ON THE BEST RANGES FOR A_{p}^{+}AND $R H_{r}^{+}$

M. S. Riveros and A. de la Torre

Abstract

In this paper we study the relationship between one-sided reverse Hölder classes $R H_{r}^{+}$and the A_{p}^{+}classes. We find the best possible range of $R H_{r}^{+}$to which an A_{1}^{+}weight belongs, in terms of the A_{1}^{+}constant. Conversely we also find the best range of A_{p}^{+}to which a $R H_{\infty}^{+}$weight belongs, in terms of the $R H_{\infty}^{+}$constant. Similar problems for $A_{p}^{+}, 1<p<\infty$ and $R H_{r}^{+}, 1<r<\infty$ are solved using factorization.

1. Introduction

It is well known that there is a relationship between the A_{p} classes and the so called reverse Hölder classes $R H_{r}$. C. J. Neugebauer [8] has studied the following problems:
(1) For $w \in A_{p}$, find the precise range of $r^{\prime} s$ such that $w \in R H_{r}$, the precise range of $q<p$ for which $w \in A_{q}$, and the precise range of $s>1$ so that $w^{s} \in A_{p}$.
(2) Conversely, for a fixed $w \in R H_{r}$, find the precise range of $p^{\prime} s$ such that $w \in A_{p}$, and the precise range of $q>r$ for which $w \in R H_{q}$.
For the one-sided Hardy-Littlewood maximal operator,

$$
M^{+} f(x)=\sup _{h>0} \frac{1}{h} \int_{x}^{x+h}|f|
$$

the A_{p}^{+}classes were introduced by E. Sawyer [9]. He proved that M^{+}is bounded in $L^{p}(w)(p>1)$ if, and only if, the weight satisfies A_{p}^{+}i.e., there exists a constant C such that for any three points $a<b<c$

$$
\int_{a}^{b} w\left(\int_{b}^{c} w^{1-p^{\prime}}\right)^{p-1} \leq C(c-a)^{p}
$$

The smallest constant for which this is satisfied will be called the A_{p}^{+}constant of w and will be denoted by $A_{p}^{+}(w)$. For $p=1$ the weak type of the operator holds if, and only if, the weight w satisfies A_{1}^{+}i.e. there exists C so that for any a and almost every $b>a$,

$$
\int_{a}^{b} w \leq C(b-a) w(b)
$$

[^0]The smallest such constant will be called the A_{1}^{+}constant of w and will be denoted by $A_{1}^{+}(w)$. For later reference we point out that it is an easy consequence of Lebesgue's differentiation theorem that the constant in the definiton of A_{1}^{+}is always greater than, or equal to, one.

These classes are of interest, not only because they control the boundedness of the one-sided Hardy-Littlewood maximal operator, but they are the right classes for the weighted estimates for one-sided singular integrals [1] and they also appear in PDE [4]. In contrast to the Muckenhoupt weights, the one-sided weights are not doubling, but they satisfy a one-sided doubling property, namely if $w \in A_{p}^{+}$then there exists C such that for any $a \in \mathbb{R}$ and $h>0, \int_{a}^{a+2 h} w \leq C \int_{a+h}^{a+2 h} w$. The reverse Hölder property is not satisfied by these weights either but nevertheless Martín-Reyes [5] proved that there is a weak substitute of this notion, that we will denote by $R H_{r}^{+}$, which is good enough to prove the " $p-\epsilon$ " property. In [7] the class A_{∞}^{+}was introduced and it was proved that $A_{\infty}^{+}=\cup_{p<\infty} A_{p}^{+}=\cup_{1<r} R H_{r}^{+}$.

In this note we solve the problems of the Neugebauer paper in this context. In the proofs we will make essential use of the one-sided minimal operator introduced by Cruz-Uribe, Neugebauer and Olesen [3]. It is defined as $m^{+} f(x)=\inf _{c>x} \frac{1}{c-x} \int_{x}^{c}|f|$. We will also use the fact that for any positive function g, the maximal operator $M_{g} f(x)=\sup _{x \in I} \frac{1}{g(I)} \int_{I}|f| g d x$ is of weak type one-one with respect to the measure $g d x$. Note that for $g=1$, we have the classical Hardy-Littlewood maximal operator, which is denoted by $M f$.

The paper is organized as follows: in section 2 we give definitions and characterizations of $R H_{r}^{+}, 1<r<\infty$. In section 3 we prove two theorems of best range for the extreme classes A_{1}^{+}and $R H_{\infty}^{+}$. In section 4 we give a factorization theorem for weights in $R H_{r}^{+}$, and finally in section 5 we extend the theorems of section 3 for A_{p}^{+}and $R H_{r}^{+}$, using the factorization proven in section 4 . We shall see, that the index range depends on the factorization of the weight.

We end this introduction with some notation: for a given interval $I=(a, a+h)$ we denote by I^{-}the interval $(a-h, a), I^{+}$the interval $(a+h, a+2 h)$, and I^{++}the interval $(a+2 h, a+3 h)$. For any $1<p<\infty, p^{\prime}$ will be its conjungate exponent, if g is locally integrable and E is a measurable set, $g(E)$ will stand for $\int_{E} g$ and C will represent a constant that may change from time to time. Finally we remark that we can change the orientation on the real line obtaining similar results for classes $R H_{r}^{-}, A_{p}^{-}, 1<r \leq \infty$ and $1 \leq p \leq \infty$.

2. Definition, Charaterization of $R H_{r}^{+}$for $1<r<\infty$

We start this section with the definiton of $R H_{r}^{+}, 1<r<\infty$.
Definition 2.1. A weight w satisfies the one-sided reverse Hölder $R H_{r}^{+}$condition, if there exists C such that for any $a<b$

$$
\begin{equation*}
\int_{a}^{b} w^{r} \leq C\left(M\left(w \chi_{(a, b)}\right)(b)\right)^{(r-1)} \int_{a}^{b} w . \tag{2.2}
\end{equation*}
$$

The smallest such constant will be called the $R H_{r}^{+}$constant of w and will be denoted by $R H_{r}^{+}(w)$.

Definition 2.3. A weight satisfies the one-sided reverse Hölder $R H_{\infty}^{+}$contition, if there exists C such that

$$
\begin{equation*}
w(x) \leq C m^{+} w(x) \tag{2.4}
\end{equation*}
$$

for almost all $x \in \mathbb{R}$.
The smallest such constant will be called the $R H_{\infty}^{+}$constant of w and will be denoted by $R H_{\infty}^{+}(w)$. It is clear that $C \geq 1$.

