_{\infty}^+ \cap A_p^+$.

Conversely, given w_0 and w_1 , at least one of them belongs to $RH_{\infty}^+ \cap A_1^+$ (because p = 1 or $r = \infty$), so one of them is essentially increasing, therefore $w_0w_1 \in RH_r^+ \cap A_p^+$ (Lemma 4.3).

Let us now suppose p > 1 and $r < \infty$. Let $w = w_0 w_1$ with $w_0 \in RH_r^+ \cap A_1^+$, and $w_1 \in RH_\infty^+ \cap A_p^+$. We want to see that $w \in RH_r^+ \cap A_p^+$. Note that for w_1 we have

$$\frac{1}{|I|} \int_{I} w_1^{1-p'} \leqslant C \left(\frac{1}{|I^-|} \int_{I^-} w_1 \right)^{1-p'} \leqslant C w_1 (a-h)^{1-p'},$$

which implies $w_1^{1-p'} \in A_1^-$ (Remark 2.10). Let $v = w_1^{1-p'}$, then $w_1 = v^{1-p}$ with $v \in A_1^-$, so $w = w_0 w_1 = w_0 v^{1-p}$ with $w_0 \in A_1^+$ and $v \in A_1^-$ (see [7]), and this implies $w \in A_p^+$.

Now

$$\begin{split} \frac{1}{|I|} \int_{I} w^{r} &= \frac{1}{|I|} \int_{I} w_{0}^{r} w_{1}^{r} \leqslant (\sup_{I} w_{1})^{r} C \bigg(\frac{1}{|I^{+}|} \int_{I^{+}} w_{0} \bigg)^{r} \\ &\leqslant C \bigg(\frac{1}{|I^{+}|} \int_{I^{++}} w_{1} \bigg)^{r} \bigg(\inf_{I^{++}} w_{0} \bigg)^{r} \\ &\leqslant C \bigg(\frac{1}{|I^{++}|} \int_{I^{++}} w_{0} w_{1} \bigg)^{r}, \end{split}$$

and by Lemma 2.5 we have $w \in RH_r^+$. Conversely, let $w \in RH_r^+ \cap A_p^+$, then by Lemma 4.4 $w^r \in A_q^+$ with q = r(p-1) + 1, there exists $v_0 \in A_1^+$ and $v_1 \in A_1^-$ such that $w^r = v_0 v_1^{1-q}$ (see [7]), or equivalently $w = v_0^{1/r} v_1^{(1-q)/r} = v_0^{1/r} v_1^{1-p}$. Let $w_0 = v_0^{1/r}$ and $w_1 = v_1^{1-p}$. We will see that $w_0 \in RH_r^+ \cap A_1^+$. We note,

$$\begin{aligned} \frac{1}{|I|} \int_{I} w_{0}^{r} &= \frac{1}{|I|} \int_{I} v_{0} \leqslant C \inf_{I^{+}} v_{0} \\ &\leqslant C \bigg(\frac{1}{|I^{+}|} \int_{I^{+}} v_{0}^{1/r} \bigg)^{r} = C \bigg(\frac{1}{|I^{+}|} \int_{I^{+}} w_{0} \bigg)^{r}, \end{aligned}$$

and also

$$\frac{1}{|I|} \int_{I} w_{0} = \frac{1}{|I|} \int_{I} v_{0}^{1/r} \leqslant \left(\frac{1}{|I|} \int_{I} v_{0}\right)^{1/r}$$
$$\leqslant C \inf_{I^{+}} v_{0}^{1/r} = C \inf_{I^{+}} w_{0}.$$

We only have to see now that $w_1 \in RH^+_{\infty} \cap A^+_p$ and we are done.

