ON THE COIFMAN TYPE INEQUALITY FOR THE OSCILLATION OF THE ONE-SIDED DISCRETE SQUARE FUNCTION

MARÍA LORENTE, MARÍA SILVINA RIVEROS, AND ALBERTO DE LA TORRE

Abstract

In this paper we study the Coifman type estimate for the oscillation of the one-sided discrete square function, S^{+}. We prove that for any A_{∞}^{+}weight w, the $L^{p}(w)$-norm of this operator, and therefore the $L^{p}(w)$-norm of S^{+}, is dominated by a constant times the $L^{p}(w)$-norm of the one-sided Hardy-Littlewood maximal function iterated two times. For the k-th commutator with a $B M O$ function we show that $k+2$ iterates of the one-sided Hardy-Littlewood maximal function are sufficient.

1. Introduction

In [5], Coifman and Fefferman proved that if T is a Calderón-Zygmund operator, w is an A_{∞} weight and M is the Hardy-Littlewood maximal operator, then, for each p, $0<p<\infty$, there exists C such that

$$
\int|T f|^{p} w \leq C \int(M f)^{p} w
$$

whenever the left-hand side is finite. Inequalities of the type

$$
\int|T f|^{p} w \leq C \int\left(M_{T} f\right)^{p} w
$$

where T is an operator and M_{T} is a maximal operator which, in general, will depend on T, are known as Coifman type inequalities.

Recently, de la Torre and Torrea [26] and Lorente, Riveros and de la Torre [14] have studied inequalities with weights for the one-sided discrete square function defined as follows: for f locally integrable in \mathbb{R} and $s>0$, let us consider the averages

$$
A_{s} f(x)=\frac{1}{s} \int_{x}^{x+s} f(y) d y
$$

The one-sided discrete square function of f is given by

$$
S^{+} f(x)=\left(\sum_{n \in \mathbb{Z}}\left|A_{2^{n}} f(x)-A_{2^{n-1}} f(x)\right|^{2}\right)^{1 / 2} .
$$

We write S^{+}instead of S to emphasize that this is a one-sided operator, i.e., $S^{+} f(x)=$ $S^{+}\left(f \chi_{(x, \infty)}\right)(x)$.

[^0]In [14] it was shown that if $0<p<\infty$ and $w \in A_{\infty}^{+}$, then

$$
\begin{equation*}
\int_{\mathbb{R}}\left(S^{+} f\right)^{p} \omega \leq \int_{\mathbb{R}}\left(\left(M^{+}\right)^{3} f\right)^{p} \omega, \quad f \in L_{c}^{\infty} \tag{1.1}
\end{equation*}
$$

whenever the left-hand side is finite, where $\left(M^{+}\right)^{k}$ stands for the k-th iteration of M^{+}, and

$$
M^{+} f(x)=\sup _{h>0} \frac{1}{h} \int_{x}^{x+h}|f| .
$$

A natural question left open by this result is the following: can we improve the result using fewer iterates of M^{+}in (1.1)? In this note we study a bigger operator for which two iterates are enough. Therefore the inequality (1.1) is improved in two ways: a bigger operator on the left and a smaller operator on the right. The operator that we will study is the oscillation of the averages,

$$
\mathcal{O}^{+} f(x)=\left(\sum_{n \in \mathbb{Z}_{s} \in J_{n}} \sup _{2^{n}} f(x)-\left.A_{s} f(x)\right|^{2}\right)^{1 / 2}
$$

where $J_{n}=\left[2^{n}, 2^{n+1}\right)$. It is clear that $S^{+} f(x) \leq \mathcal{O}^{+} f(x)$ for all $x \in \mathbb{R}$.
If we look at the definition of $\mathcal{O}^{+} f(x)$, we see that the sequence $\left\{\tau_{n}(x)\right\}$, defined by $\tau_{n}(x)=\sup _{s \in J_{n}}\left|A_{2^{n}} f(x)-A_{s} f(x)\right|$, measures the oscillation of the $A_{s} f(x)$ in the interval J_{n}. Then we take the L^{p} norm of the ℓ^{2} norm of this sequence. Operators of this kind are of interest in ergodic theory, [3], [8] and singular integrals. In [4] it is proved that the oscillation of a singular integral is a bounded operator in $L^{p}(d x)$ ($p>1$). More recently in [9] it has been proved that the oscillation of the Hilbert Transform is bounded in $L^{p}(w)$ for any $w \in A_{p}$. Since our operator S^{+}can be regarded as a one-sided singular integral, it is natural to try to extend their result to weights in the wider class A_{p}^{+}. Our main result is:

Theorem 1.1. Let $\omega \in A_{\infty}^{+}$and $0<p<\infty$. Then, there exists $C>0$ such that

$$
\int_{\mathbb{R}}\left(S^{+} f\right)^{p} \omega \leq \int_{\mathbb{R}}\left(\mathcal{O}^{+} f\right)^{p} \omega \leq C \int_{\mathbb{R}}\left(\left(M^{+}\right)^{2} f\right)^{p} \omega, \quad f \in L_{c}^{\infty}
$$

whenever the left-hand side is finite.
Remark 1.2. As a consequence of the above theorem, if $1<p<\infty$ and $\omega \in A_{p}^{+}$, we obtain that S^{+}is bounded in $L^{p}(\omega)$, a result that was first proved in [26].

Remark 1.3. As in the case of the Hilbert Transform it is an open question if (1.1) holds with M^{+}instead of $\left(M^{+}\right)^{2}$.

The paper is organized as follows: In Section 2 we introduce notation and recall some basic results about one-sided weights and maximal operators associated to Young functions. In section 3 we prove Theorem 1.1 and in section 4 we study the commutators of S^{+}and \mathcal{O}^{+}with a BMO function b. For $p>1$ we prove Coifman type inequalities that imply the boundedness of the commutators in $L^{p}(w)$ whenever $w \in A_{p}^{+}$. For $p=1$ we we also obtain a weak type inequality for the k-th order commutator.