The following lemma gives several characterizations of $R H_{r}^{+}$. The constants are not necessarily the same.
Lemma 2.5. Let $a<b<c<d, 1<r<\infty$, and $w \geq 0$ locally integrable, then the following staments are equivalent
i) $\int_{a}^{b} w^{r} \leq C\left(M\left(w \chi_{(a, b)}\right)(b)\right)^{(r-1)} \int_{a}^{b} w$.
ii) $\frac{1}{b-a} \int_{a}^{b} w^{r} \leq C\left(\frac{1}{c-b} \int_{b}^{c} w\right)^{r}$, with $b-a=2(c-b)$.
iii) $\frac{1}{b-a} \int_{a}^{b} w^{r} \leq C\left(\frac{1}{d-c} \int_{c}^{d} w\right)^{r}$, with $b-a=d-b=2(d-c)$.
iv) $\frac{1}{b-a} \int_{a}^{b} w^{r} \leq C\left(\frac{1}{c-b} \int_{b}^{c} w\right)^{r}$, with $b-a=c-b$.
v) $\frac{1}{b-a} \int_{a}^{b} w^{r} \leq C\left(\frac{1}{d-c} \int_{c}^{d} w\right)^{r}$, with $b-a=d-c=\gamma(d-a), 0<\gamma \leq \frac{1}{2}$.

Proof. To see $i) \Longrightarrow i i)$, we fix $a<b<c, b-a=2(c-b)$ and take any $x \in(b, c)$. Then

$$
\int_{a}^{b} w^{r} \leq \int_{a}^{x} w^{r} \leq C\left(M\left(w \chi_{(a, x)}\right)(x)\right)^{r-1} \int_{a}^{x} w \leq C\left(M\left(w \chi_{(a, c)}\right)(x)\right)^{r-1} \int_{a}^{c} w
$$

Therefore $(b, c) \subset\left\{x:\left(M\left(w \chi_{(a, c)}\right)(x)\right)^{r-1} \geq \frac{1}{C \int_{a}^{c} w} \int_{a}^{b} w^{r}\right\}$. The weak type (1, 1) of the Hardy-Littlewood maximal operator yields,

$$
(c-b)\left(\int_{a}^{b} w^{r}\right)^{\frac{1}{r-1}} \leq C\left(\int_{a}^{c} w\right)^{\frac{r}{r-1}}
$$

which implies

$$
\frac{1}{b-a} \int_{a}^{b} w^{r} \leq C\left(\frac{1}{c-b} \int_{a}^{c} w\right)^{r} \leq C\left(\frac{1}{c-b} \int_{b}^{c} w\right)^{r}
$$

the last inequality follows from the fact, proved in [7], that a weight satisfying i) satisfies A_{p}^{+}for some p and thus it satisfies the one-sided doubling condition.

We will prove now that ii) $\Longrightarrow \mathrm{i}$). Let us fix $a<b$ and define a sequence $\left(x_{k}\right)$ as follows: $x_{0}=a$ and $b-x_{k}=2\left(b-x_{k+1}\right)$. In particular $x_{k+1}-x_{k}=2\left(x_{k+2}-x_{k+1}\right)=$ $\left(b-x_{k+1}\right)$. Using condition ii) for the points x_{k}, x_{k+1}, x_{k+2}, we have

$$
\begin{aligned}
\int_{a}^{b} w^{r} & =\sum_{0}^{\infty} \int_{x_{k}}^{x_{k+1}} w^{r} \leq C \sum_{0}^{\infty}\left(x_{k+1}-x_{k}\right)^{1-r}\left(\int_{x_{k+1}}^{x_{k+2}} w\right)^{r} \\
& \leq C \sum_{0}^{\infty} \int_{x_{k+1}}^{x_{k+2}} w\left(\frac{1}{b-x_{k+1}} \int_{x_{k+1}}^{b} w\right)^{r-1} \leq\left(M\left(w \chi_{(a, b)}\right)(b)\right)^{r-1} C \int_{a}^{b} w
\end{aligned}
$$

To see ii) \Longrightarrow iii) let $a<b<c<d$ with $b-a=d-b=2(d-c)$. Using that w satisfies the one-sided doubling condition, we have

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} w^{r} \leq C\left(\frac{1}{c-b} \int_{b}^{c} w\right)^{r} & \leq C\left(\frac{d-c}{c-b} \frac{1}{d-c} \int_{b}^{d} w\right)^{r} \\
& \leq C\left(\frac{1}{d-c} \int_{c}^{d} w\right)^{r}
\end{aligned}
$$

iii) \Longrightarrow iv) is immediate.

First of all we observe that iv) easily implies that the weight w satisfies the onesided doubling condition. To see that iv) $\Longrightarrow \mathrm{v}$), let $0<\gamma \leq \frac{1}{2}$ and $a<b<c<d$, $b-a=d-c=\gamma(d-a)$ then if x is the mid point between a and d we have

$$
\frac{1}{b-a} \int_{a}^{b} w^{r} \leq \frac{1}{2 \gamma} \frac{1}{x-a} \int_{a}^{x} w^{r} \leq \frac{C}{2 \gamma}\left(\frac{1}{d-x} \int_{x}^{d} w\right)^{r}
$$

but it follows from the one-sided doubling condition that $\int_{x}^{d} w \leq C_{\gamma} \int_{c}^{d} w$.
Suppose v) holds, let $a<b<c, b-a=c-b=h$, we define for $k=0,1, \ldots, N$ $x_{k}=a+k s h$ and $y_{k}=b+k s h$ where $s=\frac{\gamma}{1-\gamma}$ and N is the first integer such that $(N+1) s>1$. We observe that the choice of x_{k}, y_{k} has been made so that for any $0 \leq k \leq(N-1)$ we have $x_{k+1}-x_{k}=y_{k+1}-y_{k}=\gamma\left(y_{k+1}-x_{k}\right)$. Applying v), using that $r>1$ and the fact that the intervals $\left(y_{k}, y_{k+1}\right)$ are disjoint, we have

$$
\begin{aligned}
\int_{a}^{b} w^{r} & \leq \sum_{k=0}^{N-1} \int_{x_{k}}^{x_{k+1}} w^{r}+\int_{b-s h}^{b} w^{r} \\
& \leq C(s h)^{1-r} \sum_{k=0}^{N-1}\left(\int_{y_{k}}^{y_{k+1}} w\right)^{r}+C(s h)^{1-r}\left(\int_{c-s h}^{c} w\right)^{r} \\
& \leq C_{\gamma}(c-a)^{1-r}\left(\int_{b}^{c} w\right)^{r}
\end{aligned}
$$

So we have proved that v) \Longrightarrow iv).
Finally we will show that iv) \Longrightarrow ii). Let $a<b<c$ with $b-a=2(c-b)$. Let x be the mid point between a, b, using the one-sided doubling property we have

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} w^{r} & =\frac{1}{b-a}\left(\int_{a}^{x} w^{r}+\int_{x}^{b} w^{r}\right) \\
& =\frac{1}{2}\left(\frac{1}{x-a} \int_{a}^{x} w^{r}+\frac{1}{b-x} \int_{x}^{b} w^{r}\right) \\
& \leq \frac{C}{2}\left(\left(\frac{1}{b-x} \int_{x}^{b} w\right)^{r}+\left(\frac{1}{c-b} \int_{b}^{c} w\right)^{r}\right) \\
& \leq \frac{C}{2}\left(\left(\frac{1}{c-b} \int_{x}^{c} w\right)^{r}+\left(\frac{1}{c-b} \int_{b}^{c} w\right)^{r}\right) \\
& \leq C\left(\frac{1}{c-b} \int_{b}^{c} w\right)^{r} .
\end{aligned}
$$

Remark. The equivalence of i) and iv) was first proved in [3].
The following lemma tells us that in the definiton of A_{p}^{+}we can take two intervals that are not contiguous. Note that in the case of $R H_{r}^{+}$we have seen this in the previous lemma.

