TWO EXTRAPOLATION THEOREMS FOR
RELATED WEIGHTS AND APPLICATIONS

M. LORENTE AND M.S. RIVEROS

ABSTRACT. In this paper we prove two extrapolation theorems for re-
lated weights. The theorems proved by C. Segovia and J.L. Torrea in
[C. Segovia and J.L. Torrea, Weighted inequalities for commutators of
fractional and singular integrals. Publ. Mat. 35 (1991) 209-235] are
adapted for one-sided weights. We apply these extrapolation theorems to
improve weighted inequalities for commutators (with symbol b depending
on the related weights) of several one-sided operators such as the Weyl and
the Riemann-Liouville fractional integrals, or one-sided maximal operators
given by the convolution with a smooth function. We also characterize the
symbols b for which the commutators of these one-sided operators are
bounded.

1. INTRODUCTION

Extrapolation theorems have been a very useful tool in Harmonic Anal-
ysis. Rubio de Francia developed extrapolation technics for the A, Muck-
enhoupt classes of weights in 1984 ([16]). Several authors had obtained
generalizations of these results or had adapted his technics to solve a great
kind of several problems referring to weighted inequalities (see [5], [6], [11],
[18], 9], [3]).

In this paper we prove two extrapolation theorems for related weights.
Before stating the results we need some definitions. Throughout this pa-
per the letter C' will be a positive constant, not necessarily the same at
each occurrence and M will be the Hardy-Littlewood maximal function,
M f(z) = supp~q 35 ffj: |f|. If 1 < p < oo, then its conjugate exponent
will be denoted by p’ and A, will be the classical Muckenhoupt class of
weights (see [14]). Also, given an interval I = (x,z + h), h > 0, we will
denote by I™ = (z + h,z +2h) and I~ = (z — h, x).

Definition 1.1. The one-sided Hardy-Littlewood maximal operators M ™
and M~ are defined for locally integrable functions f by

1 z+h 1 x
Mt = — d M~ = — .
fa)=supz [ 11, and Mg =sw [

h>0 h>0
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The good weights for these operators are the one-sided weights, A; and

AL
1 b C 1 , p_l
AT su /w(/wp> < oo, l1<p<oo,
( P ) a<bgc (C - a)p a b P
(Af) M w(z) < Cw(x) a.e.,
and
(AL) AL =Ups1 A

The classes A, are defined in a similar way. It is interesting to note that
Ay = AFNAS, A, € Af and A, € A, Also w € Al if and only if
w' P € Ay, 1 <p<oo. (See [17], [10], [11], [12] for more definitions and
results.)

Definition 1.2. The one-sided maximal fractional operator Mj ,0<y <
1, is defined, for locally integrable functions f, by

M3 <x):ilipoh17/m |f1.

It is proved in [2] that |[M f]|La(we) < C|f||Lr(wr) if and only if w €
At (p,q), for 1 <p<1/y,1/p—1/q =", where

1 T 1/q 1 z+h ) 1/p’
A+ _ q - -p <
(A*(p,q)) (h/w_hw) (h/x w ) <C,

1 z+h 1/p/
(A+(p7 OO)) ||WX[x—h,a7}||oo <E/ (,u_p) S C,

for all h > 0 and x € R. The classes A~ (p, q) are defined in a similar way
and also observe that A(p,q) = AT (p,q) N A~ (p,q), for all 1 < p < co and
1 <q<o0.

Now we are ready to state the extrapolation results.

Theorem 1.1. Let v be a weight and T a sublinear operator defined in
C°(R) (the set of C* functions with compact support) and satisfying

BT flloe < Cllf ],

for all B and «, such that o = v3, 371 € AT and a=! € A;.
Then, for 1 < p < oo,

T fllzr(w)y < ClflLe(w)s

holds whenever w € A;[ and v =1vPw € A,.
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Theorem 1.2. Let v be a weight, pg > 1 and T be a sublinear operator
defined in C°(R) such that

BT flloe < Cllfellpo,

for all 3, , such that 3 € AT (pg,o0) and a = v € A(pg, ).

Then, if 1 < p < py and q is such that + — 1 = pio, the inequality

1

P4
T fllLaqwsy < ClIfllLewr),

holds whenever w € A" (p,q) and v =vw € A(p,q) .