2. Definitions and basic facts about one-sided operators

Definition 2.1. The one-sided Hardy-Littlewood maximal operators M^{+}and M^{-}are defined for locally integrable functions f by

$$
M^{+} f(x)=\sup _{h>0} \frac{1}{h} \int_{x}^{x+h}|f| \quad \text { and } \quad M^{-} f(x)=\sup _{h>0} \frac{1}{h} \int_{x-h}^{x}|f| .
$$

The one-sided weights are defined as follows,

$$
\begin{gather*}
\sup _{a<b<c} \frac{1}{(c-a)^{p}} \int_{a}^{b} \omega\left(\int_{b}^{c} \omega^{1-p^{\prime}}\right)^{p-1}<\infty, \quad 1<p<\infty \tag{p}\\
M^{-} \omega(x) \leq C \omega(x) \quad \text { a.e. } \tag{1}
\end{gather*}
$$

A_{∞}^{+}is defined as the union of the A_{p}^{+}classes,

$$
\begin{equation*}
A_{\infty}^{+}=\cup_{p \geq 1} A_{p}^{+} . \tag{+}
\end{equation*}
$$

The A_{p}^{-}classes are defined reversing the orientation of \mathbb{R}. It is interesting to note that $A_{p}=A_{p}^{+} \cap A_{p}^{-}, A_{p} \subsetneq A_{p}^{+}$and $A_{p} \subsetneq A_{p}^{-}$. (See [23], [15], [16], [17] for more definitions and results.)

It was proved in [26], that $\omega \in A_{p}^{+}, 1<p<\infty$, if, and only if, S^{+}is bounded from $L^{p}(\omega)$ to $L^{p}(\omega)$, and that $\omega \in A_{1}^{+}$, if, and only if, S^{+}is of weak-type $(1,1)$ with respect to ω.

Definition 2.2. Let b be a locally integrable function. We say that $b \in B M O$ if

$$
\|b\|_{B M O}=\sup _{I} \frac{1}{|I|} \int_{I}\left|b-b_{I}\right|<\infty,
$$

where I denotes any bounded interval and $b_{I}=\frac{1}{|I|} \int_{I} b$.
Definition 2.3. Let f be a locally integrable function. The one-sided sharp maximal function is defined by

$$
M^{+, \#}(f)(x)=\sup _{h>0} \frac{1}{h} \int_{x}^{x+h}\left(f(y)-\frac{1}{h} \int_{x+h}^{x+2 h} f\right)^{+} d y
$$

For $\delta>0$ we define

$$
M_{\delta}^{+, \#} f(x)=\left(M^{+, \#}|f|^{\delta}(x)\right)^{1 / \delta} .
$$

It is proved in [18] that

$$
\begin{aligned}
M^{+, \#}(f)(x) & \leq \sup _{h>0} \inf _{a \in \mathbb{R}} \frac{1}{h} \int_{x}^{x+h}(f(y)-a)^{+} d y+\frac{1}{h} \int_{x+h}^{x+2 h}(a-f(y))^{+} d y \\
& \leq C\|f\|_{B M O}
\end{aligned}
$$

Now we give definitions and results about Young functions. A function $B:[0, \infty) \rightarrow$ $[0, \infty)$ is a Young function if it is continuous, convex, increasing and satisfies $B(0)=0$ and $B(t) \rightarrow \infty$ as $t \rightarrow \infty$. The Luxemburg norm of a function f, given by B is

$$
\|f\|_{B}=\inf \left\{\lambda>0: \int B\left(\frac{|f|}{\lambda}\right) \leq 1\right\}
$$

and so the B -average of f over I is

$$
\|f\|_{B, I}=\inf \left\{\lambda>0: \frac{1}{|I|} \int_{I} B\left(\frac{|f|}{\lambda}\right) \leq 1\right\}
$$

We will denote by \bar{B} the complementary function associated to B (see [1]). The following version of Hölder's inequality holds,

$$
\frac{1}{|I|} \int_{I}|f g| \leq\left. 2| | f\right|_{B, I}| | g \|_{\bar{B}, I}
$$

This inequality can be extended to three functions (see [19]). If A, B, C are Young functions such that

$$
A^{-1}(t) B^{-1}(t) \leq C^{-1}(t)
$$

then

$$
\begin{equation*}
\|f g\|_{C, I} \leq 2\|f\|_{A, I}\|g\|_{B, I} \tag{2.1}
\end{equation*}
$$

Definition 2.4. For each locally integrable function f, the one-sided maximal operators associated to the Young function B are defined by

$$
M_{B}^{+} f(x)=\sup _{x<b}\|f\|_{B,(x, b)} \quad \text { and } \quad M_{B}^{-} f(x)=\sup _{a<x}\|f\|_{B,(a, x)} .
$$

We will be dealing with the Young functions $B_{k}(t)=e^{t^{1 / k}}-1$ and $\overline{B_{k}}(t)=t(1+$ $\left.\log ^{+}(t)\right)^{k}, k \in \mathbb{N}$. The maximal operator associated to $\overline{B_{k}}, M_{\overline{B_{k}}}^{+}$will be denoted by $M_{L\left(1+\log ^{+} L\right)^{k}}^{+}$. It is proved in [22] that $M_{L\left(1+\log ^{+} L\right)^{k}}^{+}$is pointwise equivalent to $\left(M^{+}\right)^{k+1}$.

It is convenient to look at our operators as vector valued. Let us consider the sequence

$$
H(x)=\left\{\frac{1}{2^{n}} \chi_{\left(-2^{n}, 0\right)}(x)-\frac{1}{2^{n-1}} \chi_{\left(-2^{n-1}, 0\right)}(x)\right\}_{n \in \mathbb{Z}}
$$

and let us define the operator $U: f \rightarrow U f$ by

$$
U f(x)=\int_{\mathbb{R}} H(x-y) f(y) d y
$$

Then it is clear that $S^{+} f(x)=\|U f(x)\|_{\ell^{2}}$. If instead of the sequence H we consider for each $s>0$ the sequence $K(x)=\left\{K_{n, s}(x)\right\}_{n \in \mathbb{Z}}$, where

$$
K_{n, s}(x)=\left(\frac{1}{2^{n}} \chi_{\left(-2^{n}, 0\right)}(x)-\frac{1}{s} \chi_{(-s, 0)}(x)\right) \chi_{J_{n}}(s),
$$

we can define the operator V acting on locally integrable functions f, as $V f(x)=$ $\int_{\mathbb{R}} K(x-y) f(y) d y$.

If for functions $h: \mathbb{R} \times \mathbb{Z} \rightarrow \mathbb{R}$ we define the norm

$$
\|h\|_{E}=\left(\sum_{n \in \mathbb{Z}} \sup _{s \in J_{n}}|h(s, n)|^{2}\right)^{1 / 2},
$$

then $\mathcal{O}^{+} f(z)=\|V f(z)\|_{E}$.