First we claim

In fact, by Hölder's inequality we have $\left(\frac{1}{|I|}\int_{I}w\right)^{-\gamma} \leq \frac{1}{|I|}\int_{I}w^{-\gamma}$ for any interval I = (a, b), and as $w \in A_{1}^{-}$ we have that $Cw(x) \geq \frac{1}{|I|}\int_{I}w$ for almost every $x \in I^{-}$, and therefore

$$w(x)^{-\gamma} \leqslant C \left(\frac{1}{|I|} \int_{I} w\right)^{-\gamma} \leqslant \frac{1}{|I|} \int_{I} w^{-\gamma} \leqslant C \frac{1}{b-x} \int_{x}^{b} w^{-\gamma}.$$

Let $w_1 = v_1^{1-p}$. As $v_1 \in A_1^-$, then $w_1 \in RH_{\infty}^+$. Moreover,

$$\begin{aligned} \frac{1}{|I|} \int_{I} w_1 \left(\frac{1}{|I^+|} \int_{I^+} w_1^{1-p'} \right)^{p-1} &= \frac{1}{|I|} \int_{I} v_1^{1-p} \left(\frac{1}{|I^+|} \int_{I^+} v_1 \right)^{p-1} \\ &\leqslant \frac{1}{|I|} \int_{I} v_1^{1-p} (C \inf_{I} v_1)^{p-1} \\ &\leqslant \frac{C}{|I|} \int_{I} v_1^{1-p} v_1^{p-1} \leqslant C, \end{aligned}$$

i.e. $w_1 \in A_p^+$.

Factorization Theorem for weights in A_{∞}^+ . A weight w satisfies $w \in A_{\infty}^+$ if, and only if, there exist $w_1 \in RH_{\infty}^+$ and $w_0 \in A_1^+$ such that $w = w_0w_1$.

Proof. If $w \in A_{\infty}^+$ then $w \in A_q^+$ for some $1 < q < \infty$, so there exist $v_0 \in A_1^+$ and $v_1 \in A_1^-$ such that $w = v_0 v_1^{1-q}$. Let $w_0 = v_0$ and $w_1 = v_1^{1-q}$. By (4.5), $w_1 \in RH_{\infty}^+$. So we are done. Conversely, if $w_1 \in RH_{\infty}^+$, then $w_1 \in A_q^+$ for some 1 < q, i.e., there exists C such that

$$\left(\frac{1}{|I|}\int_{I}w_{1}\right)^{q'-1}\frac{1}{|I|}\int_{I^{+}}w_{1}^{1-q'}\leqslant C,$$

but then

$$(\sup_{I^{-}} w_1)^{q'-1} \frac{1}{|I|} \int_{I^{+}} w_1^{1-q'} \leq \left(\frac{1}{|I|} \int_{I} w_1\right)^{q'-1} \frac{1}{|I|} \int_{I^{+}} w_1^{1-q'} \leq C,$$

297

and we get

$$\frac{1}{|I|} \int_{I^+} w_1^{1-q'} \leqslant C \inf_{I^-} w_1^{1-q'},$$

and it is easy to see that this inequality implies $w_1^{1-q'} \in A_1^-$. Then $v_1 = w_1^{1-q'} \in A_1^-$, so $w = w_0 w_1 = w_0 v_1^{1-q} \in A_q^+ \subset A_\infty^+$.

5. Classes A_p^+ and RH_r^+

In this section we will use Theorems 3.1 and 3.3 and the factorization theorems to obtain the best ranges for the classes A_p^+ and RH_r^+ . As we shall see, the range of the index will depend on the factorization of the weights.

The following theorem gives us the precise range in A_n^+ for weights in RH_n^+ .

Theorem 5.1. Let $w \in RH_r^+$, $w = w_0 w_1^{\frac{1}{r}}$ with $w_0 \in RH_{\infty}^+$ and $w_1 \in A_1^+$. Then $w \in A_p^+$ for all p > C where $C = RH_{\infty}^+(w_0)$, and this is the best possible range.

Proof. Let $w_0 \in RH_{\infty}^+$ and $w_1 \in A_1^+$. By Theorem 3.3, $w_0 \in A_p^+$ for all p > C. Let p > C, then there exists $\varepsilon > 0$ such that $w_0 \in A_{p-\varepsilon}^+$, so we choose s > 1 satisfying $1 - (p - \varepsilon)' = s(1 - p')$, and by Hölder's inequality

$$\frac{1}{|I^{-}|} \int_{I^{-}} w_{0} w_{1} \left(\frac{1}{|I^{+}|} \int_{I^{+}} (w_{0} w_{1})^{1-p'} \right)^{p-1} \\
\leq \left(\frac{1}{|I|} \int_{I} w_{0} \right) \left(\frac{1}{|I^{-}|} \int_{I^{-}} w_{1} \right) \left(\frac{1}{|I^{+}|} \int_{I^{+}} w_{0}^{s(1-p')} \right)^{\frac{(p-1)}{s}} \left(\frac{1}{|I^{+}|} \int_{I^{+}} w_{1}^{s'(1-p')} \right)^{\frac{(p-1)}{s'}} \\
\leq C.$$

To see that this is the best range, we consider w_0 as in Theorem 3.3 and $w_1 = 1$.

