ON THE BEST RANGES FOR A_p^+ AND RH_r^+

M. S. Riveros and A. de la Torre

Abstract. In this paper we study the relationship between one-sided reverse Hölder classes RH_r^+ and the A_p^+ classes. We find the best possible range of RH_r^+ to which an A_1^+ weight belongs, in terms of the A_1^+ constant. Conversely we also find the best range of A_p^+ to which a RH_∞^+ weight belongs, in terms of the RH_∞^+ constant. Similar problems for A_p^+, $1 < p < \infty$ and RH_r^+, $1 < r < \infty$ are solved using factorization.

1. Introduction

It is well known that there is a relationship between the A_p classes and the so-called reverse Hölder classes RH_r. C. J. Neugebauer [8] has studied the following problems:

(1) For $w \in A_p$, find the precise range of r's such that $w \in RH_r$, the precise range of $q < p$ for which $w \in A_q$, and the precise range of $s > 1$ so that $w^s \in A_p$.

(2) Conversely, for a fixed $w \in RH_r$, find the precise range of p's such that $w \in A_p$, and the precise range of $q > r$ for which $w \in RH_q$.

For the one-sided Hardy-Littlewood maximal operator,

$$M^+ f(x) = \sup_{h>0} \frac{1}{h} \int_x^{x+h} |f|, $$

the A_p^+ classes were introduced by E. Sawyer [9]. He proved that M^+ is bounded in $L^p(w)$ ($p > 1$) if, and only if, the weight satisfies A_p^+ i.e., there exists a constant C such that for any three points $a < b < c$

$$\int_a^b w \left(\int_b^c w^{1-p} \right)^{p-1} \leq C(c-a)^p$$

The smallest constant for which this is satisfied will be called the A_p^+ constant of w and will be denoted by $A_p^+(w)$. For $p = 1$ the weak type of the operator holds if, and only if, the weight w satisfies A_1^+ i.e. there exists C so that for any a and almost every $b > a$,

$$\int_a^b w \leq C(b-a)w(b).$$

1991 Mathematics Subject Classification. Primary 42B25.

Key words and phrases. One-sided weights, one-sided reverse Hölder, factorization.

Research supported by D.G.I.Y.T. (PB94-1496), Junta de Andalucía and Universidad Nacional de Córdoba.

Typeset by \LaTeX
The smallest such constant will be called the A^+_1 constant of w and will be denoted by $A^+_1(w)$. For later reference we point out that it is an easy consequence of Lebesgue’s differentiation theorem that the constant in the definition of A^+_1 is always greater than, or equal to, one.

These classes are of interest, not only because they control the boundedness of the one-sided Hardy-Littlewood maximal operator, but they are the right classes for the weighted estimates for one-sided singular integrals [1] and they also appear in PDE [4]. In contrast to the Muckenhoupt weights, the one-sided weights are not doubling, but they satisfy a one-sided doubling property, namely if $w \in A^+_p$ then there exists C such that for any $a \in \mathbb{R}$ and $h > 0$, $\int_a^{a+2h} w \leq C \int_{a+h}^{a+2h} w$. The reverse Hölder property is not satisfied by these weights either but nevertheless Martín-Reyes [5] proved that there is a weak substitute of this notion, that we will denote by RH^+_r, which is good enough to prove the “$p - \epsilon$” property. In [7] the class A^+_∞ was introduced and it was proved that $A^+_\infty = \bigcup_{p < \infty} A^+_p = \bigcup_{1 < r} RH^+_r$.

In this note we solve the problems of the Neugebauer paper in this context. In the proofs we will make essential use of the one-sided minimal operator introduced by Cruz-Uribe, Neugebauer and Olesen [3]. It is defined as $m^+(x) = \inf_{c > x} \frac{1}{c-x} \int_x^c |f|$. We will also use the fact that for any positive function g, the maximal operator $M_g f(x) = \sup_{x \in I} \frac{1}{|I|} \int_I |f| g dx$ is of weak type one-one with respect to the measure $g dx$. Note that for $g = 1$, we have the classical Hardy-Littlewood maximal operator, which is denoted by $M f$.

The paper is organized as follows: in section 2 we give definitions and characterizations of RH^+_r, $1 < r < \infty$. In section 3 we prove two theorems of best range for the extreme classes A^+_1 and RH^+_∞. In section 4 we give a factorization theorem for weights in RH^+_r, and finally in section 5 we extend the theorems of section 3 for A^+_p and RH^+_r, using the factorization proven in section 4. We shall see, that the index range depends on the factorization of the weight.

We end this introduction with some notation: for a given interval $I = (a, a+h)$ we denote by I^- the interval $(a-h, a)$, I^+ the interval $(a+h, a+2h)$, and I^{++} the interval $(a+2h, a+3h)$. For any $1 < p < \infty$, p' will be its conjugate exponent, if g is locally integrable and E is a measurable set, $g(E)$ will stand for $\int_E g$ and C will represent a constant that may change from time to time. Finally we remark that we can change the orientation on the real line obtaining similar results for classes RH^-_r, A^-_p, $1 < r \leq \infty$ and $1 \leq p \leq \infty$.

2. Definition, Characterization of RH^+_r for $1 < r < \infty$

We start this section with the definition of RH^+_r, $1 < r < \infty$.

Definition 2.1. A weight w satisfies the one-sided reverse Hölder RH^+_r condition, if there exists C such that for any $a < b$

$$\int_a^b w^r \leq C \left(M(w \chi_{(a,b)}(b))\right)^{(r-1)} \int_a^b w.$$

The smallest such constant will be called the RH^+_r constant of w and will be denoted by $RH^+_r(w)$.
Definition 2.3. A weight satisfies the one-sided reverse Hölder RH\(_{\infty}^t\) condition, if there exists \(C\) such that
\[
(2.4) \quad w(x) \leq Cm^+ w(x),
\]
for almost all \(x \in \mathbb{R}\).

The smallest such constant will be called the RH\(_{\infty}^t\) constant of \(w\) and will be denoted by \(RH_{\infty}^t(w)\). It is clear that \(C \geq 1\).