Lemma 2.6. A weight $w \in A_{p}^{+}, p>1$ if, and only if, there exists $0<\gamma \leq \frac{1}{2}$ and a constant C_{γ} such that for any $a<b<c<d, b-a=d-c=\gamma(d-a)$ then

$$
\begin{equation*}
\int_{a}^{b} w\left(\int_{c}^{d} w^{1-p^{\prime}}\right)^{p-1} \leq C_{\gamma}(b-a)^{p} \tag{2.7}
\end{equation*}
$$

Proof. If $w \in A_{p}^{+}, 0<\gamma \leq \frac{1}{2}$ and $a<b<c<d, b-a=d-c=\gamma(d-a)$ then

$$
\int_{a}^{b} w\left(\int_{c}^{d} w^{1-p^{\prime}}\right)^{p-1} \leq \int_{a}^{c} w\left(\int_{c}^{d} w^{1-p^{\prime}}\right)^{p-1} \leq C(d-a)^{p}=C_{\gamma}(b-a)^{p}
$$

To prove that (2.7) implies A_{p}^{+}we will show that (2.7) implies that for γ and a, b, c, d as above we have

$$
\frac{1}{b-a} \int_{a}^{b} w \exp \left(\frac{1}{d-c} \int_{c}^{d}-\log (w)\right) \leq C
$$

Indeed

$$
\begin{align*}
& \frac{1}{b-a} \int_{a}^{b} w \exp \left(\frac{1}{d-c} \int_{c}^{d}-\log (w)\right) \tag{2.8}\\
& =\frac{1}{b-a} \int_{a}^{b}\left[w \exp \left(\frac{1}{d-c} \int_{c}^{d} \log (w)^{1-p^{\prime}}\right)\right]^{p-1} \\
& \quad \leq \frac{1}{b-a} \int_{a}^{b} w\left(\frac{1}{d-c} \int_{c}^{d} w^{1-p^{\prime}}\right)^{p-1} \leq C .
\end{align*}
$$

In the same way we prove that $w^{1-p^{\prime}}$ satisfies

$$
\begin{equation*}
\exp \left(\frac{1}{b-a} \int_{a}^{b} \log (w)^{p^{\prime}-1}\right) \frac{1}{d-c} \int_{c}^{d} w^{1-p^{\prime}} \leq C \tag{2.9}
\end{equation*}
$$

But according to part j) of Theorem 1 in [7], (2.8) is equivalent to saying that $w \in A_{\infty}^{+}$, while (2.9) means that $w^{1-p^{\prime}} \in A_{\infty}^{-}$and according to Theorem 2 in [7] these two conditions imply $w \in A_{p}^{+}$

Remark 2.10. We can easily see that $w \in A_{1}^{+}$if, and only if, there exists $C>0$ such that $\frac{1}{h} \int_{a-h}^{a} w \leq C w(a+h)$ for almost every $a \in \mathbb{R}$ and $h>0$.

3. The extreme cases: A_{1}^{+}and $R H_{\infty}^{+}$.

Theorem 3.1. Let $w \in A_{1}^{+}$with A_{1}^{+}constant $C>1$, then $w \in R H_{r}^{+}$for any $1<r<\frac{C}{C-1}$, and this is the best possible range.
Proof. Let us fix the interval $I=(a, b)$. We consider the truncation of w at height N defined by $w_{N}=\min (w, N)$, which also satisfies A_{1}^{+}with constant $C_{N} \leq C$. We claim that if $\lambda_{I}=M\left(w_{N} \chi_{I}\right)(b)$, and $E_{\lambda}=\left\{x \in I: w_{N}(x)>\lambda\right\}$ then

$$
\begin{equation*}
\int_{E_{\lambda}} w_{N} \leq C_{N} \lambda\left|E_{\lambda}\right| \quad \forall \lambda \geq \lambda_{I} . \tag{3.2}
\end{equation*}
$$

Indeed if $E_{\lambda}=I$ we do not even need the A_{1}^{+}condition, since

$$
w_{N}\left(E_{\lambda}\right)=\int_{a}^{b} w_{N} \leq M\left(w_{N} \chi_{I}\right)(b)(b-a)=\lambda_{I}(b-a) \leq C_{N} \lambda\left|E_{\lambda}\right| .
$$

If $E_{\lambda} \neq I$ we fix $\epsilon>0$ and an open set O such that $E_{\lambda} \subset O \subset I$ and $|O| \leq \epsilon+\left|E_{\lambda}\right|$. Let $J_{k}=(c, d)$, be one of the connected components of O. There are two cases
(1) $a \leq c<d<b$,
(2) $a \leq c<d=b$.

In the first case $d \notin E_{\lambda}$ and then $w_{N}(d) \leq \lambda$. Now A_{1}^{+}gives $\int_{c}^{d} w_{N} \leq C_{N} w_{N}(d)(d-$ $c) \leq C_{N} \lambda(d-c)$. The second case is handled as the case $E_{\lambda}=I$, since $\int_{c}^{b} w_{N} \leq$ $M\left(w_{N} \chi_{I}\right)(b)(b-c) \leq C \lambda(b-c)$. In any case $w_{N}\left(J_{k}\right) \leq C_{N} \lambda\left|J_{k}\right|$. Adding up we get

$$
w_{N}\left(E_{\lambda}\right) \leq w_{N}(O) \leq C_{N} \lambda|O| \leq C_{N} \lambda\left(\epsilon+\left|E_{\lambda}\right|\right)
$$

Since ϵ was arbitrary we are done. Now we proceed in the standard way i.e., we fix $s>-1$, multiply both sides of (3.2) by λ^{s} and integrate from λ_{I} to infinity to obtain,

$$
\frac{1}{s+1} \int_{I}\left(w_{N}^{s+2}-\lambda_{I}^{s+1} w_{N}\right) \leq \frac{C_{N}}{s+2} \int_{I} w_{N}^{s+2} .
$$

Now if $r=s+2<\frac{C_{N}}{C_{N}-1}$ then $\frac{1}{s+1}-\frac{C_{N}}{s+2}>0$, and we get

$$
\int w_{N}^{r} \leq C_{N} \lambda_{I}^{r-1} \int_{I} w_{N}=C_{N}\left(M\left(w_{N} \chi_{I}\right)(b)\right)^{r-1} \int_{I} w_{N} .
$$

Now $C_{N} \leq C$ implies $\frac{C_{N}}{C_{N}-1} \geq \frac{C}{C-1}$, and therefore if $r \leq \frac{C}{C-1}$ then

$$
\int_{a}^{b} w_{N}^{r} \leq C_{N}\left(M\left(w_{N} \chi_{(a, b)}\right)(b)\right)^{r-1} \int_{a}^{b} w_{N} \leq C\left(M\left(w \chi_{(a, b)}\right)(b)\right)^{r-1} \int_{a}^{b} w
$$

and the monotone convergence theorem gives $w \in R H_{r}^{+}$. To see that this is the best possible range we consider the function

$$
w(x)=x^{\frac{1}{C}-1} \chi_{(0, \infty)}(x) .
$$

It is clear that does not satisfy $R H_{\frac{C}{C-1}}$ because $w^{\frac{C}{C-1}}(x)=\frac{1}{x}$ for $x>0$. To see that it satisfies A_{1}^{+}with constant C, we consider three cases
(1) $a<b \leq 0$
(2) $a \leq 0<b$
(3) $0<a<b$