3. Proof of Theorem 1.1

The key point in the proof of Theorem 1.1 is the following pointwise estimate: for each $0<\delta<1$, there exists C so that for any locally integrable function,

$$
\begin{equation*}
M_{\delta}^{+, \#}\left(\mathcal{O}^{+} f\right)(x) \leq C M^{+} f(x)+C M_{L\left(1+\log ^{+} L\right)}^{+} f(x) \tag{3.1}
\end{equation*}
$$

Let us prove inequality (3.1). For $0<\delta<1$ we have

$$
\begin{equation*}
M_{\delta}^{+, \#}\left(\mathcal{O}^{+} f\right)(x) \leq C \sup _{h>0} \inf _{c \in \mathbb{R}}\left(\left.\left.\frac{1}{h} \int_{x}^{x+2 h}| | \mathcal{O}^{+} f(y)\right|^{\delta}-|c|^{\delta} \right\rvert\, d y\right)^{1 / \delta} \tag{3.2}
\end{equation*}
$$

Let $x \in \mathbb{R}$ and $h>0$. Let us consider the unique $i \in \mathbb{Z}$ such that $2^{i} \leq h<2^{i+1}$ and let denote by J the interval $J=\left[x, x+2^{i+3}\right)$. If we write $f=f_{1}+f_{2}$, where $f_{1}=f \chi_{J}$, and choose $c=\mathcal{O}^{+}\left(f_{2}\right)(x)$, we have

$$
\begin{gather*}
\left(\left.\left.\frac{1}{h} \int_{x}^{x+2 h}| | \mathcal{O}^{+} f(y)\right|^{\delta}-\left|\mathcal{O}^{+} f_{2}(x)\right|^{\delta} \right\rvert\, d y\right)^{1 / \delta} \\
\leq C\left(\frac{1}{2^{i}} \int_{x}^{x+2^{i+2}}\left|\mathcal{O}^{+} f(y)-\mathcal{O}^{+} f_{2}(x)\right|^{\delta} d y\right)^{1 / \delta} \\
\leq C\left(\frac{1}{2^{i}} \int_{x}^{x+2^{i+2}}\left|\mathcal{O}^{+} f_{1}(y)\right|^{\delta} d y\right)^{1 / \delta}+C\left(\frac{1}{2^{i}} \int_{x}^{x+2^{i+2}}\left|\mathcal{O}^{+} f_{2}(y)-\mathcal{O}^{+} f_{2}(x)\right|^{\delta} d y\right)^{1 / \delta} \\
=I+I I . \tag{3.3}
\end{gather*}
$$

Using Lemma 2.1 (1) in [4], that is, the fact that the oscillation of S^{+}is of weak type (1,1) with respect to the Lebesgue's measure, and Kolmogorov's inequality, we get

$$
\begin{equation*}
I \leq C \frac{1}{2^{i}} \int_{x}^{x+2^{i+3}}|f(y)| d y \leq C M^{+} f(x) \tag{3.4}
\end{equation*}
$$

In order to estimate II, we first use Jensen's inequality and obtain

$$
\begin{align*}
I I & =C\left(\frac{1}{2^{i}} \int_{x}^{x+2^{i+2}}\left\|V f_{2}(y)\right\|_{E}-\left.\left\|V f_{2}(x)\right\|_{E}\right|^{\delta} d y\right)^{1 / \delta} \\
& \leq C \frac{1}{2^{i}} \int_{x}^{x+2^{i+2}}\left\|V f_{2}(y)-V f_{2}(x)\right\|_{E} d y . \tag{3.5}
\end{align*}
$$

Let us estimate $\left\|V f_{2}(y)-V f_{2}(x)\right\|_{E}$.

$$
\begin{align*}
& \left\|V f_{2}(y)-V f_{2}(x)\right\|_{E} \\
& =\|\left\{\left(\frac{1}{2^{n}} \int_{y}^{y+2^{n}} f_{2}-\frac{1}{s} \int_{y}^{y+s} f_{2}\right) \chi_{J_{n}}(s)\right\}_{n \in \mathbb{Z}, s \in \mathbb{R}} \\
& \quad-\left\{\left(\frac{1}{2^{n}} \int_{x}^{x+2^{n}} f_{2}-\frac{1}{s} \int_{x}^{x+s} f_{2}\right) \chi_{J_{n}}(s)\right\}_{n \in \mathbb{Z}, s \in \mathbb{R}} \|_{E} \\
& \leq\left\|\left\{\left(\frac{1}{2^{n}} \int_{y}^{y+2^{n}} f_{2}-\frac{1}{2^{n}} \int_{x}^{x+2^{n}} f_{2}\right) \chi_{J_{n}}(s)\right\}_{n \in \mathbb{Z}, s \in \mathbb{R}}\right\|_{E} \\
& \quad+\left\|\left\{\left(\frac{1}{s} \int_{x}^{x+s} f_{2}-\frac{1}{s} \int_{y}^{y+s} f_{2}\right) \chi_{J_{n}}(s)\right\}_{n \in \mathbb{Z}, s \in \mathbb{R}}\right\|_{E} \\
& =I I I+I V . \tag{3.6}
\end{align*}
$$

Observe that since $y \in\left(x, x+2^{i+2}\right)$ and f_{2} has support in $\left(x+2^{i+3}, \infty\right)$, it follows that, if $n \leq i+2$, then $x+2^{n} \leq x+2^{i+2}$ and $y+2^{n} \leq x+2^{i+2}+2^{n} \leq x+2^{i+2}+2^{i+2}=x+2^{i+3}$. As a consequence the only non-zero terms in III are those with $n>i+2$. Therefore

$$
\begin{equation*}
I I I \leq\left(\sum_{n=i+3}^{\infty}\left|\frac{1}{2^{n}} \int_{x+2^{n}}^{y+2^{n}} f\right|^{2}\right)^{1 / 2} \tag{3.7}
\end{equation*}
$$

Let us consider the Young function $B_{1}(t)=\mathrm{e}^{t}-1$. Then $\overline{B_{1}}(t)=t\left(1+\log ^{+} t\right)$ and $B_{1}^{-1}(t)=\log ^{+}(1+t)$. Using the generalized Hölder's inequality, we obtain that, for $n \geq i+3$,

$$
\begin{align*}
\left|\frac{1}{2^{n}} \int_{x+2^{n}}^{y+2^{n}} f\right| & \leq \frac{1}{2^{n}} \int_{x+2^{n}}^{x+2^{n+1}}|f| \chi_{\left[x+2^{n}, y+2^{n}\right)} \\
& \leq C M_{B_{1}}^{+} f(x)\left\|\chi_{\left[x+2^{n}, y+2^{n}\right)}\right\|_{B_{1},\left[x+2^{n}, x+2^{n+1}\right)} \\
& =C M_{B_{1}}^{+} f(x) \frac{1}{B_{1}^{-1}\left(\frac{2^{n}}{y-x}\right)} \leq C M_{B_{1}}^{+} f(x) \frac{1}{B_{1}^{-1}\left(2^{n-i-2}\right)} \tag{3.8}
\end{align*}
$$

where in the last inequality we have used that $y-x \leq 2^{i+2}$ and that B_{1}^{-1} is nondecreasing.