The following lemma gives several characterizations of RH\(_{r}^t\). The constants are not necessarily the same.

Lemma 2.5. Let \(a < b < c < d\), \(1 < r < \infty\), and \(w \geq 0\) locally integrable, then the following statements are equivalent

i) \(\int_a^b w^r \leq C \left(M(w\chi_{(a,b)}(b))\right)^{(r-1)} \int_a^b w\).

ii) \(\frac{1}{b-a} \int_a^b w^r \leq C \left(\frac{1}{c-b} \int_b^c w\right)^r\), with \(b - a = 2(c-b)\).

iii) \(\frac{1}{b-a} \int_a^b w^r \leq C \left(\frac{1}{d-c} \int_c^d w\right)^r\), with \(b - a = d - b = 2(d-c)\).

iv) \(\frac{1}{b-a} \int_a^b w^r \leq C \left(\frac{1}{c-b} \int_b^c w\right)^r\), with \(b - a = c - b\).

v) \(\frac{1}{b-a} \int_a^b w^r \leq C \left(\frac{1}{d-c} \int_c^d w\right)^r\), with \(b - a = d - c = \gamma (d-a)\), \(0 < \gamma \leq \frac{1}{2}\).

Proof. To see i) \(\implies\) ii), we fix \(a < b < c\), \(b - a = 2(c-b)\) and take any \(x \in (b,c)\). Then
\[
\int_a^b w^r \leq \int_a^x w^r \leq C \left(M(w\chi_{(a,x)}(x))\right)^{(r-1)} \int_a^x w \leq C \left(M(w\chi_{(a,c)}(x))\right)^{(r-1)} \int_a^x w.
\]
Therefore \((b,c) \subseteq \{x : (M(w\chi_{(a,c)}(x))\right)^{(r-1)} \geq \frac{1}{C} \int_a^x w^r\}\). The weak type \((1,1)\) of the Hardy-Littlewood maximal operator yields,
\[
(c-b) \left(\int_a^b w^r\right)^\frac{1}{r-1} \leq C \left(\int_a^c w\right)^\frac{1}{r-1},
\]
which implies
\[
\frac{1}{b-a} \int_a^b w^r \leq C \left(\frac{1}{c-b} \int_b^c w\right)^r \leq C \left(\frac{1}{c-b} \int_b^c w\right)^r,
\]
the last inequality follows from the fact, proved in [7], that a weight satisfying i) satisfies \(A_p^+\) for some \(p\) and thus it satisfies the one-sided doubling condition.

We will prove now that ii) \(\implies\) i). Let us fix \(a < b\) and define a sequence \((x_k)\) as follows: \(x_0 = a\) and \(b-x_k = 2(b-x_{k+1})\). In particular \(x_{k+1} - x_k = 2(x_{k+2} - x_{k+1}) = (b - x_{k+1})\). Using condition ii) for the points \(x_k, x_{k+1}, x_{k+2}\), we have
\[
\int_a^b w^r = \sum_{k=0}^{\infty} \int_{x_k}^{x_{k+1}} w^r \leq C \sum_{k=0}^{\infty} (x_{k+1} - x_k)^{1-r} \left(\int_{x_{k+1}}^{x_{k+2}} w\right)^r
\]
\[
\leq C \sum_{k=0}^{\infty} \int_{x_{k+1}}^{x_{k+2}} w \left(\frac{1}{b-x_{k+1}} \int_{x_{k+1}}^{b} w\right)^{r-1} \leq (M(w\chi_{(a,b)}(b))^{r-1} C \int_a^b w.
\]
To see ii) \(\implies\) iii) let \(a < b < c < d\) with \(b - a = d - b = 2(d - c)\). Using that \(w\) satisfies the one-sided doubling condition, we have

\[
\frac{1}{b-a} \int_a^b w^r \leq C \left(\frac{1}{c-b} \int_b^c w \right)^r \leq C \left(\frac{1}{c-b} \frac{1}{d-c} \int_b^d w \right)^r \\
\leq C \left(\frac{1}{d-c} \int_c^d w \right)^r.
\]

iii) \(\implies\) iv) is immediate.

First of all we observe that iv) easily implies that the weight \(w\) satisfies the one-sided doubling condition. To see that iv) \(\implies\) v), let \(0 < \gamma < \frac{1}{2}\) and \(a < b < c < d\), \(b - a = d - c = \gamma(d - a)\) then if \(x\) is the mid point between \(a\) and \(d\) we have

\[
\frac{1}{b-a} \int_a^b w^r \leq \frac{1}{2\gamma} \frac{1}{x-a} \int_a^x w^r \leq C \frac{1}{2\gamma} \left(\frac{1}{d-x} \int_x^d w \right)^r,
\]

but it follows from the one-sided doubling condition that \(\int_x^d w \leq C\gamma \int_c^d w\).

Suppose v) holds, let \(a < b < c\), \(b - a = c - b = h\), we define for \(k = 0, 1, \ldots, N\) \(x_k = a+ksh\) and \(y_k = b + ksh\) where \(s = \gamma\) and \(N\) is the first integer such that \((N+1)s > 1\). We observe that the choice of \(x_k, y_k\) has been made so that for any \(0 \leq k \leq (N - 1)\) we have \(x_{k+1} - x_k = y_{k+1} - y_k = \gamma(y_{k+1} - x_k)\). Applying v), using that \(r > 1\) and the fact that the intervals \((y_k, y_{k+1})\) are disjoint, we have

\[
\int_a^b w^r \leq \sum_{k=0}^{N-1} \int_{x_k}^{x_{k+1}} w^r + \int_{b-sh}^b w^r
\]
\[
\leq C(sh)^{1-r} \sum_{k=0}^{N-1} \left(\int_{y_k}^{y_{k+1}} w \right)^r + C(sh)^{1-r} \left(\int_{c-sh}^c w \right)^r
\]
\[
\leq C\gamma(c-a)^{1-r} \left(\int_b^c w \right)^r.
\]

So we have proved that v) \(\implies\) iv).