Remark 5.2. Given $w \in RH_r^+$ there exist $u \in RH_\infty^+$, and $v \in A_1^+$ such that $w = uv^{\frac{1}{r}}$. We only have to consider the factorization theorem and choose $u = w_1$ and $v = w_0^r$. We have to prove that $v \in A_1^+$. Keeping in mind that $w_0 \in RH_r^+ \cap A_1^+$ we have

$$\frac{1}{|I^-|} \int_{|I^-|} v = \frac{1}{|I^-|} \int_{|I^-|} w_0^r \leqslant C \left(\frac{1}{|I|} \int_{|I|} w_0\right)^r \leqslant C w_0^r(x) = C v(x)$$

for almost every $x \in I^+$, i.e., $v \in A_1^+$.

The next theorem shows us the precise range of the higher integrability of $w \in RH_r^+$.

Theorem 5.3. Let $w \in RH_r^+$, $w = uv^{1/r}$ with $u \in RH_\infty^+$ and $v \in A_1^+$. If $C = A_1^+(v)$ then $w \in RH_s^+$ for all $r \leq s < \frac{Cr}{C-1}$. The range of s is the best possible.

Proof. Let $r < s < \frac{Cr}{C-1}$, let us choose q > 1 such that $s < \frac{Cr}{q(C-1)}$. As $1 < \frac{qs}{r} < \frac{C}{C-1}$, by Theorem 3.1 we have $v \in RH_{\frac{qs}{r}}^+$, and using Hölder's inequality we obtain that $u^s \in RH_{\infty}^+$ and $v \in A_1^+$ which yields

$$\begin{split} \frac{1}{|I|} \int_{I} w^{s} &= \frac{1}{|I|} \int_{I} u^{s} v^{s/r} \leqslant \left(\frac{1}{|I|} \int_{I} u^{q's}\right)^{1/q'} \left(\frac{1}{|I|} \int_{I} v^{qs/r}\right)^{1/q} \\ &\leqslant \sup_{I} u^{s} C \left(\frac{1}{|I^{+}|} \int_{I^{+}} v\right)^{s/r} \leqslant \frac{C}{|I^{+}|} \int_{I^{+}} u^{s} \left(\inf_{I^{+}} v\right)^{s/r} \\ &\leqslant C \sup_{I^{+}} u^{s} \inf_{I^{++}} v^{s/r} \leqslant C \left(\frac{1}{|I^{++}|} \int_{I^{++}} u\right)^{s} \inf_{I^{++}} v^{s/r} \\ &\leqslant C \left(\frac{1}{|I^{++}|} \int_{I^{++}} uv^{1/r}\right)^{s} = C \left(\frac{1}{|I^{++}|} \int_{I^{++}} w\right)^{s}, \end{split}$$

and we get that $w \in RH_s^+$ (Lemma 2.5).

To see this is the best range possible, we choose $v \in A_1^+$ as in Theorem 3.1 and u = 1, then $w = v^{1/r} \in RH_s^+$ for all $r \leq s < \frac{Cr}{C-1}$ $(C = A_1^+(v))$. If $s = \frac{Cr}{C-1}$ and $w \in RH_s^+$ then $v \in RH_{\frac{C}{C-1}}^+$, but we have seen (Theorem 3.1) that this can not happen.

The next theorem shows us which is the best range in RH_r^+ for a given weight in A_p^+ .

Theorem 5.4. Let $w \in A_p^+$, $w = uv^{1-p}$ with $u \in A_1^+$, $v \in A_1^-$ and $C = A_1^+(u)$, then $w \in RH_r^+$ for all $1 < r < \frac{C}{C-1}$, this range being the best possible.