Putting together (3.7) and (3.8) we obtain

$$
\begin{align*}
I I I & \leq C M_{B_{1}}^{+} f(x)\left(\sum_{n=i+3}^{\infty} \frac{1}{\left(B_{1}^{-1}\left(2^{n-i-2}\right)\right)^{2}}\right)^{1 / 2} \\
& \leq C M_{\frac{B_{1}}{+}} f(x)\left(\sum_{n=i+3}^{\infty} \frac{1}{(n-i-2)^{2}}\right)^{1 / 2}=C M_{B_{1}}^{+} f(x) . \tag{3.9}
\end{align*}
$$

Let us estimate $I V$. For $n \in \mathbb{Z}$, set

$$
\beta_{n}=\sup _{s \in J_{n}}\left|\frac{1}{s} \int_{x}^{x+s} f_{2}-\frac{1}{s} \int_{y}^{y+s} f_{2}\right| .
$$

Then, if $\beta_{n} \neq 0$, we have that there exists $s_{n} \in J_{n}$ such that

$$
\left|\frac{1}{s_{n}} \int_{x}^{x+s_{n}} f_{2}-\frac{1}{s_{n}} \int_{y}^{y+s_{n}} f_{2}\right|>\frac{1}{2} \beta_{n} .
$$

If $n \leq i+1$ then $y+s_{n} \leq y+2^{n+1} \leq x+2^{i+2}+2^{n+1} \leq x+2^{i+3}$. Therefore in $I V$ we may assume $n \geq i+2$.

Using again generalized Hölder's inequality, we get that, for $n \geq i+2$,

$$
\begin{align*}
\beta_{n} & \leq C \frac{1}{s_{n}} \int_{x+s_{n}}^{y+s_{n}}\left|f_{2}\right| \leq C \frac{1}{s_{n}} \int_{x}^{x+2^{n+2}}|f| \chi_{\left[x+s_{n}, y+s_{n}\right)} \\
& \leq C \frac{2^{n+2}}{s_{n}} M_{\frac{+}{B_{1}}}^{+} f(x)\left\|\chi_{\left[x+s_{n}, y+s_{n}\right)}\right\|_{B_{1},\left(x, x+2^{n+2}\right)} \\
& =C M_{\frac{+}{B_{1}}} f(x) \frac{1}{B_{1}^{-1}\left(\frac{2^{n+2}}{y-x}\right)} \leq C M_{\frac{+}{B_{1}}} f(x) \frac{1}{B_{1}^{-1}\left(2^{n-i}\right)} . \tag{3.10}
\end{align*}
$$

Then,

$$
\begin{equation*}
I V \leq C M_{\frac{+}{B_{1}}}^{+} f(x)\left(\sum_{n=i+2}^{\infty} \frac{1}{\left(B_{1}^{-1}\left(2^{n-i}\right)\right)^{2}}\right)^{1 / 2}=C M_{\overline{B_{1}}}^{+} f(x) \tag{3.11}
\end{equation*}
$$

Collecting inequalities (3.2)-(3.6), (3.9) and (3.11), we obtain (3.1). On the other hand, we have that $M_{\overline{B_{1}}}^{+} f=M_{L\left(1+\log ^{+} L\right)}^{+} f$ is pointwise equivalent to $\left(M^{+}\right)^{2} f$ (see [22]). As a consequence, (3.1) gives

$$
M_{\delta}^{+, \#}\left(\mathcal{O}^{+} f\right)(x) \leq C\left(M^{+}\right)^{2} f(x), \quad \text { a.e. } x \in \mathbb{R}
$$

To finish the proof of Theorem 1.1 we use theorem 4 in [18]: since $w \in A_{\infty}^{+}$, there exists $r>1$, such that $w \in A_{r}^{+}$. Then, for δ small enough, we get that $r<p / \delta$ and thus, $w \in A_{p / \delta}^{+}$. Therefore,

$$
\begin{align*}
\int_{\mathbb{R}}\left|\mathcal{O}^{+} f\right|^{p} \omega & \leq \int_{\mathbb{R}}\left(M_{\delta}^{+}\left(\mathcal{O}^{+} f\right)\right)^{p} \omega \\
& \leq C \int_{\mathbb{R}}\left(M_{\delta}^{+, \#}\left(\mathcal{O}^{+} f\right)\right)^{p} \omega \leq C \int_{\mathbb{R}}\left(\left(M^{+}\right)^{2} f\right)^{p} \omega, \tag{3.12}
\end{align*}
$$

whenever the left hand side is finite.

4. Commutators

The commutators of singular integrals with BMO functions have been extensively studied (see $[2],[6],[24],[25],[20],[21],[11],[12],[13])$. Since S^{+}can be considered as a singular integral whose kernel satisfies a weaker condition (see [14]), it is interesting to know if the results about commutators of singular integrals can be extended to S^{+}. In [14] we have proved that the classical results about boundedness with weights can be extended to S^{+}and, furthermore, can be improved allowing a wider class of weights, since S^{+}is a one-sided operator. The results in [20] and [21] have been
improved in [11] for one-sided singular integrals. Observe that for singular integrals satisfying the usual Lipschitz condition one obtains $M f$ instead of $M^{2} f$ in Theorem 1.1. Therefore we can not expect to obtain the same results for the commutator of S^{+} as we obtained in [11] for one-sided singular integrals. However, we can give estimates of the same kind, increasing in one the iterations of M^{+}. Concretely, for the k-th order commutator of S^{+}we have:

Theorem 4.1. Let $b \in B M O$ and $k=0,1,2, \ldots$. Let us define the k-th order commutator of S^{+}and \mathcal{O}^{+}by

$$
S_{b}^{+, k} f(x)=\left\|\int_{\mathbb{R}}(b(x)-b(y))^{k} H(x-y) f(y) d y\right\|_{\ell^{2}}
$$

and

$$
\mathcal{O}_{b}^{+, k} f(x)=\left\|\int_{\mathbb{R}}(b(x)-b(y))^{k} K(x-y) f(y) d y\right\|_{E}
$$

(Observe that for $k=0$ we obtain S^{+}and \mathcal{O}^{+}.) Then, for $0<p<\infty$ and $w \in A_{\infty}^{+}$, there exists $C>0$ such that,

$$
\int_{\mathbb{R}}\left(S_{b}^{+, k} f\right)^{p} w \leq \int_{\mathbb{R}}\left(\mathcal{O}_{b}^{+, k} f\right)^{p} w \leq C \int_{\mathbb{R}}\left(\left(M^{+}\right)^{k+2} f\right)^{p} w, \quad f \in L_{c}^{\infty}
$$

whenever the left-hand side is finite.
Remark 4.2. In [10], the $L^{\mathcal{A}, k}$-Hörmander condition was introduced. If we just use that H, the vector valued kernel of S^{+}, satisfies the $L^{\mathcal{A}, k}$-Hörmander condition for $\mathcal{A}(t)=e^{\frac{1}{1+k+\epsilon}}$, then theorem 3.3 in [10] gives $\left(M^{+}\right)^{k+3}$ instead of $\left(M^{+}\right)^{k+2}$ in the previous inequality for $S_{b}^{+, k}$.