Finally we will show that iv) \(\implies\) ii). Let \(a < b < c\) with \(b - a = 2(c - b)\). Let \(x\) be the mid point between \(a, b\), using the one-sided doubling property we have

\[
\frac{1}{b-a} \int_a^b w^r = \frac{1}{b-a} \left(\int_a^x w^r + \int_x^b w^r \right)
\]
\[
= \frac{1}{2} \left(\frac{1}{x-a} \int_a^x w^r + \frac{1}{b-x} \int_x^b w^r \right)
\]
\[
\leq C \frac{1}{2} \left(\frac{1}{b-x} \int_a^b w \right)^r + \left(\frac{1}{c-b} \int_b^c w \right)^r
\]
\[
\leq C \frac{1}{2} \left(\frac{1}{c-b} \int_a^c w \right)^r + \left(\frac{1}{c-b} \int_b^c w \right)^r
\]
\[
\leq C \left(\frac{1}{c-b} \int_b^c w \right)^r. \square
\]
Remark. The equivalence of i) and iv) was first proved in [3]. The following lemma tells us that in the definition of A^+_p we can take two intervals that are not contiguous. Note that in the case of RH^+_r we have seen this in the previous lemma.

Lemma 2.6. A weight $w \in A^+_p$, $p > 1$ if, and only if, there exists $0 < \gamma \leq \frac{1}{2}$ and a constant C_γ such that for any $a < b < c < d$, $b - a = d - c = \gamma(d - a)$ then

$$\int_a^b w \left(\int_c^d w^{1-p'} \right)^{p-1} \leq C_\gamma (b-a)^p$$

Proof. If $w \in A^+_p$, $0 < \gamma \leq \frac{1}{2}$ and $a < b < c < d$, $b - a = d - c = \gamma(d - a)$ then

$$\int_a^b w \left(\int_c^d w^{1-p'} \right)^{p-1} \leq \int_a^c w \left(\int_c^d w^{1-p'} \right)^{p-1} \leq C(d-a)^p = C_\gamma (b-a)^p.$$

To prove that (2.7) implies A^+_p we will show that (2.7) implies that for γ and a, b, c, d as above we have

$$\frac{1}{b-a} \int_a^b w \exp \left(\frac{1}{d-c} \int_c^d - \log(w) \right) \leq C.$$

Indeed

$$\frac{1}{b-a} \int_a^b w \exp \left(\frac{1}{d-c} \int_c^d - \log(w) \right) = \frac{1}{b-a} \int_a^b \left[w \exp \left(\frac{1}{d-c} \int_c^d \log(w)^{1-p'} \right) \right]^{p-1} \leq \frac{1}{b-a} \int_a^b w \left(\frac{1}{d-c} \int_c^d w^{1-p'} \right)^{p-1} \leq C.$$

In the same way we prove that $w^{1-p'}$ satisfies

$$\exp \left(\frac{1}{b-a} \int_a^b \log(w)^{p'-1} \right) \frac{1}{d-c} \int_c^d w^{1-p'} \leq C.$$

But according to part j) of Theorem 1 in [7], (2.8) is equivalent to saying that $w \in A^+_\infty$, while (2.9) means that $w^{1-p'} \in A^-_\infty$ and according to Theorem 2 in [7] these two conditions imply $w \in A^+_p$.

Remark 2.10. We can easily see that $w \in A^+_1$ if, and only if, there exists $C > 0$ such that $\frac{1}{h} \int_{a-h}^a w \leq Cw(a+h)$ for almost every $a \in \mathbb{R}$ and $h > 0$.

□
3. The extreme cases: A_1^+ and RH_∞^+.

Theorem 3.1. Let $w \in A_1^+$ with A_1^+ constant $C > 1$, then $w \in RH_r^+$ for any $1 < r < \frac{C}{C-1}$, and this is the best possible range.

Proof. Let us fix the interval $I = (a, b)$. We consider the truncation of w at height N defined by $w_N = \min(w, N)$, which also satisfies A_1^+ with constant $C_N \leq C$. We claim that if $\lambda_I = M(w_N \chi_I)(b)$, and $E_\lambda = \{x \in I : w_N(x) > \lambda\}$ then

$$\int_{E_\lambda} w_N \leq C_N \lambda |E_\lambda| \quad \forall \lambda \geq \lambda_I.$$

Indeed if $E_\lambda = I$ we do not even need the A_1^+ condition, since

$$w_N(E_\lambda) = \int_a^b w_N \leq M(w_N \chi_I)(b)(b - a) = \lambda_I(b - a) \leq C_N \lambda |E_\lambda|.$$

If $E_\lambda \neq I$ we fix $\epsilon > 0$ and an open set O such that $E_\lambda \subset O \subset I$ and $|O| \leq \epsilon + |E_\lambda|$. Let $J_k = (c, d)$, be one of the connected components of O. There are two cases

1. $a \leq c < d < b$,
2. $a \leq c < d = b$.

In the first case $d \notin E_\lambda$ and then $w_N(d) \leq \lambda$. Now A_1^+ gives $\int_c^d w_N \leq C_N w_N(d)(d - c) \leq C_N \lambda(d - c)$. The second case is handled as the case $E_\lambda = I$, since $\int_c^b w_N \leq M(w_N \chi_I)(b)(b - c) \leq C\lambda(b - c)$. In any case $w_N(J_k) \leq C_N \lambda |J_k|$. Adding up we get

$$w_N(E_\lambda) \leq w_N(O) \leq C_N \lambda |O| \leq C_N \lambda(\epsilon + |E_\lambda|).$$

Since ϵ was arbitrary we are done. Now we proceed in the standard way i.e., we fix $s > -1$, multiply both sides of (3.2) by λ^s and integrate from λ_I to infinity to obtain,

$$\frac{1}{s + 1} \int_I (w_N^{s+2} - \lambda_I^{s+2} w_N) \leq \frac{C_N}{s + 2} \int_I w_N^{s+2}.$$

Now if $r = s + 2 < \frac{C_N}{C_N - 1}$ then $\frac{1}{s + 1} - \frac{C_N}{s + 2} > 0$, and we get

$$\int_I w_N^r \leq C_N \lambda_I^{r-1} \int_I w_N = C_N(M(w_N \chi_I)(b))^{r-1} \int_I w_N.$$