In the first case there is nothing to check. In the second case $\frac{1}{b-a} \int_{a}^{b} w<\frac{1}{b} \int_{0}^{b} w(x)=$ $\frac{C}{b} b^{\frac{1}{C}}=C w(b)$. Finally if $0<a<b, \int_{a}^{b} w=C\left(b^{\frac{1}{C}}-a^{\frac{1}{C}}\right) \leq C(b-a) w(b)$
Remark. Note that if $C=1$, then $w(x)=M^{-} w(x)$, and this implies that w is non-decreasing. This tells us that $w \in R H_{\infty}^{+}$.
Theorem 3.3. If w satisfies $R H_{\infty}^{+}$with constant $C>1$, then $w \in A_{p}^{+}$for all $p>C$, and this is the best possible range.
Proof. A truncation argument as in Theorem 3.1 allows us to suppose that w is bounded away from zero, i.e. there exists $\beta>0$ so that $w(x) \geq \beta$ for all x. Let us fix $I=(a, b)$ and consider $\lambda_{I}=m^{+}\left(w \frac{1}{\chi_{I}}\right)(a)$. We claim that if $\lambda<\lambda_{I}$ and $E_{\lambda}=\{x \in I: w(x)<\lambda\}$, then

$$
\begin{equation*}
\lambda\left|E_{\lambda}\right| \leq C \int_{E_{\lambda}} w \tag{3.4}
\end{equation*}
$$

As before if $E_{\lambda}=I$ then $\lambda\left|E_{\lambda}\right|=\lambda(b-a)<\lambda_{I}(b-a)=\int_{a}^{b} w \leq w\left(E_{\lambda}\right)$. If $E_{\lambda} \neq I$ then we aproximate it by an open set $O=\cup J_{k}$ where $E_{\lambda} \subset O \subset I$ and $w(O)<\epsilon+w\left(E_{\lambda}\right)$. Let us fix $J_{k}=(c, d)$. There are two cases
(1) $a<c$
(2) $a=c$.

In the first case $c \notin E_{\lambda}$ and then $\lambda(d-c) \leq w(c)(d-c) \leq C m^{+} w(c)(d-c) \leq C \int_{c}^{d} w$.
In the second case $\lambda(d-c) \leq \lambda_{I}(d-a) \leq \int_{a}^{d} w$, and (3.4) follows. If we multiply both sides of (3.4) by λ^{-r} with $r>2$ and integrate we have

$$
\int_{0}^{\lambda_{I}} \lambda^{1-r} \int \chi_{E_{\lambda}}(x) d x d \lambda \leq C \int_{0}^{\infty} \lambda^{-r} \int_{E_{\lambda}} w(x) d x d \lambda
$$

For the left hand side we obtain,

$$
\begin{aligned}
& \int_{\beta}^{\lambda_{I}} \lambda^{1-r} \int \chi_{E_{\lambda}}(x) d x d \lambda=\frac{1}{2-r} \int_{\left\{x \in I: w(x)<\lambda_{I}\right\}} \lambda_{I}^{2-r}-w^{2-r} d x \\
& \geq \frac{1}{2-r} \int_{I} \lambda_{I}^{2-r}-w^{2-r} d x=\frac{1}{r-2} \int_{I} w^{2-r}-\frac{|I|}{r-2} \lambda_{I}^{2-r}
\end{aligned}
$$

while the right hand side is equal to $\frac{C}{r-1} \int_{I} w^{2-r}$. Therefore

$$
\frac{1}{r-2} \int_{I} w^{2-r} \leq \frac{C}{r-1} \int_{I} w^{2-r}+\frac{|I|}{r-2} \lambda_{I}^{2-r}
$$

If we choose $r>2$ such that $C(r-2)<(r-1)$, we obtain that there exists C so that

$$
\begin{equation*}
\frac{1}{|I|} \int_{I} w^{2-r} \leq C\left(m^{+}\left(\frac{w}{\chi_{I}}\right)(a)\right)^{2-r} \tag{3.5}
\end{equation*}
$$

We now claim that (3.5) implies that $w \in A_{p}^{+}$with $p=\frac{r-1}{r-2}$. Let us fix $a<b<c$ and choose $x \in(a, b)$. If we keep in mind that $1-p^{\prime}=2-r$ we may write

$$
\left(\frac{1}{c-a} \int_{b}^{c} w^{1-p^{\prime}}\right)^{p-1} \leq\left(\frac{1}{c-x} \int_{x}^{c} w^{1-p^{\prime}}\right)^{p-1} \leq C\left(m^{+}\left(\frac{w}{\chi_{(x, c)}}\right)(x)\right)^{-1}
$$

but

$$
\left(m^{+}\left(\frac{w}{\chi_{(x, c)}}\right)(x)\right)^{-1}=\left(\inf _{x<d<c} \frac{1}{d-x} \int_{x}^{d} w\right)^{-1}=\sup _{x<d<c} \frac{d-x}{\int_{x}^{d} w}=M_{w}\left(\frac{\chi_{(a, c)}}{w}\right)(x)
$$

We have thus proved that if $\lambda=\left(\frac{1}{c-a} \int_{b}^{c} w^{1-p^{\prime}}\right)^{p-1}$ then

$$
(a, b) \subset\left\{x: C M_{w}\left(\frac{\chi_{(a, c)}}{w}\right)(x)>\lambda\right\}
$$

and the weak type of M_{w} with respect to the measure $w d x$ yields $\int_{a}^{b} w \leq C(c-$ $a)^{p}\left(\int_{b}^{c} w^{1-p^{\prime}}\right)^{1-p}$ which is A_{p}^{+}. Finally it can be checked that the function $w(x)$ which is 0 for $x<-1$, identically one for $x>0$ and $|x|^{C-1}$ between -1 and 0 , satisfies $R H_{\infty}^{+}$with constant C, but is not in A_{C}^{+}.
Remark. Note that if $C=1$, then $w(x)=m^{+} w(x)$, and this implies that w is non-decreasing. This tells us that $w \in A_{1}^{+}$.

We had several different characterizations of $R H_{r}^{+}$, one involved the maximal operator, but dealt with one interval, and the others involved two intervals but no operator. We can now prove that for $R H_{\infty}^{+}$the situation is the same, we can characterize $R H_{\infty}^{+}$using two intervals instead of the minimal operator.
Corollary 3.6. $w \in R H_{\infty}^{+}$if, and only if, there exists C such that for any interval I,

$$
\begin{equation*}
\operatorname{esssup}_{I} w \leq C \frac{1}{\left|I^{+}\right|} \int_{I^{+}} w \tag{3.7}
\end{equation*}
$$

Proof. It is immediate that (3.7) implies $R H_{\infty}^{+}$. Assume now that $w \in R H_{\infty}^{+}$. The preceding theorem tells us that $w \in A_{p}$ for some p, and therefore it satisfies the one-sided doubling condition. Therefore if $I=(a, b)$ is any interval, $I^{+}=(b, c)$ and $x \in I$ we have

$$
w(x) \leq \frac{C}{c-x} \int_{x}^{c} w \leq \frac{C}{c-b} \int_{b}^{c} w
$$

which is (3.7).
Remark. Note that with this definition, we have that $R H_{\infty}^{+} \subset \cap_{r>1} R H_{r}^{+}$.
4. Factorization of weights in $R H_{r}^{+}, 1<r \leq \infty$.