Remark 4.3. In particular, we have that for $1<p<\infty$ and $w \in A_{p}^{+}, S_{b}^{+, k}$ is bounded in $L^{p}(\omega)$ which was proved using a different approach in [12].

In [26] it was proved that S^{+}is of weak type $(1,1)$ with respect to w, iff $w \in A_{1}^{+}$. The commutator is more singular than the operator. A fact that is not apparent in the $L^{p}(w)$ norm but it makes a difference near $L^{1}(w)$.

Theorem 4.4. Let $b \in B M O, w \in A_{\infty}^{+}$and $k=0,1,2 \ldots$. Then, there exists $C>0$ such that

$$
\begin{aligned}
w\left(\left\{x \in \mathbb{R}: S_{b}^{+, k} f(x)>\lambda\right\}\right) & \leq w\left(\left\{x \in \mathbb{R}: \mathcal{O}_{b}^{+, k} f(x)>\lambda\right\}\right) \\
& \leq C \int_{\mathbb{R}} \frac{|f(x)|}{\lambda} \log ^{+}\left(1+\frac{|f(x)|}{\lambda}\right)^{k+1} M^{-} w(x) d x, \quad f \in L_{c}^{\infty},
\end{aligned}
$$

whenever the left-hand side is finite.
Remark 4.5. If $w \in A_{1}^{+}$, we can put w instead of $M^{-} w$ in the right hand side.
The following lemma will allow us to use induction in the proof of Theorem 4.1.

Lemma 4.6. Let $0<\delta<\gamma<1, b \in B M O$ and $k \in \mathbb{N} \cup\{0\}$. Then there exists $C>0$ such that for any locally integrable f,

$$
\begin{aligned}
M_{\delta}^{+, \#}\left(\mathcal{O}_{b}^{+, k} f\right)(x) & \leq C \sum_{j=0}^{k-1} M_{\gamma}^{+}\left(\mathcal{O}_{b}^{+, j} f\right)(x)+C M_{L\left(1+\log ^{+} L\right)^{1+k}}^{+} f(x) \\
& \leq C \sum_{j=0}^{k-1} M_{\gamma}^{+}\left(\mathcal{O}_{b}^{+, j} f\right)(x)+C\left(M^{+}\right)^{k+2} f(x) \text { a.e. }
\end{aligned}
$$

Proof. The case $k=0$ follows from inequality (3.1) in the proof of Theorem (1.1). Let us prove the case $k \geq 1$. Let λ be an arbitrary constant. Then, we proceed as in inequality (3.2) in [12], and get

$$
\begin{align*}
\mathcal{O}_{b}^{+, k} f(x) & =\left\|\int_{\mathbb{R}}(b(x)-b(y))^{k} K(x-y) f(y) d y\right\|_{E} \\
& \leq \mathcal{O}^{+}\left((b-\lambda)^{k} f\right)(x)+\sum_{m=0}^{k-1} C_{k, m}|b(x)-\lambda|^{k-m} \mathcal{O}_{b}^{+, m} f(x) \tag{4.1}
\end{align*}
$$

Let $x \in \mathbb{R}$ and $h>0$. Let $i \in \mathbb{Z}$ be such that $2^{i} \leq h<2^{i+1}$ and set $J=\left[x, x+2^{i+3}\right)$. Then, write $f=f_{1}+f_{2}$, where $f_{1}=f \chi_{J}$ and set $\lambda=b_{J}$. Then (see (3.2) in [11]), for any $a \in \mathbb{R}$ we have

$$
\begin{align*}
& \left(\frac{1}{h} \int_{x}^{x+h}\left|\left(\mathcal{O}_{b}^{+, k} f(y)\right)^{\delta}-|a|^{\delta}\right| d y\right)^{\frac{1}{\delta}}+\left(\frac{1}{h} \int_{x+h}^{x+2 h}\left|\left(\mathcal{O}_{b}^{+, k} f(y)\right)^{\delta}-|a|^{\delta}\right| d y\right)^{\frac{1}{\delta}} \\
& \leq C\left[\sum_{m=0}^{k-1}\left(\frac{1}{h} \int_{x}^{x+2 h}\left|b(y)-b_{J}\right|^{(k-m) \delta}\left(\mathcal{O}_{b}^{+, m} f(y)\right)^{\delta} d y\right)^{\frac{1}{\delta}}\right. \\
& \quad+\left(\frac{1}{h} \int_{x}^{x+2 h}\left|\mathcal{O}^{+}\left(\left(b-b_{J}\right)^{k} f_{1}\right)(y)\right|^{\delta} d y\right)^{\frac{1}{\delta}} \\
& \left.\quad+\left(\frac{1}{h} \int_{x}^{x+2 h}\left|\mathcal{O}^{+}\left(\left(b-b_{J}\right)^{k} f_{2}\right)(y)-a\right|^{\delta} d y\right)^{\frac{1}{\delta}}\right] \\
& =(I)+(I I)+(I I I) . \tag{4.2}
\end{align*}
$$

(I) is estimated exactly as in inequality (3.3) of [11],

$$
\begin{equation*}
(I) \leq C \sum_{m=0}^{k-1} M_{\gamma}^{+}\left(\mathcal{O}_{b}^{+, m} f\right)(x) \tag{4.3}
\end{equation*}
$$

Kolmogorov's inequality plus the fact that \mathcal{O}^{+}is of weak type $(1,1)$ with respect to the Lebesgue measure imply

$$
(I I) \leq C \frac{1}{h} \int_{x}^{x+2^{i+3}}\left|b(y)-b_{J}\right|^{k}|f(y)| d y
$$

Using now the generalized Hölder's inequality with $B_{k+1}(t)=e^{t^{1 /(k+1)}}-1$ and $\overline{B_{k+1}}(t)=$ $t\left(1+\log ^{+} t\right)^{k+1}$ we get,

$$
(I I) \leq C| |\left|b-b_{J}\right|^{k}\left\|_{B_{k+1}, J}\right\| f \|_{\overline{B_{k+1}, J}} .
$$