Now $C_N \leq C$ implies $\frac{C_N}{C_N - 1} \geq \frac{C}{C-1}$, and therefore if $r \leq \frac{C}{C-1}$ then

$$\int_a^b w_N^r \leq C_N(M(w_N \chi_{(a,b)})(b))^{r-1} \int_a^b w_N \leq C(M(w \chi_{(a,b)})(b))^{r-1} \int_a^b w$$

and the monotone convergence theorem gives $w \in RH_r^+$. To see that this is the best possible range we consider the function

$$w(x) = x^{\frac{1}{r}-1} \chi_{(0, \infty)}(x).$$

It is clear that does not satisfy RH_r^+, because $w^{\frac{C}{C-1}}(x) = \frac{1}{x}$ for $x > 0$. To see that it satisfies A_1^+ with constant C, we consider three cases

1. $a < b \leq 0$
2. $a \leq 0 < b$
3. $0 < a < b$
In the first case there is nothing to check. In the second case \(\frac{1}{b-a} \int_a^b w < \frac{1}{ \beta } \int_0^b w(x) = \frac{C}{b} b^{\beta} = Cw(b) \). Finally if \(0 < a < b \), \(\int_a^b w = C(b^{\beta} - a^{\beta}) \leq C(b-a)w(b) \).

Remark. Note that if \(C = 1 \), then \(w(x) = M^{-w(x)} \), and this implies that \(w \) is non-decreasing. This tells us that \(w \in RH_{\infty}^+ \).

Theorem 3.3. If \(w \) satisfies \(RH_{\infty}^+ \) with constant \(C > 1 \), then \(w \in A_p^+ \) for all \(p > C \), and this is the best possible range.

Proof. A truncation argument as in Theorem 3.1 allows us to suppose that \(w \) is bounded away from zero, i.e. there exists \(\beta > 0 \) so that \(w(x) \geq \beta \) for all \(x \). Let us fix \(I = (a, b) \) and consider \(\lambda_I = m^+(w \chi_I)(a) \). We claim that if \(\lambda < \lambda_I \) and \(E_\lambda = \{ x \in I : w(x) < \lambda \} \), then

\[
\lambda |E_\lambda| \leq C \int_{E_\lambda} w.
\]

As before if \(E_\lambda = I \) then \(\lambda |E_\lambda| = \lambda(b-a) < \lambda_I(b-a) = \int_0^b w \leq w(E_\lambda) \). If \(E_\lambda \neq I \) then we approximate it by an open set \(O = \bigcup J_k \) where \(E_\lambda \subset O \subset I \) and \(w(O) < \epsilon + w(E_\lambda) \). Let us fix \(J_k = (c, d) \). There are two cases

1. \(a < c \)
2. \(a = c \).

In the first case \(c \notin E_\lambda \) and then \(\lambda(d-c) \leq w(c)(d-c) \leq Cm^+ w(c)(d-c) \leq C \int_c^d w \).

In the second case \(\lambda(d-c) \leq \lambda_I(d-a) \leq \int_a^d w \), and (3.4) follows. If we multiply both sides of (3.4) by \(\lambda^{-r} \) with \(r > 2 \) and integrate we have

\[
\int_0^{\lambda_I} \lambda^{1-r} \int \chi_{E_\lambda}(x) dx d\lambda \leq C \int_0^{\infty} \lambda^{-r} \int_{E_\lambda} w(x) dx d\lambda.
\]

For the left hand side we obtain,

\[
\int_0^{\lambda_I} \lambda^{1-r} \int \chi_{E_\lambda}(x) dx d\lambda = \frac{1}{2-r} \int_{\{ x \in I : w(x) < \lambda_I \}} \lambda_I^{2-r} - w^{2-r} dx
\]

\[
\geq \frac{1}{2-r} \int \lambda_I^{2-r} - w^{2-r} dx = \frac{1}{r-2} \int w^{2-r} - \frac{|I|}{r-2} \lambda_I^{2-r},
\]

while the right hand side is equal to \(\frac{C}{r-1} \int_I w^{2-r} \). Therefore

\[
\frac{1}{r-2} \int_I w^{2-r} \leq \frac{C}{r-1} \int_I w^{2-r} + \frac{|I|}{r-2} \lambda_I^{2-r}.
\]

If we choose \(r > 2 \) such that \(C(r-2) < (r-1) \), we obtain that there exists \(C \) so that

\[
\frac{1}{|I|} \int_I w^{2-r} \leq C \left(m^+(w \chi_I)(a) \right)^{2-r}.
\]

We now claim that (3.5) implies that \(w \in A_p^+ \) with \(p = \frac{r-1}{r-2} \). Let us fix \(a < b < c \) and choose \(x \in (a, b) \). If we keep in mind that \(1 - p' = 2 - r \) we may write

\[
\left(\frac{1}{c-a} \int_b^c w^{1-p'} \right)^{p-1} \leq \left(\frac{1}{c-x} \int_x^c w^{1-p'} \right)^{p-1} \leq C \left(m^+(w \chi_{(x,c)})(x) \right)^{1-p},
\]
but
\[
\left(m^+ \left(\frac{w}{\chi(x,c)} \right)(x) \right)^{-1} = \left(\inf_{x<d<c} \frac{1}{d-x} \int_x^d w \right)^{-1} = \sup_{x<d<c} \frac{d-x}{\int_x^d w} = M_w \left(\frac{\chi(a,c)}{w} \right)(x).
\]

We have thus proved that if
\[
\lambda = \left(\frac{1}{c-a} \int_b^c w^{1-p'} \right)^{p-1}
\]
and the weak type of \(M_w \) with respect to the measure \(wdx \) yields \(\int_a^b w \leq C(c-a)^p \left(\int_b^c w^{1-p'} \right)^{1-p} \) which is \(A_p^+ \). Finally it can be checked that the function \(w(x) \) which is 0 for \(x < -1 \), identically one for \(x > 0 \) and \(|x|^{C-1} \) between \(-1\) and \(0\), satisfies \(RH_{\infty}^+ \) with constant \(C \), but is not in \(A_C^+ \). \(\square \)

Remark. Note that if \(C = 1 \), then \(w(x) = m^+ w(x) \), and this implies that \(w \) is non-decreasing. This tells us that \(w \in A_1^+ \).