The theorems on the best range for weights in $A_{p}^{+}(p>1)$ or in $R H_{r}^{+}, r<\infty$ will be stated in terms of factorizations of the given weight. Therefore this section will be devoted to prove a factorization of functions in $R H_{r}^{+}$. The bilateral case was studied in [2].

Definition 4.1. A function w is said to be essentially increasing if there exists C so that $w(x) \leq C w(y)$ for any $x<y$.

Lemma 4.2. A function belongs to $R H_{\infty}^{+} \cap A_{1}^{+}$if, and only if, it is essentially increasing.
Proof. Assume that $w \in R H_{\infty}^{+} \cap A_{1}^{+}$and $x<y$ then $w(x) \leq C \frac{1}{y-x} \int_{x}^{y} w \leq C w(y)$ and w is essentially increasing. Conversely, if w is essentially increasing then for any x and $h>0$ we have $w(x) \leq \frac{C}{h} \int_{x}^{x+h} w$, then $w \in R H_{\infty}^{+}$. On the other hand $\frac{1}{h} \int_{x-h}^{x} w \leq C w(x)$, so $w \in A_{1}^{+}$
Lemma 4.3. Let $1<r \leq \infty$ and $1 \leq p<\infty$.
(1) If u is essentially increasing and $v \in R H_{r}^{+}$then $u v \in R H_{r}^{+}$.
(2) If u is essentially increasing and $v \in A_{p}^{+}$then $u v \in A_{p}^{+}$.

Proof. This proof follows immediately from Definition 4.1.
Lemma 4.4. Let $1<r \leq \infty$ and $1 \leq p<\infty$. $w \in R H_{r}^{+} \cap A_{p}^{+}$if, and only if, $w^{r} \in A_{q}^{+}$, with $q=r(p-1)+1$.
Proof. Let $C_{1}=R H_{r}^{+}(w)$, and $C_{2}=A_{p}^{+}(w), w \in R H_{r}^{+} \cap A_{p}^{+}$, and $q=r(p-1)+1$.
Also note that $1-q^{\prime}=1-\frac{r(p-1)+1}{r(p-1)}=\frac{1}{r(1-p)}$,

$$
\begin{aligned}
\left(\frac{1}{\left|I^{-}\right|} \int_{I^{-}} w^{r}\right) & \left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w^{r\left(1-q^{\prime}\right)}\right)^{q-1} \\
& \leq C_{1}\left(\frac{1}{|I|} \int_{I} w\right)^{r}\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w^{1-p^{\prime}}\right)^{r(p-1)} \\
& \leq C_{1} C_{2}^{r}
\end{aligned}
$$

and by Lemma 2.6 we have that $w^{r} \in A_{q}^{+}$.
If $w^{r} \in A_{q}^{+}$, by Hölder's inequality

$$
\begin{aligned}
\left(\frac{1}{|I|} \int_{I} w\right) & \left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w^{-1 /(p-1)}\right)^{p-1} \\
& \leq\left(\frac{1}{|I|} \int_{I} w^{r}\right)^{1 / r}\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w^{-r /(q-1)}\right)^{(q-1) / r} \\
& \leq C^{1 / r}
\end{aligned}
$$

obtaining in this way that $w \in A_{p}^{+}$. Now again by Hölder's inequality

$$
1=\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w^{-1 / p} w^{1 / p} \leq\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w\right)^{1 / p}\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w^{-p^{\prime} / p}\right)^{1 / p^{\prime}}
$$

so

$$
\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w^{-1 /(p-1)}\right)^{1-p} \leq \frac{1}{\left|I^{+}\right|} \int_{I^{+}} w
$$

and we get

$$
\begin{aligned}
\left(\frac{1}{|I|} \int_{I} w^{r}\right)^{1 / r} & \leq C\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w^{-r /(q-1)}\right)^{-(q-1) / r}=C\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w^{-1 /(p-1)}\right)^{1-p} \\
& \leq C \frac{1}{\left|I^{+}\right|} \int_{I^{+}} w
\end{aligned}
$$

proving that $w \in R H_{r}^{+}$.

Factorization Theorem for weights in $R H_{r}^{+} \cap A_{p}^{+}$. A weight $w \in R H_{r}^{+} \cap A_{p}^{+}$ with $1 \leq p<\infty, 1<r \leq \infty$ if, and only if, there exists weights w_{0} and w_{1} such that $w_{0} \in R H_{r}^{+} \cap A_{1}^{+}, w_{1} \in R H_{\infty}^{+} \cap A_{p}^{+}$and $w=w_{0} w_{1}$.

Observe that since $\cup_{p<\infty} A_{p}^{+}=\cap_{1<r} R H_{r}^{*}$ every weight in $R H_{r}^{+}$is in some A_{p}^{+}. See [7].

Proof. Let us consider first the cases $p=1$ or $r=\infty$.
If $p=1$ and $r \leq \infty$, we put $w_{1}=1$, and $w_{0}=w$, then obviously $w_{0} \in R H_{r}^{+} \cap A_{1}^{+}$, and $w_{1} \in R H_{\infty}^{+} \cap A_{1}^{+}$.
If $p \geq 1$ and $r=\infty$, we put $w_{0}=1$, and $w_{1}=w$, obtaining $w_{0} \in R H_{\infty}^{+} \cap A_{1}^{+}$, $w_{1} \in R H_{\infty}^{+} \cap A_{p}^{+}$.
Conversely, given w_{0} and w_{1}, at least one of them belongs to $R H_{\infty}^{+} \cap A_{1}^{+}$, (because $p=1$ or $r=\infty$), so one of them is essentially increasing, therefore $w_{0} w_{1} \in R H_{r}^{+} \cap$ A_{p}^{+}(Lemma 4.3).
Let us suppose now, $p>1$ and $r<\infty$. Let $w=w_{0} w_{1}$, with $w_{0} \in R H_{r}^{+} \cap A_{1}^{+}$, and $w_{1} \in R H_{\infty}^{+} \cap A_{p}^{+}$, we want to see that $w \in R H_{r}^{+} \cap A_{p}^{+}$. Note that for w_{1} the following holds

$$
\frac{1}{|I|} \int_{I} w_{1}^{1-p^{\prime}} \leq C\left(\frac{1}{\left|I^{-}\right|} \int_{I^{-}} w_{1}\right)^{1-p^{\prime}} \leq C w_{1}(a-h)^{1-p^{\prime}}
$$