It follows from John-Nirenberg's inequality that

$$
\begin{align*}
(I I) & \leq C\left\|b-b_{J}\right\|_{B_{1}, J}^{k+1}\|f\|_{\overline{B_{k+1}}, J} \leq C\|b\|_{B M O}^{k+1} M_{\overline{B_{k+1}}}^{+} f(x) \\
& \leq C\left(M^{+}\right)^{k+2} f(x) . \tag{4.4}
\end{align*}
$$

For (III) we take $a=\mathcal{O}^{+}\left(\left(b-b_{J}\right)^{k} f_{2}\right)(x)$. Then, by Jensen's inequality,

$$
\begin{align*}
(I I I) & \leq C \frac{1}{2^{i}} \int_{x}^{x+2^{i+3}}\left|\mathcal{O}^{+}\left(\left(b-b_{J}\right)^{k} f_{2}\right)(y)-\mathcal{O}^{+}\left(\left(b-b_{J}\right)^{k} f_{2}\right)(x)\right| d y \\
& \leq C \frac{1}{2^{i}} \int_{x}^{x+2^{i+3}}\left\|V\left(\left(b-b_{J}\right)^{k} f_{2}\right)(y)-V\left(\left(b-b_{J}\right)^{k} f_{2}\right)(x)\right\|_{E} d y \tag{4.5}
\end{align*}
$$

For $j \geq 3$, let $I_{j}=\left[x+2^{j}, x+2^{j+1}\right)$ and $\tilde{I}_{j}=\left[x, x+2^{j+1}\right)$. As in inequality (3.6) we have

$$
\begin{align*}
& \left\|V\left(\left(b-b_{J}\right)^{k} f_{2}\right)(y)-V\left(\left(b-b_{J}\right)^{k} f_{2}\right)(x)\right\|_{E} \\
\leq & \left\|\left\{\left(\frac{1}{2^{n}} \int_{y}^{y+2^{n}}\left(b-b_{J}\right)^{k} f_{2}-\frac{1}{2^{n}} \int_{x}^{x+2^{n}}\left(b-b_{J}\right)^{k} f_{2}\right) \chi_{J_{n}}(s)\right\}_{n \in \mathbb{Z}, s \in \mathbb{R}}\right\|_{E} \\
& +\left\|\left\{\left(\frac{1}{s} \int_{x}^{x+s}\left(b-b_{J}\right)^{k} f_{2}-\frac{1}{s} \int_{y}^{y+s}\left(b-b_{J}\right)^{k} f_{2}\right) \chi_{J_{n}}(s)\right\}_{n \in \mathbb{Z}, s \in \mathbb{R}}\right\|_{E} \\
= & \left(I I I_{n}\right)+\left(I I I_{s}\right) . \tag{4.6}
\end{align*}
$$

For $\left(I I I_{n}\right)$, we proceed as in the estimate of $(I I I)$ in Theorem 1.1. Since $y \in$ $\left(x, x+2^{i+2}\right)$ and f_{2} has support in $\left(x+2^{i+3}, \infty\right)$, it follows that, if $n \leq i+2$, then $x+2^{n} \leq x+2^{i+2}$ and $y+2^{n} \leq x+2^{i+2}+2^{n} \leq x+2^{i+2}+2^{i+2}=x+2^{i+3}$. As a consequence, we only have to take into account $n>i+2$. Therefore

$$
\begin{align*}
&\left(I I I_{n}\right)=\left(\sum_{n=i+3}^{\infty}\left|\frac{1}{2^{n}} \int_{x+2^{n}}^{y+2^{n}} f\left(b-b_{J}\right)^{k}\right|^{2}\right)^{1 / 2} \\
& \leq C\left(\sum_{n=i+3}^{\infty}\left|\frac{1}{2^{n}} \int_{x+2^{n}}^{y+2^{n}} f\left(b-b_{I_{n}}\right)^{k}\right|^{2}\right)^{1 / 2} \\
&+C\left(\sum_{n=i+3}^{\infty}\left|\frac{1}{2^{n}} \int_{x+2^{n}}^{y+2^{n}} f\left(b_{I_{n}}-b_{J}\right)^{k}\right|^{2}\right)^{1 / 2} \\
&=C\left(\sum_{n=i+3}^{\infty}\left|\left(I V_{n}\right)\right|^{2}\right)^{1 / 2}+C\left(\sum_{n=i+3}^{\infty}\left|\left(V_{n}\right)\right|^{2}\right)^{1 / 2} . \tag{4.7}
\end{align*}
$$

Using the generalized Hölder's inequality (2.1) with $A=B_{1}, B=\overline{B_{k+1}}$ and $C=\overline{B_{k}}$, followed by John-Nirenberg's inequality we get

$$
\begin{align*}
\left(I V_{n}\right) & \leq C \frac{\sqrt{2}}{2^{n}} \int_{I_{n}}\left|b(t)-b_{I_{n}}\right|^{k}|f(t)| \chi_{\left(x+2^{n}, y+2^{n}\right)}(t) d t \\
& \leq C\left\|\left(b-b_{I_{n}}\right)^{k}\right\|_{B_{k}, \tilde{I}_{n}}\left\|f \chi_{\left(x+2^{n}, y+2^{n}\right)}\right\|_{\overline{B_{k}}, \tilde{I}_{n}} \\
& \leq C\|b\|_{B M O}^{k}\|f\|_{\overline{B_{k+1}, \tilde{I}_{n}}}\left\|\chi_{\left(x+2^{n}, y+2^{n}\right)}\right\|_{B_{1}, \tilde{I}_{n}} \\
& \leq C M_{\overline{B_{k+1}}}^{+} f(x) \frac{1}{B_{1}^{-1}\left(2^{n-i-2}\right)} . \tag{4.8}
\end{align*}
$$

For $\left(V_{n}\right)$ again the generalized Hölder's inequality is used to obtain

$$
\begin{align*}
\left(V_{n}\right) & \leq C(n-i-1)^{k}| | f\left\|_{\overline{B_{k+1}, \tilde{I}_{n}}}\right\| \chi_{\left(x+2^{n}, y+2^{n}\right)} \|_{B_{k+1}, \tilde{I_{n}}} \\
& \leq C(n-i-1)^{k} M_{\overline{B_{k+1}}}^{+} f(x) \frac{1}{B_{k+1}^{-1}\left(2^{n-i-2}\right)} . \tag{4.9}
\end{align*}
$$

Putting together inequalities (4.8) and (4.9) we get

$$
\begin{align*}
\left(I I I_{n}\right) \leq & C M_{\overline{B_{k+1}}}^{+} f(x)\left(\sum_{n \geq i+3} \frac{1}{\left(B_{1}^{-1}\left(2^{n-i-2}\right)\right)^{2}}\right)^{1 / 2} \\
& +C M_{\frac{B_{k+1}}{+}}^{+} f(x)\left(\sum_{n \geq i+3}(n-i-1)^{2 k} \frac{1}{\left(B_{k+1}^{-1}\left(2^{n-i-2}\right)\right)^{2}}\right)^{1 / 2} \\
\leq & C M_{\frac{+}{B_{k+1}}}^{+} f(x) \leq C\left(M^{+}\right)^{k+2} f(x) \tag{4.10}
\end{align*}
$$