We had several different characterizations of \(RH_r^+ \), one involved the maximal operator, but dealt with one interval, and the others involved two intervals but no operator. We can now prove that for \(RH_{\infty}^+ \) the situation is the same, we can characterize \(RH_{\infty}^+ \) using two intervals instead of the minimal operator.

Corollary 3.6. \(w \in RH_{\infty}^+ \) if, and only if, there exists \(C \) such that for any interval \(I \),

\[
\text{esssup}_{I} w \leq C \frac{1}{|I^+|} \int_{I^+} w
\]

Proof. It is immediate that (3.7) implies \(RH_{\infty}^+ \). Assume now that \(w \in RH_{\infty}^+ \). The preceding theorem tells us that \(w \in A_p \) for some \(p \), and therefore it satisfies the one-sided doubling condition. Therefore if \(I = (a, b) \) is any interval, \(I^+ = (b, c) \) and \(x \in I \) we have
\[
w(x) \leq \frac{C}{c-x} \int_x^c w \leq \frac{C}{c-b} \int_b^c w,
\]
which is (3.7). \(\square \)

Remark. Note that with this definition, we have that \(RH_{\infty}^+ \subset \cap_{r>1} RH_r^+ \).

4. Factorization of weights in \(RH_r^+ \), \(1 < r \leq \infty \).

The theorems on the best range for weights in \(A_p^+ \) \(p > 1 \) or in \(RH_r^+ \), \(r < \infty \) will be stated in terms of factorizations of the given weight. Therefore this section will be devoted to prove a factorization of functions in \(RH_r^+ \). The bilateral case was studied in [2].

Definition 4.1. A function \(w \) is said to be essentially increasing if there exists \(C \) so that \(w(x) \leq C w(y) \) for any \(x < y \).
Lemma 4.2. A function belongs to $RH_{\infty}^+ \cap A_1^+$ if, and only if, it is essentially increasing.

Proof. Assume that $w \in RH_{\infty}^+ \cap A_1^+$ and $x < y$ then $w(x) \leq C \frac{1}{y-x} \int_x^y w \leq C w(y)$ and w is essentially increasing. Conversely, if w is essentially increasing then for any x and $h > 0$ we have $w(x) \leq C \frac{1}{h} \int_x^{x+h} w$, then $w \in RH_{\infty}^+$. On the other hand \(\frac{1}{h} \int_x^{x-h} w \leq C w(x) \), so $w \in A_1^+$. □

Lemma 4.3. Let $1 < r \leq \infty$ and $1 \leq p < \infty$.

1. If u is essentially increasing and $v \in RH_r^+$ then $w \in RH_r^+$.
2. If u is essentially increasing and $v \in A_p^+$ then $w \in A_p^+$.

Proof. This proof follows immediately from Definition 4.1. □

Lemma 4.4. Let $1 < r \leq \infty$ and $1 \leq p < \infty$. $w \in RH_r^+ \cap A_p^+$ if, and only if, $w^r \in A_q^+$, with $q = r(p-1) + 1$.

Proof. Let $C_1 = RH_r^+(w)$, and $C_2 = A_p^+(w)$, $w \in RH_r^+ \cap A_p^+$, and $q = r(p-1) + 1$. Also note that $1 - q' = 1 - \frac{r(p-1)+1}{r(p-1)} = \frac{1}{r(1-p)}$,

\[
\left(\frac{1}{|I|} \int_I w^r \right) \left(\frac{1}{|I|} \int_I w^{r(1-q')} \right)^{q-1}
\leq C_1 \left(\frac{1}{|I|} \int_I w \right)^r \left(\frac{1}{|I|} \int_I w^{1-p} \right)^{r(p-1)}
\leq C_1 C_2^r,
\]

and by Lemma 2.6 we have that $w^r \in A_q^+$.

If $w^r \in A_q^+$, by Hölder’s inequality

\[
\left(\frac{1}{|I|} \int_I w \right) \left(\frac{1}{|I|} \int_I w^{-1/(p-1)} \right)^{p-1}
\leq \left(\frac{1}{|I|} \int_I w^r \right)^{1/r} \left(\frac{1}{|I|} \int_I w^{-(q-1)} \right)^{(q-1)/r}
\leq C^{1/r},
\]

obtaining in this way that $w \in A_p^+$. Now again by Hölder’s inequality

\[
1 = \frac{1}{|I|} \int_{I+} w^{-1/p} w^{1/p} \leq \left(\frac{1}{|I|} \int_{I+} w \right)^{1/p} \left(\frac{1}{|I|} \int_{I+} w^{-p'/p} \right)^{1/p'}
\]

so

\[
\left(\frac{1}{|I|} \int_{I+} w^{-1/(p-1)} \right)^{1-p} \leq \frac{1}{|I|} \int_{I+} w,
\]

and we get

\[
\left(\frac{1}{|I|} \int_I w^r \right)^{1/r} \leq C \left(\frac{1}{|I|} \int_{I+} w^{-(q-1)} \right)^{-(q-1)/r} \left(\frac{1}{|I|} \int_{I+} w^{-1/(p-1)} \right)^{1-p}
\]

\[
\leq C \frac{1}{|I|} \int_{I+} w,
\]

proving that $w \in RH_r^+$. □
Factorization Theorem for weights in $RH_r^+ \cap A_p^+$. A weight $w \in RH_r^+ \cap A_p^+$ with $1 \leq p < \infty$, $1 < r \leq \infty$ if, and only if, there exists weights w_0 and w_1 such that $w_0 \in RH_r^+ \cap A_1^+$, $w_1 \in RH\infty^+ \cap A_p^+$ and $w = w_0 w_1$.

Observe that since $\cup p<\infty A_p^+ = \cap 1<r RH_r^*$ every weight in RH_r^+ is in some A_p^+.

Proof. Let us consider first the cases $p = 1$ or $r = \infty$.