this implies, $w_{1}^{1-p^{\prime}} \in A_{1}^{-}$(Remark 2.10). Let $v=w_{1}^{1-p^{\prime}}$, then $w_{1}=v^{1-p}$ with $v \in A_{1}^{-}$, so $w=w_{0} w_{1}=w_{0} v^{1-p}$ with $w_{0} \in A_{1}^{+}$and $v \in A_{1}^{-}$(see [7]), and this implies $w \in A_{p}^{+}$.
Now

$$
\begin{aligned}
\frac{1}{|I|} \int_{I} w^{r} & =\frac{1}{|I|} \int_{I} w_{0}^{r} w_{1}^{r} \leq\left(\sup _{I} w_{1}\right)^{r} C\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w_{0}\right)^{r} \\
& \leq C\left(\frac{1}{\left|I^{+}\right|} \int_{I^{++}} w_{1}\right)^{r}\left(\inf _{I^{++}} w_{0}\right)^{r} \\
& \leq C\left(\frac{1}{\left|I^{++}\right|} \int_{I^{++}} w_{0} w_{1}\right)^{r}
\end{aligned}
$$

by Lemma 2.5, we have $w \in R H_{r}^{+}$. Conversely let $w \in R H_{r}^{+} \cap A_{p}^{+}$, then by Lemma $4.4 w^{r} \in A_{q}^{+}$, with $q=r(p-1)+1$, there exists $v_{0} \in A_{1}^{+}$, and $v_{1} \in A_{1}^{-}$, such that $w^{r}=v_{0} v_{1}^{1-q}$ (see [7]), or equivalently $w=v_{0}^{1 / r} v_{1}^{(1-q) / r}=v_{0}^{1 / r} v_{1}^{1-p}$. Let $w_{0}=v_{0}^{1 / r}$ and $w_{1}=v_{1}^{1-p}$. We will see that $w_{0} \in R H_{r}^{+} \cap A_{1}^{+}$. We note,

$$
\begin{aligned}
\frac{1}{|I|} \int_{I} w_{0}^{r} & =\frac{1}{|I|} \int_{I} v_{0} \leq C \inf _{I^{+}} v_{0} \\
& \leq C\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} v_{0}^{1 / r}\right)^{r}=C\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w_{0}\right)^{r}
\end{aligned}
$$

and also,

$$
\begin{aligned}
\frac{1}{|I|} \int_{I} w_{0} & =\frac{1}{|I|} \int_{I} v_{0}^{1 / r} \leq\left(\frac{1}{|I|} \int_{I} v_{0}\right)^{1 / r} \\
& \leq C \inf _{I^{+}} v_{0}^{1 / r}=C \inf _{I^{+}} w_{0}
\end{aligned}
$$

We only have to see now, that $w_{1} \in R H_{\infty}^{+} \cap A_{p}^{+}$and we are done.
First we claim

$$
\begin{equation*}
w \in A_{1}^{-} \text {then } w^{-\gamma} \in R H_{\infty}^{+}, \text {for all } \gamma>0 \tag{4.5}
\end{equation*}
$$

In fact by Hölder's inequality, we have for any interval $I=(a, b),\left(\frac{1}{|I|} \int_{I} w\right)^{-\gamma} \leq$ $\frac{1}{|I|} \int_{I} w^{-\gamma}$ and as $w \in A_{1}^{-}$we have that for almost every $x \in I^{-}, C w(x) \geq \frac{1}{|I|} \int_{I} w$, and therefore

$$
w(x)^{-\gamma} \leq C\left(\frac{1}{|I|} \int_{I} w\right)^{-\gamma} \leq \frac{1}{|I|} \int_{I} w^{-\gamma} \leq C \frac{1}{b-x} \int_{x}^{b} w^{-\gamma}
$$

Let $w_{1}=v_{1}^{1-p}$. As $v_{1} \in A_{1}^{-}$, then $w_{1} \in R H_{\infty}^{+}$. Moreover

$$
\begin{aligned}
\frac{1}{|I|} \int_{I} w_{1}\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w_{1}^{1-p^{\prime}}\right)^{p-1} & =\frac{1}{|I|} \int_{I} v_{1}^{1-p}\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} v_{1}\right)^{p-1} \\
& \leq \frac{1}{|I|} \int_{I} v_{1}^{1-p}\left(C \inf _{I} v_{1}\right)^{p-1} \\
& \leq \frac{C}{|I|} \int_{I} v_{1}^{1-p} v_{1}^{p-1} \leq C
\end{aligned}
$$

i.e. $w_{1} \in A_{p}^{+}$.

Factorization Theorem for weights in A_{∞}^{+}. A weight $w \in A_{\infty}^{+}$if, and only if, there exists $w_{1} \in R H_{\infty}^{+}$and $w_{0} \in A_{1}^{+}$such that $w=w_{0} w_{1}$.

Proof. If $w \in A_{\infty}^{+}$then $w \in A_{q}^{+}$for some $1<q<\infty$, so there exist $v_{0} \in A_{1}^{+}$and $v_{1} \in A_{1}^{-}$such that $w=v_{0} v_{1}^{1-q}$. Let $w_{0}=v_{0}$ and $w_{1}=v_{1}^{1-q}$. By (4.5) $w_{1} \in R H_{\infty}^{+}$. So we are done. Conversely if $w_{1} \in R H_{\infty}^{+}$, then $w_{1} \in A_{q}^{+}$for some $1<q$, i.e., there exists C such that

$$
\left(\frac{1}{|I|} \int_{I} w_{1}\right)^{q^{\prime}-1} \frac{1}{|I|} \int_{I^{+}} w_{1}^{1-q^{\prime}} \leq C
$$

but then

$$
\left(\sup _{I^{-}} w_{1}\right)^{q^{\prime}-1} \frac{1}{|I|} \int_{I^{+}} w_{1}^{1-q^{\prime}} \leq\left(\frac{1}{|I|} \int_{I} w_{1}\right)^{q^{\prime}-1} \frac{1}{|I|} \int_{I^{+}} w_{1}^{1-q^{\prime}} \leq C
$$

and we get

$$
\frac{1}{|I|} \int_{I^{+}} w_{1}^{1-q^{\prime}} \leq C \inf _{I^{-}} w_{1}^{1-q^{\prime}}
$$

and it is easy to see that this inequality implies $w_{1}^{1-q^{\prime}} \in A_{1}^{-}$. Then $v_{1}=w_{1}^{1-q^{\prime}} \in A_{1}^{-}$, so $w=w_{0} w_{1}=w_{0} v_{1}^{1-q} \in A_{q}^{+} \subset A_{\infty}^{+}$.

5. Classes A_{p}^{+}and $R H_{r}^{+}$.

In this section we will use Theorems 3.1 and 3.3 and the factorization theorems to obtain the best ranges for the classes A_{p}^{+}and $R H_{r}^{+}$. As we shall see, the range of the index will depend on the factorization of the weights.