Let us estimate $\left(I I I_{s}\right)$. As in Theorem 1.1, for $n \in \mathbb{Z}$, set

$$
\beta_{n}=\sup _{s \in J_{n}}\left|\frac{1}{s} \int_{x}^{x+s}\left(b-b_{J}\right)^{k} f_{2}-\frac{1}{s} \int_{y}^{y+s}\left(b-b_{J}\right)^{k} f_{2}\right| .
$$

Then, if $\beta_{n} \neq 0$ there exists $s_{n} \in J_{n}$, such that

$$
\left|\frac{1}{s_{n}} \int_{x}^{x+s_{n}}\left(b-b_{J}\right)^{k} f_{2}-\frac{1}{s_{n}} \int_{y}^{y+s_{n}}\left(b-b_{J}\right)^{k} f_{2}\right|>\frac{1}{2} \beta_{n} .
$$

If $n \leq i+1$ then $y+s_{n} \leq y+2^{n+1} \leq x+2^{i+2}+2^{n+1} \leq x+2^{i+3}$. Therefore we only have to consider $n \geq i+2$ in the estimate of $I I I_{s}$. Then

$$
\begin{aligned}
\beta_{n} \leq & C \frac{1}{s_{n}} \int_{x+s_{n}}^{y+s_{n}}\left|\left(b-b_{J}\right)^{k} f_{2}\right| \\
\leq & C \frac{2^{n+2}}{s_{n}} \frac{1}{2^{n+2}} \int_{x}^{x+2^{n+2}}\left|\left(b(t)-b_{J}\right)^{k} f(t) \chi_{\left[x+s_{n}, y+s_{n}\right)}(t)\right| d t \\
\leq & C \frac{1}{2^{n+2}} \int_{\tilde{I}_{n+1}}\left|\left(b(t)-b_{I_{n+1}}\right)^{k} f(t) \chi_{\left[x+s_{n}, y+s_{n}\right)}(t)\right| d t \\
& +C \frac{1}{2^{n+2}} \int_{\tilde{I}_{n+1}}\left|\left(b_{I_{n+1}}-b_{J}\right)^{k} f(t) \chi_{\left[x+s_{n}, y+s_{n}\right)}(t)\right| d t .
\end{aligned}
$$

By the generalized Hölder's inequality (2.1) with the Young functions used in (4.8) and (4.9), we get

$$
\begin{aligned}
\beta_{n} \leq & C\left\|\left(b-b_{I_{n+1}}\right)^{k}\right\|_{B_{k}, \tilde{I}_{n+1}}\|f\|_{B_{k+1}, \tilde{I}_{n+1}}\left\|\chi_{\left(x+s_{n}, y+s_{n}\right)}\right\|_{B_{1}, \tilde{I}_{n+1}} \\
& +C(n-i)^{k}\|f\|_{\overline{B_{k+1}, \tilde{I}_{n+1}}}\left\|\chi_{\left(x+s_{n}, y+s_{n}\right)}\right\|_{B_{k+1}, \tilde{I}_{n+1}} \\
\leq & C M_{\frac{+}{B_{k+1}}}^{+} f(x)\left(\frac{1}{B_{1}^{-1}\left(\frac{2^{n+2}}{y-x}\right)}+(n-i)^{k} \frac{1}{B_{k+1}^{-1}\left(\frac{2^{n+2}}{y-x}\right)}\right) \\
\leq & C M \frac{+}{B_{k+1}} f(x)\left(\frac{1}{B_{1}^{-1}\left(2^{n-i}\right)}+\frac{(n-i)^{k}}{B_{k+1}^{-1}\left(2^{n-i}\right)}\right) .
\end{aligned}
$$

Then,

$$
\begin{align*}
\left(I I I_{s}\right) & \leq C M_{\overline{B_{k+1}}}^{+} f(x)\left[\left(\sum_{n=i+2}^{\infty}\left(\frac{1}{B_{1}^{-1}\left(2^{n-i}\right)}\right)^{2}\right)^{1 / 2}+\left(\sum_{n=i+2}^{\infty}\left(\frac{(n-i)^{k}}{B_{k+1}^{-1}\left(2^{n-i}\right)}\right)^{2}\right)^{1 / 2}\right] \\
& \leq C M_{\overline{B_{k+1}}}^{+} f(x) \leq C\left(M^{+}\right)^{k+2} f(x) . \tag{4.11}
\end{align*}
$$

Collecting now inequalities (4.2)-(4.6), (4.10) and (4.11) we finish the proof of Lemma 4.6.

Proof of Theorem 4.1. Let us observe that from the definition of $\|\cdot\|_{E}$, it follows that $S_{b}^{+, k} f \leq \mathcal{O}_{b}^{+, k} f$, therefore the first inequality in Theorem 4.1 holds trivially. For the second one, we will proceed by induction on k. The case $k=0$ is Theorem 1.1. Let now $k \in \mathbb{N}$ and suppose that Theorem 4.1 holds for $j=1, \ldots, k-1$. In order to prove the case $j=k$ we proceed as in (3.12): since $w \in A_{\infty}^{+}$, there exists $r>1$, such that $w \in A_{r}^{+}$. Then, for δ small enough, we get that $r<p / \delta$ and thus, $w \in A_{p / \delta}^{+}$. If γ is such that $\delta<\gamma<1$, then by Theorem 4 in [18] and Lemma 4.6 we have

$$
\begin{align*}
\left\|\mathcal{O}_{b}^{+, k} f\right\|_{L^{p}(w)} \leq & \left\|M_{\delta}^{+}\left(\mathcal{O}_{b}^{+, k} f\right)\right\|_{L^{p}(w)} \\
\leq & \leq C\left\|M_{\delta}^{+, \#}\left(\mathcal{O}_{b}^{+, k} f\right)\right\|_{L^{p}(w)} \\
\leq & \leq C \sum_{j=0}^{k-1}\left\|M_{\gamma}^{+}\left(\mathcal{O}_{b}^{+, j} f\right)\right\|_{L^{p}(w)} \\
& \quad+C\left\|\left(M^{+}\right)^{k+2} f\right\|_{L^{p}(w)} \tag{4.12}
\end{align*}
$$