Proof. By Theorem 3.1 we have $u \in RH_r^+$ for all $1 < r < \frac{C}{C-1}$ and we know that $v^{1-p} \in RH_{\infty}^+$, hence

$$\begin{split} \frac{1}{|I|} \int_{I} w^{r} &\leqslant \frac{1}{|I|} \int_{I} u^{r} \sup_{I} \left(v^{-r(p-1)} \right) \\ &\leqslant C \bigg(\frac{1}{|I^{+}|} \int_{I^{+}} u \bigg)^{r} \bigg(\frac{1}{|I^{+}|} \int_{I^{+}} v^{1-p} \bigg)^{r} \leqslant C \big(\inf_{I^{+}} u \big)^{r} \bigg(\sup_{I^{+}} v^{1-p} \bigg)^{r} \\ &\leqslant C \big(\inf_{I^{+}+} u \big)^{r} \bigg(\frac{1}{|I^{+}|} \int_{I^{+}} v^{1-p} \bigg)^{r} \leqslant C \bigg(\frac{1}{|I^{+}|} \int_{I^{+}} w \bigg)^{r}. \end{split}$$

By Lemma 2.5 we conclude $w \in RH_r^+$.

To see this is the best range we take u as in Theorem 3.1 and v = 1. So we have $w = u \in A_p^+$ and $w \notin RH_{\underline{C}}^+$.

Corollary 5.5. Let $w = uv^{1-p} \in A_p^+$ with $u \in A_1^+$, $v \in A_1^-$ and $C = \max\{A_1^+(u), A_1^-(v)\}$. Then $w^{\tau} \in A_p^+$ for all $1 \leq \tau < \frac{C}{C-1}$ and the range is the best possible.

Proof. By Theorem 5.4 we have that $w \in RH_{\tau}^+$ for all $1 \leq \tau < \frac{C}{C-1}$ and $w^{1-p'} \in RH_{\tau}^-$ for all $1 \leq \tau < \frac{C}{C-1}$. Let a < d, let us choose b, c such that $b - a = d - c = \frac{1}{4}(d - a)$, and we also consider the point $\frac{c+b}{2}$. Then we have four intervals, namely, $I^- = (a, b)$, $I = (b, \frac{b+c}{2})$, $I^+ = (\frac{b+c}{2}, c)$, and $I^{++} = (c, d)$. Now

$$\frac{1}{|I^{-}|} \int_{I^{-}} w^{\tau} \left(\frac{1}{|I^{++}|} \int_{I^{++}} w^{\tau(1-p')} \right)^{p-1} \leqslant \left(\frac{1}{|I|} \int_{I} w \right)^{\tau} \left(\frac{1}{|I^{+}|} \int_{I^{+}} w^{1-p'} \right)^{\tau(p-1)} \leqslant C^{\tau},$$

thus $w^{\tau} \in A_p^+$ (Lemma 2.6). Considering u as in Theorem 3.1, we see this is the best possible range.

Using Theorem 5.4 we will show the exact range of q < p such that $w \in A_p^+$ implies $w \in A_q^+$.

Theorem 5.6. Let $w = uv^{1-p} \in A_p^+$ with $u \in A_1^+$, $v \in A_1^-$ and $C = A_1^-(v)$. Then $w \in A_q^+$ for all $1 + \frac{(p-1)(C-1)}{C} < q < \infty$ and this is the best range for q.

Proof. Note that $w^{1-p'} = vu^{1-p'} \in A_{p'}^-$, by Theorem 5.4 we have $w^{1-p'} \in RH_r^-$ for all $1 < r < \frac{C}{C-1}$. For the classes RH_r^- and A_p^- we have from Lemma 4.4 that $w^{(1-p')r} \in A_{q'}^-$ where $q' = r(p'-1)+1 = \frac{r}{p-1}+1$. But this is the same as $w^{1-q'} \in A_{q'}^-$, i.e., $w \in A_q^+$ for all $1 + (p-1)\frac{C-1}{C} < q$.