If $p = 1$ and $r \leq \infty$, we put $w_1 = 1$, and $w_0 = w$, then obviously $w_0 \in RH_r^+ \cap A_1^+$, and $w_1 \in RH\infty^+ \cap A_1^+$.

If $p \geq 1$ and $r = \infty$, we put $w_0 = 1$, and $w_1 = w$, obtaining $w_0 \in RH\infty^+ \cap A_1^+$, $w_1 \in RH\infty^+ \cap A_p^+$.

Conversely, given w_0 and w_1, at least one of them belongs to $RH\infty^+ \cap A_1^+$, (because $p = 1$ or $r = \infty$), so one of them is essentially increasing, therefore $w_0 w_1 \in RH_r^+ \cap A_1^+$ (Lemma 4.3).

Let us suppose now, $p > 1$ and $r < \infty$. Let $w = w_0 w_1$, with $w_0 \in RH_r^+ \cap A_1^+$, and $w_1 \in RH\infty^+ \cap A_p^+$, we want to see that $w \in RH_r^+ \cap A_p^+$. Note that for w_1 the following holds

$$\frac{1}{|I|} \int_I w_1^{1-p^\prime} \leq C \left(\frac{1}{|I|} \int_I w_1 \right)^{1-p^\prime} \leq C w_1 (a-h)^{1-p^\prime},$$

this implies, $w_1^{1-p^\prime} \in A_1^-$ (Remark 2.10). Let $v = w_1^{1-p^\prime}$, then $w_1 = v^{1-p}$ with $v \in A_1^-$, so $w = w_0 w_1 = w_0 v^{1-p}$ with $w_0 \in A_1^+$ and $v \in A_1^-$ (see [7]), and this implies $w \in A_p^+$.

Now

$$\frac{1}{|I|} \int_I w^r = \frac{1}{|I|} \int_I w_0^r w_1^{r} \leq (\sup_I w_1)^r C \left(\frac{1}{|I|} \int_I w_0 \right)^r \leq C \left(\frac{1}{|I|} \int_I w_1 \right)^r \leq C \left(\frac{1}{|I|} \inf_I w_0 \right)^r,$$

by Lemma 2.5, we have $w \in RH_r^+$. Conversely let $w \in RH_r^+ \cap A_p^+$, then by Lemma 4.4 $w^r \in A_q^1$, with $q = r(p - 1) + 1$, there exists $v_0 \in A_1^+$, and $v_1 \in A_1^-$, such that $w^r = v_0 v_1^{1-q}$ (see [7]), or equivalently $w = v_0^{1/r} v_1^{(1-q)/r} = v_0^{1/r} v_1^{1-p}$. Let $w_0 = v_0^{1/r}$ and $w_1 = v_1^{1-p}$. We will see that $w_0 \in RH_r^+ \cap A_1^+$. We note,

$$\frac{1}{|I|} \int_I w_0^r = \frac{1}{|I|} \int_I v_0 \leq C \inf_{I^+} v_0 \leq C \left(\frac{1}{|I|} \int_{I^+} v_0^{1/r} \right)^r = C \left(\frac{1}{|I|} \int_{I^+} w_0 \right)^r,$$

and also,

$$\frac{1}{|I|} \int_I w_0 = \frac{1}{|I|} \int_I v_0^{1/r} \leq \left(\frac{1}{|I|} \int_I v_0 \right)^{1/r} \leq C \inf_{I^+} v_0^{1/r} = C \inf_{I^+} w_0.$$
We only have to see now, that \(w_1 \in RH^{+}_{\infty} \cap A^+_p \) and we are done.

First we claim

\[(4.5) \quad w \in A_1^- \text{ then } w^{-\gamma} \in RH^+_\infty, \text{ for all } \gamma > 0.\]

In fact by Hölder’s inequality, we have for any interval \(I = (a, b) \), \(\left(\frac{1}{|I|} \int_I w \right)^{-\gamma} \leq \frac{1}{|I|} \int_I w^{-\gamma} \) and as \(w \in A_1^- \) we have that for almost every \(x \in I^- \), \(Cw(x) \leq \frac{1}{|I|} \int_I w \), and therefore

\[
\frac{1}{|I|} \int_I w^{-\gamma} \leq C \left(\frac{1}{|I|} \int_I w \right)^{-\gamma} \leq \frac{1}{|I|} \int_I w^{-\gamma} \leq C \frac{1}{b-x} \int_x^b w^{-\gamma}.
\]

Let \(w_1 = v_1^{1-p} \). As \(v_1 \in A_1^- \), then \(w_1 \in RH^+_\infty \). Moreover

\[
\frac{1}{|I|} \int_I w_1 \left(\frac{1}{|I^+|} \int_{I^+} w_1^{1-p'} \right)^{p-1} = \frac{1}{|I|} \int_I v_1^{1-p} \left(\frac{1}{|I^+|} \int_{I^+} v_1 \right)^{p-1}
\]

\[
\leq \frac{1}{|I|} \int_I v_1^{1-p} (C \inf_I v_1)^{p-1}
\]

\[
\leq \frac{C}{|I|} \int_I v_1^{1-p} v_1^{p-1} \leq C,
\]

i.e. \(w_1 \in A_p^+ \). \(\square \)

Factorization Theorem for weights in \(A^+_p \). A weight \(w \in A^+_p \) if, and only if, there exists \(w_1 \in RH^+_\infty \) and \(w_0 \in A^+_1 \) such that \(w = w_0 w_1 \).

Proof. If \(w \in A^+_p \) then \(w \in A^+_q \) for some \(1 < q < \infty \), so there exist \(v_0 \in A^+_1 \) and \(v_1 \in A_1^- \) such that \(w = v_0 v_1^{1-q} \). Let \(w_0 = v_0 \) and \(w_1 = v_1^{1-q} \). By (4.5) \(w_1 \in RH^+_\infty \).