Then, by recurrence, we can continue the chain of inequalities in (4.12) by

$$
\leq C \sum_{j=0}^{k-1}\left\|\left(M^{+}\right)^{j+2} f\right\|_{L^{p}(w)}+C\left\|\left(M^{+}\right)^{k+2} f\right\|_{L^{p}(w)} \leq C\left\|\left(M^{+}\right)^{k+2} f\right\|_{L^{p}(w)} .
$$

Proof of Theorem 4.4. First of all we observe that, by theorem 3 in [22] we have that

$$
w\left(\left\{x \in \mathbb{R}:\left(M^{+}\right)^{k+2} f(x)>\lambda\right\}\right) \leq C \int_{\mathbb{R}} \frac{|f|}{\lambda} \log ^{+}\left(1+\frac{|f|}{\lambda}\right)^{k+1} M^{-} w .
$$

On the other hand, let us notice that theorem 3.1 in [7] holds for one-sided weights with minor changes in the proof. Therefore, using the Coifman type estimate in Theorem 4.1 and the fact that $\overline{B_{k+1}}(t)=t\left(1+\log ^{+} t\right)^{k+1}$ is submultiplicative, we get

$$
\sup _{t>0} \frac{1}{\overline{B_{k+1}}(1 / t)} w\left(\left\{x:\left|\mathcal{O}_{b}^{+, k} f(x)\right|>t\right\}\right) \leq C \sup _{t>0} \frac{1}{\overline{B_{k+1}}(1 / t)} w\left(\left\{x:\left(M^{+}\right)^{k+2} f(x)>t\right\}\right) .
$$

Now, following the same argument used in the proof of theorem 3.3, part (a) in [10], we get the desired result.

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York (1998).
[2] S. Bloom, 'A commutator theorem and weighted BMO', Trans. Amer. Math. Soc. 292 (1985), 103-122.
[3] J. Bourgain 'On the maxiaml ergodic theorems for certain subsets of the integers, Israel J. Math. 61 (1) (1988), 39-84.
[4] J.T. Campbell, R.L. Jones, K. Reinhold and M. Wierdl, 'Oscillation and variation for the Hilbert transform', Duke Math. J. 105 (1) (2000), 59-83.
[5] R.R. Coifman and C. Fefferman, 'Weighted norm inequalities for maximal functions and singular integrals', Studia Math. 51 (1974), 241-250.
[6] R. Coifman, R. Rochberg, G.Weiss 'Factorization theorems for Hardy spaces in several variables' Ann. of Math. 103 (2) (1976), 611-635.
[7] G. Curbera, J. García-Cuerva, J. M. Martell and C. Pérez, 'Extrapolation with weights, rearrangement invariant function spaces, modular inequalities and applications to singular integrals', Adv. Math. 203 (1), (2006), 256-318.
[8] R.L. Jones, R. Kaufman, J.M. Rosenblatt and M. Wierdl 'Oscillation in ergodic theory', Ergod. Th. Dynam. Sys. 18 (1998), 889-935.
[9] T.A. Gillespie and J.L. Torrea 'Dimension free estimates for the oscillation of Riesz transforms', Israel J. Math. 141 (2004), 125-144.
[10] M. Lorente, J.M. Martell, M.S. Riveros and A. de la Torre 'Generalized Hörmander's conditions, commutators and weights', preprint.
[11] M. Lorente and M.S. Riveros, 'Weighted inequalities for commutators of one-sided singular integrals', Comment. Math. Univ. Carolinae 43 (1) (2002), 83-101.
[12] M. Lorente and M.S. Riveros, 'Weights for commutators of the one-sided discrete square function, the Weyl fractional integral and other one-sided operators', Proc. Roy. Soc. Edinb. A. 135 (4), (2005), 845-862.
[13] M. Lorente and M.S. Riveros, 'Two weighted inequalities for commutators of one-sided singular integrals and the one-sided discrete square function' J. Aust. Math. Soc., 79 (2005) 77-94.
[14] M. Lorente, M.S. Riveros and A. de la Torre, 'Weighted estimates for singular integral operators satisfying Hörmander's conditions of Young type', J. Fourier Anal. Apl. 11 (5), (2005) 497-509.
[15] F.J. Martín-Reyes, 'New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions', Proc. Amer. Math. Soc. 117 (1993), 691-698.
[16] F.J. Martín-Reyes, P. Ortega and A. de la Torre, 'Weighted inequalities for one-sided maximal functions', Trans. Amer. Math. Soc. 319 (2) (1990), 517-534.
[17] F.J. Martín-Reyes, L. Pick and A. de la Torre, ' A_{∞}^{+}condition', Canad. J. Math. 45 (1993), 1231-1244.
[18] F.J. Martín-Reyes and A. de la Torre, 'One sided BMO spaces', J. London Math. Soc. 49 (2) (1994), 529-542.
[19] R. O'Neil, Fractional integration in Orlicz spaces, Trans. Amer. Math. Soc. 115, (1963) 300-328.
[20] C. Pérez, 'Sharp estimates for commutators of singular integrals via iterations of the HardyLittlewood maximal function', J. Fourier Anal. Appl. 3 (1997), 743-756.
[21] C. Pérez, 'Endpoint estimates for commutators of singular integral operators', J. Funct. Anal. 128 (1995), 163-185.
[22] M. S. Riveros, L. de Rosa, and A. de la Torre, 'Sufficient Conditions for one-sided Operators', J. Fourier Anal. Appl. 6 (2000), 607-621.
[23] E.T. Sawyer, 'Weighted inequalities for the one-sided Hardy-Littlewood maximal functions', Trans. Amer. Math. Soc. 297 (1986), 53-61.
[24] C. Segovia and J.L. Torrea, 'Vector-valued commutators and applications', Indiana Univ. Math. J. 38 (4) (1989), 959-971.
[25] C. Segovia and J.L. Torrea, 'Higher order commutators for vector-valued Calderón-Zygmund operators', Trans. Amer. Math. Soc. 336 (1993), 537-556.
[26] A. de la Torre and J.L. Torrea, 'One-sided discrete square function', Studia Math. 156(3) (2003), 243-260.
M. Lorente, Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain

E-mail address: lorente@anamat.cie.uma.es
M.S. Riveros, FaMAF, Universidad Nacional de Córdoba, CIEM (CONICET), 5000 Córdoba, Argentina

E-mail address: sriveros@mate.uncor.edu
A. de la Torre, Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain

E-mail address: torre@anamat.cie.uma.es

[^0]: 2000 Mathematics Subject Classification. 42B20, 42B25.
 Key words and phrases. One-sided weights, one-sided discrete square function.
 This research has been supported by MEC Grant MTM2005-08350-C03-02, Junta de Andalucía Grant FQM354, Universidad Nacional de Córdoba and CONICET.