The following theorem gives us the precise range in A_{p}^{+}for weights in $R H_{r}^{+}$.
Theorem 5.1. Let $w \in R H_{r}^{+}, w=w_{0} w_{1}^{\frac{1}{r}}$ with $w_{0} \in R H_{\infty}^{+}$and $w_{1} \in A_{1}^{+}$, then $w \in A_{p}^{+}$for all $p>C$, where $C=R H_{\infty}^{+}\left(w_{0}\right)$ and this is the best possible range.
Proof. Let $w_{0} \in R H_{\infty}^{+}$and $w_{1} \in A_{1}^{+}$. By Theorem $3.3 w_{0} \in A_{p}^{+}$for all $p>C$. Let $p>C$, there exists $\epsilon>0$ such that $w_{0} \in A_{p-\epsilon}^{+}$, so we choose $s>1$ satisfying $1-(p-\epsilon)^{\prime}=s\left(1-p^{\prime}\right)$, and by Hölder's inequality

$$
\begin{aligned}
& \frac{1}{\left|I^{-}\right|} \int_{I^{-}} w_{0} w_{1}\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}}\left(w_{0} w_{1}\right)^{1-p^{\prime}}\right)^{p-1} \leq \\
& \left(\frac{1}{|I|} \int_{I} w_{0}\right)\left(\frac{1}{\left|I^{-}\right|} \int_{I^{-}} w_{1}\right)\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w_{0}^{s\left(1-p^{\prime}\right)}\right)^{\frac{(p-1)}{s}}\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w_{1}^{s^{\prime}\left(1-p^{\prime}\right)}\right)^{\frac{(p-1)}{s^{\prime}}} \leq
\end{aligned}
$$ C.

To see that this is the best range, we consider w_{0} as in Theorem 3.3 and $w_{1}=$ 1.

Remark 5.2. Given $w \in R H_{r}^{+}$there exist $u \in R H_{\infty}^{+}$, and $v \in A_{1}^{+}$such that $w=$ $u v^{\frac{1}{r}}$. We only have to consider the factorization theorem and choose $u=w_{1}$ and $v=w_{0}^{r}$. We have to prove that $v \in A_{1}^{+}$. Keeping in mind that $w_{0} \in R H_{r}^{+} \cap A_{1}^{+}$we have

$$
\frac{1}{\left|I^{-}\right|} \int_{\left|I^{-}\right|} v=\frac{1}{\left|I^{-}\right|} \int_{\left|I^{-}\right|} w_{0}^{r} \leq C\left(\frac{1}{|I|} \int_{|I|} w_{0}\right)^{r} \leq C w_{0}^{r}(x)=C v(x)
$$

for almost every $x \in I^{+}$, i.e., $v \in A_{1}^{+}$.
The next theorem shows us the precise range of the higher integrability of $w \in$ $R H_{r}^{+}$.
Theorem 5.3. Let $w \in R H_{r}^{+}, w=u v^{1 / r}$ with $u \in R H_{\infty}^{+}$and $v \in A_{1}^{+}$. If $C=$ $A_{1}^{+}(v)$ then $w \in R H_{s}^{+}$for all $r \leq s<\frac{C r}{C-1}$. The range of s is the best possible.

Proof. Let $r<s<\frac{C r}{C-1}$, we choose $q>1$ such that $s<\frac{C r}{q(C-1)}$. As $1<\frac{q s}{r}<\frac{C}{C-1}$, by Theorem $3.1 v \in R H_{\frac{q s}{r}}^{+}$, using Hölder's inequality, that $u^{s} \in R H_{\infty}^{+}$and $v \in A_{1}^{+}$ we have,

$$
\begin{aligned}
\frac{1}{|I|} \int_{I} w^{s} & =\frac{1}{|I|} \int_{I} u^{s} v^{s / r} \leq\left(\frac{1}{|I|} \int_{I} u^{q^{\prime} s}\right)^{1 / q^{\prime}}\left(\frac{1}{|I|} \int_{I} v^{q s / r}\right)^{1 / q} \\
& \leq \sup _{I} u^{s} C\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} v\right)^{s / r} \leq \frac{C}{\left|I^{+}\right|} \int_{I^{+}} u^{s}\left(\inf _{I^{++}} v\right)^{s / r} \\
& \leq C \sup _{I^{+}} u^{s} \inf _{I^{++}} v^{s / r} \leq C\left(\frac{1}{\left|I^{++}\right|} \int_{I^{++}} u\right)^{s} \inf _{I^{++}} v^{s / r} \\
& \leq C\left(\frac{1}{\left|I^{++}\right|} \int_{I^{++}} u v^{1 / r}\right)^{s}=C\left(\frac{1}{\left|I^{++}\right|} \int_{I^{++}} w\right)^{s}
\end{aligned}
$$

and we get that $w \in R H_{s}^{+}$, (Lemma 2.5).
To see this is the best range possible, we choose $v \in A_{1}^{+}$as in Theorem 3.1 and $u=1$, then $w=v^{1 / r} \in R H_{s}^{+}$for all $r \leq s<\frac{C r}{C-1}\left(C=A_{1}^{+}(v)\right)$. If $s=\frac{C r}{C-1}$ and $w \in R H_{s}^{+}$then $v \in R H_{\frac{C}{C-1}}$, but we have seen (Theorem 3.1) that this can not happen.

The next theorem shows us which is the best range in $R H_{r}^{+}$for a given weight in A_{p}^{+}.
Theorem 5.4. Let $w \in A_{p}^{+}, w=u v^{1-p}$, with $u \in A_{1}^{+}, v \in A_{1}^{-}$and $C=A_{1}^{+}(u)$, then $w \in R H_{r}^{+}$for all $1<r<\frac{C}{C-1}$, being this range the best possible.

Proof. By Theorem $3.1 u \in R H_{r}^{+}$for all $1<r<\frac{C}{C-1}$ and we know that $v^{1-p} \in$ $R H_{\infty}^{+}$, then

$$
\begin{aligned}
\frac{1}{|I|} \int_{I} w^{r} & \leq \frac{1}{|I|} \int_{I} u^{r} \sup _{I}\left(v^{-r(p-1)}\right) \\
& \leq C\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} u\right)^{r}\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} v^{1-p}\right)^{r} \leq C\left(\inf _{I^{++}} u\right)^{r}\left(\sup _{I^{+}} v^{1-p}\right)^{r} \\
& \leq C\left(\inf _{I^{++}} u\right)^{r}\left(\frac{1}{\left|I^{++}\right|} \int_{I^{++}} v^{1-p}\right)^{r} \leq C\left(\frac{1}{\left|I^{++}\right|} \int_{I^{++}} w\right)^{r}
\end{aligned}
$$