To see this is the best range, let $v(x) = x^{\frac{1-C}{C}}$ if $x \leq 0$ and equal to 0 if x > 0and u = 1 for all x. Note that $v \in A_1^-$ and $A_1^-(v) = C$. Then $w = v^{1-p} \in A_p^+$ and $w \in A_q^+$ for all $q > 1 + (p-1)\frac{C-1}{C}$. Observe that $w \notin A_{1+(p-1)\frac{C-1}{C}}^+$.

Finally, the last theorem gives us the best possible range for a weight in A_{∞}^+ .

Theorem 5.7. Let $w \in A_{\infty}^+$, $w = w_0 w_1$, $w_0 \in A_1^+$, $w_1 \in RH_{\infty}^+$ and $C = RH_{\infty}^+(w_1)$. Then $w \in A_p^+$ for all p > C. The range of p's is the best possible.

Proof. Note that $w_1 \in RH_{\infty}^+$ implies $w_1 \in A_p^+$ for all p > C, hence

$$\begin{aligned} \frac{1}{|I|} \int_{I} w_{0} w_{1} \left(\frac{1}{|I|^{++}} \int_{I^{++}} (w_{0} w_{1})^{1-p'} \right)^{p-1} \\ &\leqslant \sup_{I} (w_{1}) \frac{1}{|I|} \int_{I} w_{0} \left(\sup_{I^{++}} w_{0}^{1-p'} \right)^{p-1} \left(\frac{1}{|I|^{++}} \int_{I^{++}} w_{1}^{1-p'} \right)^{p-1} \\ &\leqslant C \frac{1}{|I|^{+}} \int_{I^{+}} w_{1} \inf_{I^{+}} (w_{0}) \sup_{I^{++}} (w_{0}^{-1}) \left(\frac{1}{|I|^{++}} \int_{I^{++}} w_{1}^{1-p'} \right)^{p-1} \\ &\leqslant C \sup_{I^{++}} (w_{0}^{-1}) \frac{1}{|I^{+}|} \int_{I^{+}} w_{0} \\ &\leqslant C \frac{1}{(\inf_{I^{++}} w_{0})} \inf_{I^{++}} w_{0} \leqslant C, \end{aligned}$$

and by Lemma 2.6 we have $w \in A_p^+$ for all p > C.

To see this is the best range, we consider w(x) = 0 if $x \leq -1$, $|x|^{C-1}$ if $-1 < x \leq 0$ and 1 if $x \geq 0$.

References

- H. Aimar, L. Forzani and F. J. Martín-Reyes: On weighted inequalities for one-sided singular integrals. Proc. Amer. Math. Soc. 125 (1997), 2057–2064.
- [2] D. Cruz-Uribe and C. J. Neugebauer: The structure of reverse Hölder classes. Trans. Amer. Math. Soc. 347 (1995), 2941–2960.
- [3] D. Cruz-Uribe, C. J. Neugebauer and V. Olesen: The one-sided minimal operator and the one-sided reverse Hölder inequality. Stud. Math 116 (1995), 255–270.
- [4] P. Guan and E. Sawyer: Regularity estimates for oblique derivative problem. Anal. of Mathematics, Second Series 157 (1) (1993), 1–70.
- [5] F. J. Martín-Reyes: New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions. Proc. Amer. Math. Soc. 117, 691–698.
- [6] F. J. Martín-Reyes, P. Ortega and A. de la Torre: Weighted inequalities for one-sided maximal functions. Trans. Amer. Math. Soc. 319 (2) (1990), 517–534.
- [7] F. J. Martín-Reyes, L. Pick and A. de la Torre: A⁺_∞ condition. Canad. J. Math. 45 (6) (1993), 1231–1244.
- [8] C. J. Neugebauer: The precise range of indices for the RH_r and A_p weight classes. Preprint.
- [9] E. Sawyer: Weighted inequalities for the one-sided Hardy-Littlewood maximal function. Trans. Amer. Math. Soc. 297 (1986), 53-61.

Author's address: M. S. Riveros, FaMAF, Universidad Nacional de Córdoba, (5000) Córdoba, Argentina, e-mail: sriveros@mate.uncor.edu; A. de la Torre, Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, (29071) Málaga, Spain, e-mail: torre@anamat.cie.uma.es.