So we are done. Conversely if \(w_1 \in RH^+_\infty \), then \(w_1 \in A^+_q \) for some \(1 < q \), i.e., there exists \(C \) such that

\[
\left(\frac{1}{|I|} \int_I w_1 \right)^{q-1} \frac{1}{|I^+|} \int_{I^+} w_1^{1-q'} \leq C,
\]

but then

\[
\left(\sup_{I^-} w_1 \right)^{q-1} \frac{1}{|I|} \int_{I^+} w_1^{1-q'} \leq \left(\frac{1}{|I|} \int_I w_1 \right)^{q-1} \frac{1}{|I|} \int_{I^+} w_1^{1-q'} \leq C,
\]

and we get

\[
\frac{1}{|I|} \int_{I^+} w_1^{1-q'} \leq C \inf_{I^-} w_1^{1-q'},
\]

and it is easy to see that this inequality implies \(w_1^{1-q'} \in A_1^- \). Then \(v_1 = w_1^{1-q'} \in A_1^- \), so \(w = w_0 w_1 = w_0 v_1^{1-q} \in A^+_q \subset A^+_\infty \). \(\square \)
5. Classes A_p^+ and RH_{r}^+.

In this section we will use Theorems 3.1 and 3.3 and the factorization theorems to obtain the best ranges for the classes A_p^+ and RH_{r}^+. As we shall see, the range of the index will depend on the factorization of the weights.

The following theorem gives us the precise range in A_p^+ for weights in RH_{r}^+.

Theorem 5.1. Let $w \in RH_{r}^+$, $w = w_0^{1/r'}$ with $w_0 \in RH_{\infty}^+$ and $w_1 \in A_1^+$, then $w \in A_p^+$ for all $p > C$, where $C = RH_{\infty}^+(w_0)$ and this is the best possible range.

Proof. Let $w_0 \in RH_{r}^+$ and $w_1 \in A_1^+$. By Theorem 3.3 $w_0 \in A_p^+$ for all $p > C$. Let $p > C$, there exists $\epsilon > 0$ such that $w_0 \in A_{p-\epsilon}^+$, so we choose $s > 1$ satisfying $1 - (p - \epsilon)' = s(1 - p')$, and by Hölder’s inequality

$$\frac{1}{|I^+|} \int_I w_0 w_1 \left(\frac{1}{|I^+|} \int_I (w_0 w_1)^{1-p'}\right)^{p-1} \leq \left(\frac{1}{|I^+|} \int_I w_1 \left(\frac{1}{|I^+|} \int_I w_0 w_1^{s(1-p')/q} \right)^{(p-1)/s} \right)^{(p-1)/p} \leq C.$$

To see that this is the best range, we consider w_0 as in Theorem 3.3 and $w_1 = 1$. □

Remark 5.2. Given $w \in RH_{r}^+$ there exist $u \in RH_{\infty}^+$, and $v \in A_1^+$ such that $w = uv^{1/r}$. We only have to consider the factorization theorem and choose $u = w_1$ and $v = w_0$. We have to prove that $v \in A_1^+$. Keeping in mind that $w_0 \in RH_{r}^+ \cap A_1^+$ we have

$$\frac{1}{|I^+|} \int_{|I^+|} v = \frac{1}{|I^+|} \int_{|I^-|} w_0' \leq C \left(\frac{1}{|I^+|} \int_{|I^+|} w_0\right)^r \leq Cw_0^r(x) = Cv(x),$$

for almost every $x \in I^+$, i.e., $v \in A_1^+$.

The next theorem shows us the precise range of the higher integrability of $w \in RH_{r}^+$.

Theorem 5.3. Let $w \in RH_{r}^+$, $w = uv^{1/r}$ with $u \in RH_{\infty}^+$ and $v \in A_1^+$. If $C = A_1^+(v)$ then $w \in RH_{s}^+$ for all $s < Cr / (C-1)$. The range of s is the best possible.

Proof. Let $r < s < \frac{Cr}{C-1}$, we choose $q > 1$ such that $s < \frac{Cr}{q(C-1)}$. As $1 < \frac{q}{r} < \frac{C}{C-1}$, by Theorem 3.1 $v \in RH_{r}^+$, using Hölder’s inequality, that $u^s \in RH_{\infty}^+$ and $v \in A_1^+$ we have,

$$\frac{1}{|I^+|} \int_I w^s = \frac{1}{|I^+|} \int_I u^{s/r} \leq \left(\frac{1}{|I^+|} \int_I u^{q^s/r}\right)^{1/q} \leq \left(\frac{1}{|I^+|} \int_I v^{q^s/r}\right)^{1/q} \leq \sup_I u^s \left(\frac{1}{|I^+|} \int_I v\right)^{s/r} \leq C \left(\frac{1}{|I^+|} \int_I u\right)^{s/r} \leq C \left(\frac{1}{|I^+|} \int_I u\right)^{s/r} \leq C \left(\frac{1}{|I^+|} \int_I v\right)^{s/r} \leq C \left(\frac{1}{|I^+|} \int_I w\right)^{s},$$
and we get that \(w \in RH^+_s \), (Lemma 2.5).

To see this is the best range possible, we choose \(v \in A^+_1 \) as in Theorem 3.1 and \(u = 1 \), then \(w = v^{1/r} \in RH^+_s \) for all \(r \leq s < \frac{C}{C-1} \) (\(C = A^+_1(v) \)). If \(s = \frac{C}{C-1} \) and \(w \in RH^+_s \) then \(v \in RH^+_s \), but we have seen (Theorem 3.1) that this can not happen. \(\Box \)

The next theorem shows us which is the best range in \(RH^+_r \) for a given weight in \(A^+_p \).

Theorem 5.4. Let \(w \in A^+_p \), \(w = uv^{1-r} \), with \(u \in A^+_1 \), \(v \in A^-_1 \) and \(C = A^+_1(u) \), then \(w \in RH^+_r \) for all \(1 < r < \frac{C}{C-1} \), being this range the best possible.