By Lemma $2.5 w \in R H_{r}^{+}$.
To see this is the best range we take u as in Theorem 3.1 and $v=1$. So we have $w=u \in A_{p}^{+}$, and $w \notin R H_{\frac{C}{C-1}}^{+}$.
Corollary 5.5. Let $w=u v^{1-p} \in A_{p}^{+}$with $u \in A_{1}^{+}, v \in A_{1}^{-}$and $C=\max \left\{A_{1}^{+}(u), A_{1}^{-}(v)\right\}$, then $w^{\tau} \in A_{p}^{+}$for all $1 \leq \tau<\frac{C}{C-1}$ and the range is the best possible.
Proof. By Theorem 5.4 we have that $w \in R H_{\tau}^{+}$for all $1 \leq \tau<\frac{C}{C-1}$ and $w^{1-p^{\prime}} \in$ $R H_{\tau}^{-}$for all $1 \leq \tau<\frac{C}{C-1}$. Let $a<d$, we choose b, c such that $b-a=d-c=\frac{1}{4}(d-a)$, and we also choose the point $\frac{c+b}{2}$. Then, we have four intervals, namely, $I^{-}=(a, b)$, $I=\left(b, \frac{b+c}{2}\right), I^{+}=\left(\frac{b+c}{2}, c\right)$, and $I^{++}=(c, d)$. Now

$$
\begin{aligned}
\frac{1}{\left|I^{-}\right|} \int_{I^{-}} w^{\tau}\left(\frac{1}{\left|I^{++}\right|} \int_{I^{++}} w^{\tau\left(1-p^{\prime}\right)}\right)^{p-1} & \leq\left(\frac{1}{|I|} \int_{I} w\right)^{\tau}\left(\frac{1}{\left|I^{+}\right|} \int_{I^{+}} w^{1-p^{\prime}}\right)^{\tau(p-1)} \\
& \leq C^{\tau}
\end{aligned}
$$

thus $w^{\tau} \in A_{p}^{+}$, (Lemma 2.6). Considering u as in Theorem 3.1, we see this is the best possible range.

Using Theorem 5.4 we will show the exact range of $q<p$ such that $w \in A_{p}^{+}$ implies $w \in A_{q}^{+}$.
Theorem 5.6. Let $w=u v^{1-p} \in A_{p}^{+}$with $u \in A_{1}^{+}, v \in A_{1}^{-}$and $C=A_{1}^{-}(v)$, then $w \in A_{q}^{+}$for all $1+\frac{(p-1)(C-1)}{C}<q<\infty$ and this is the best range for q.
Proof. Note that $w^{1-p^{\prime}}=v u^{1-p^{\prime}} \in A_{p^{\prime}}^{-}$, by Theorem $5.4 w^{1-p^{\prime}} \in R H_{r}^{-}$for all $1<$ $r<\frac{C}{C-1}$. From lemma 4.4 for the classes $R H_{r}^{-}$and A_{p}^{-}we have that $w^{\left(1-p^{\prime}\right) r} \in A_{q^{\prime}}^{-}$
where $q^{\prime}=r\left(p^{\prime}-1\right)+1=\frac{r}{p-1}+1$. But this is the same as $w^{1-q^{\prime}} \in A_{q^{\prime}}^{-}$i.e., $w \in A_{q}^{+}$ for all $1+(p-1) \frac{C-1}{C}<q$.
To see this is the best range, let $v(x)=x^{\frac{1-C}{C}}$ if $x \leq 0$ and equal to 0 if $x>0$ and $u=1$ for all x. Note that $v \in A_{1}^{-}$and $A_{1}^{-}(v)=C$. Then $w=v^{1-p} \in A_{p}^{+}$and $w \in A_{q}^{+}$for all $q>1+(p-1) \frac{C-1}{C}$. Observe that $w \notin A_{1+(p-1) \frac{C-1}{C}}^{+}$.

Finally the last theorem gives us the best possible range, for a weight in A_{∞}^{+}.
Theorem 5.7. Let $w \in A_{\infty}^{+}, w=w_{0} w_{1}, w_{0} \in A_{1}^{+}, w_{1} \in R H_{\infty}^{+}$and $C=$ $R H_{\infty}^{+}\left(w_{1}\right)$, then $w \in A_{p}^{+}$for all $p>C$. The range of $p^{\prime} s$ is the best possible.
Proof. Note that $w_{1} \in R H_{\infty}^{+}$implies $w_{1} \in A_{p}^{+}$for all $p>C$, then

$$
\begin{aligned}
\frac{1}{|I|} \int_{I} w_{0} w_{1} & \left(\frac{1}{|I|^{++}} \int_{I^{++}}\left(w_{0} w_{1}\right)^{1-p^{\prime}}\right)^{p-1} \\
& \leq \sup _{I}\left(w_{1}\right) \frac{1}{|I|} \int_{I} w_{0}\left(\sup _{I^{++}} w_{0}^{1-p^{\prime}}\right)^{p-1}\left(\frac{1}{|I|^{++}} \int_{I^{++}} w_{1}^{1-p^{\prime}}\right)^{p-1} \\
& \leq C \frac{1}{|I|^{+}} \int_{I^{+}} w_{1} \inf _{I^{+}}\left(w_{0}\right) \sup _{I^{++}}\left(w_{0}^{-1}\right)\left(\frac{1}{|I|^{++}} \int_{I^{++}} w_{1}^{1-p^{\prime}}\right)^{p-1} \\
& \left.\leq C \sup _{I^{++}} w_{0}^{-1}\right) \frac{1}{\left|I^{+}\right|} \int_{I^{+}} w_{0} \\
& \leq C \frac{1}{\left(\inf _{I^{++}} w_{0}\right)} \inf _{I^{++}} w_{0} \leq C
\end{aligned}
$$

by Lemma $2.6 w \in A_{p}^{+}$for all $p>C$.
To see this is the best range, we consider $w(x)=0$ if $x \leq-1,|x|^{C-1}$ if $-1<x \leq 0$ and 1 if $x \geq 0$

References

[1] H. Aimar, L. Forzani, F.J. Martín-Reyes, On weighted inequalities for one-sided singular integrals, Proc. Amer. Math. Soc. 125 (1997), 2057-2064.
[2] D.Cruz-Uribe, and C.J. Neugebauer, The structure of reverse Hölder classes, Trans. Amer. Soc. 347 (1995), 2941-2960.
[3] D.Cruz-Uribe, C.J. Neugebauer and V. Olesen, The one-sided minimal operator and the onesided reverse Hölder inequality, Stud. Math 116 (1995), 255-270.
[4] P. Guan and E. Sawyer, Regularity estimates for oblique derivative problem, Anal. of Mathematics, Second Series 157 (1) (1993), 1-70.
[5] F.J. Martín-Reyes, New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proc. Amer. Math. Soc. 117, 691-698.
[6] F.J. Martín-Reyes, P. Ortega, A. de la Torre, Weighted inequalities for one-sided maximal functions, Trans. Amer. Math. Soc. 319-2 (1990), 517-534.
[7] F.J. Martín-Reyes, L. Pick and A de la Torre, A_{∞}^{+}condition, Canad. J. Math. 45 (6) (1993), 1231-1244.
[8] C.J. Neugebauer, The precise range of indices for the $R H_{r}$ and A_{p} weight classes, Preprint.
[9] E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal function, Trans. Amer. Math. Soc. 297 (1986), 53-61.

FaMAF, Universidad Nacional de Córdoba. (5000) Córdoba, Argentina.
E-mail address: sriveros@mate.uncor.edu
Análisis Matemático. Facultad de Ciencias. Universidad de Málaga. (29071) Málaga, Spain

E-mail address: torre@anamat.cie.uma.es

[^0]: 1991 Mathematics Subject Classification. Primary 42B25.
 Key words and phrases. One-sided weights, one-sided reverse Hölder, factorization.
 Research supported by, D.G.I.Y.T. (PB94-1496), Junta de Andalucía and Universidad Nacional de Córdoba.