Proof. By Theorem 3.1 \(u \in RH^+_r \) for all \(1 < r < \frac{C}{C-1} \) and we know that \(v^{1-p} \in RH^+_{\infty} \), then

\[
\frac{1}{|I|} \int_I w^r \leq \frac{1}{|I|} \int_I u^r \sup_I (v^{-r(p-1)})
\]

\[
\leq C \left(\frac{1}{|I^+|} \int_{I^+} u \right)^r \left(\frac{1}{|I^+|} \int_{I^+} v^{1-p} \right)^r \leq C \left(\inf_{I^{++}} u \right)^r \left(\sup_{I^+} v^{1-p} \right)^r
\]

\[
\leq C \left(\inf_{I^{++}} u \right)^r \left(\frac{1}{|I^{++}|} \int_{I^{++}} v^{1-p} \right)^r \leq C \left(\frac{1}{|I^{++}|} \int_{I^{++}} w \right)^r.
\]

By Lemma 2.5 \(w \in RH^+_r \).

To see this is the best range we take \(u \) as in Theorem 3.1 and \(v = 1 \). So we have \(w = u \in A^+_p \), and \(w \notin RH^+_{C/r} \). \(\Box \)

Corollary 5.5. Let \(w = uv^{1-p} \in A^+_p \) with \(u \in A^+_1 \), \(v \in A^-_1 \) and \(C = \max\{A^+_1(u), A^-_1(v)\} \), then \(w^r \in A^+_p \) for all \(1 \leq \tau < \frac{C}{C-1} \) and the range is the best possible.

Proof. By Theorem 5.4 we have that \(w \in RH^+_r \) for all \(1 \leq \tau < \frac{C}{C-1} \) and \(w^{1-p'} \in RH^+_r \) for all \(1 \leq \tau' < \frac{C}{C-1} \). Let \(a < d \), we choose \(b, c \) such that \(b-a = d-c = \frac{1}{2}(d-a) \), and we also choose the point \(\frac{c+b}{2} \). Then, we have four intervals, namely, \(I^- = (a,b) \), \(I^+ = (b, \frac{c+b}{2}) \), \(I^* = (\frac{b+c}{2}, c) \), and \(I^{++} = (c,d) \). Now

\[
\frac{1}{|I^-|} \int_{I^-} w^\tau \left(\frac{1}{|I^{++}|} \right) \int_{I^{++}} w^{\tau(1-p')} \right)^{p-1} \leq \left(\frac{1}{|I|} \int_I w \right)^{\tau} \left(\frac{1}{|I^+|} \int_{I^+} w^{1-p'} \right)^{\tau(p-1)}
\]

\[
\leq C^\tau,
\]

thus \(w^r \in A^+_p \), (Lemma 2.6). Considering \(u \) as in Theorem 3.1, we see this is the best possible range. \(\Box \)

Using Theorem 5.4 we will show the exact range of \(q < p \) such that \(w \in A^+_p \) implies \(w \in A^+_q \).

Theorem 5.6. Let \(w = wv^{1-p} \in A^+_p \) with \(u \in A^+_1 \), \(v \in A^-_1 \) and \(C = A^-_1(v) \), then \(w \in A^+_q \) for all \(1 + \frac{(p-1)(C-1)}{C} < q < \infty \) and this is the best range for \(q \).

Proof. Note that \(w^{1-p'} = vu^{1-p'} \in A^+_p \), by Theorem 5.4 \(w^{1-p'} \in RH^+_r \) for all \(1 < r < \frac{C}{C-1} \). From lemma 4.4 for the classes \(RH^+_r \) and \(A^+_p \) we have that \(w^{(1-p')r} \in A^+_q \).
where \(q' = r(p'-1)+1 = \frac{r}{p-1} + 1 \). But this is the same as \(w^{1-q'} \in A_{q'}^+ \) i.e., \(w \in A_q^+ \)
for all \(1 + (p - 1) \frac{C-1}{C} < q \).

To see this is the best range, let \(v(x) = x^{\frac{1-C}{C}} \) if \(x \leq 0 \) and equal to 0 if \(x > 0 \) and \(u = 1 \) for all \(x \). Note that \(v \in A_1^- \) and \(A_1^- (v) = C \). Then \(w = v^{1-p} \in A_p^+ \) and \(w \in A_q^+ \) for all \(q > 1 + (p - 1) \frac{C-1}{C} \). Observe that \(w \notin A_{1+(p-1)}^+ \). □

Finally the last theorem gives us the best possible range, for a weight in \(A_{\infty}^+ \).

Theorem 5.7. Let \(w \in A_{\infty}^+ \), \(w = w_0w_1 \), \(w_0 \in A_1^+, w_1 \in RH_\infty^+ \) and \(C = RH_\infty^+(w_1) \), then \(w \in A_p^+ \) for all \(p > C \). The range of \(p \)’s is the best possible.

Proof. Note that \(w_1 \in RH_\infty^+ \) implies \(w_1 \in A_p^+ \) for all \(p > C \), then

\[
\frac{1}{|I|} \int_I w_0w_1 \left(\frac{1}{|I|^{1+}} \int_{I^+} (w_0w_1)^{1-p'} \right)^{p-1} \\
\leq \sup_I w_1 \frac{1}{|I|} \int_I w_0 \left(\sup_{I^+} w_0^{1-p'} \right)^{p-1} \left(\frac{1}{|I|^{1+}} \int_{I^+} w_1^{1-p'} \right)^{p-1} \\
\leq C \frac{1}{|I|} \int_{I^+} w_0 \inf_{I^+} (w_0)^{p-1} \left(\frac{1}{|I|^{1+}} \int_{I^+} w_1^{1-p'} \right)^{p-1} \\
\leq C \sup_{I^+} (w_0)^{p-1} \frac{1}{|I|} \int_{I^+} w_0 \\
\leq C \frac{1}{\inf_{I^+} w_0} \leq C,
\]

by Lemma 2.6 \(w \in A_p^+ \) for all \(p > C \).

To see this is the best range, we consider \(w(x) = 0 \) if \(x \leq -1 \), \(|x|^{C-1} \) if \(-1 < x \leq 0 \) and 1 if \(x \geq 0 \) □

References

FAMAF, Universidad Nacional de Córdoba. (5000) Córdoba, Argentina.

E-mail address: sriveros@mate.uncor.edu

Análisis Matemático. Facultad de Ciencias. Universidad de Málaga. (29071) Málaga, Spain

E-mail address: torre@anamat.cie.uma.es