In section 2 we state and prove several applications for these theorems,
and in section 3 we give the proof of the extrapolation results.

2. APPLICATIONS

First we give some definitions.

Definition 2.1. For b € L'(R) and v € A, we say that b € BMO,, if
1
b = — [ |b—0b1]| <
]
where I denotes any bounded interval and by = |—}| i) ;b (For v =1 we get

the classical BMO space.)

Observe that b € BMO, if and only if sup; ﬁfl |b—br+| < 00, or
equivalently, sup; ﬁ Jrop Ib=br+] < oo

Definition 2.2. Let f be a locally integrable function. The one-sided
sharp maximal function is defined by

| [eth 1 [eteh +
f#7+(w)=itip05/w (f(y)_ﬁ/x% f) dy.

It is proved in [13] that

1 x+h 1 x+2h
fa+(x) < supinf — (fly) —a)Tdy + + (a— f(y))Tdy
xr h x

h>0a€R +h
< CllfllBmo-

Definition 2.3. Let 0 < v < 1. The Weyl fractional integral is defined
by
[ fy)
I’y f(l') - /T (y . x)]__,y dy

and, for appropriate b, the commutator of the Weyl fractional integral is

defined by
s = [ 0w - ) LYy,

We shall also use for our purposes the following variant of the one-sided
Hardy-Littlewood maximal operator:
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Definition 2.4. For ¢ € C2°(—00,0], ¥ > 0 and nondecreasing in
(—00,0], let ¢.(z) = e tp(e71z) for € > 0. The maximal operator as-
sociated to ¢ is defined as

M} f(x) = Sup e * | f1().

It is not difficult to see that M f is pointwise equivalent to M f. Now
we define the commutator for this maximal operator.

Definition 2.5. Let ¢ be as in definition 2.4. For appropriate b, the
commutators of M} and M7, are

M f ) = sup | " lo@) — bl (@ — ) F )] dy .

e>0

and

x+h
M @) =suw [ bla) - bS] dy

h>0 N

Now we will give the definition of another maximal fractional operator.

Definition 2.6. Let 0 < v < 1. Suppose ¢, € C>®((—00,0]), ¢, > 0,
nondecreasing in (—oo, 0] and such that |¢,(z —y) — ¢, (z)| < Cly||z|7 72,
for all =,y such that |z| > 2|y|. The maximal operator associated to .,
is defined by

MJVJC(SC) = ililg Py, * | f](z).

Definition 2.7. Let ¢, as in definition 2.6. For appropriate b, the com-
mutators of M7 and M, are

ME @) = s [ 1) b)len.e (o — )l ) dy
e>0 Jyx

Now we are ready to state the boundedness results for the operators just
defined. The proofs are based on the extrapolation theorems of section 1.
In the next theorem we get a boundedness result for the commutator

of M}.
Theorem 2.1. Let ¢ be as in definition 2.4. Assume that 1 < p < o0,

veEA, we A; are such that v = (%)1/;; € As. Then, for b€ BMO,,
there exists C' > 0 such that

[ <e [ e,
R ’ R
for all bounded f with compact support.

In the following theorem we get a boundedness result for the commu-
tator of the one-sided fractional integral.
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Theorem 2.2. Let~y, p, q be such that 0 < v < 1, 1<p<— and + —

1
P oa
v. Assume that v € A(p,q), w € At (p,q) are such that v = L € A.
Then, for b € BMQO,,, there exists C > 0 such that

[ <c [ 1,
R R

for all bounded f with compact support.

iCA
w

Finally we state the result for the commutator of M, ;g.

Theorem 2.3. Let v, p, q be such that 0 < v < 1, 1 < p <
w

l - (1] = . Assume that v € A(p,q), w € At (p,q) and v =
Then forbe BMO,, there exists C' > 0 such that

/ MF ftw < C / P,
R i R

for all bounded f with compact support.

Remark 1. Observe that the results in [8] are absolutely different. In [§]
we dealt with only one weight (this allowed us to give results for commuta-
tors of higher order). On the other hand, we can not obtained the results
in [8] (for order k£ = 1) from the present Theorems since we can not take
w = .

Remark 2. The results of Theorems 2.1, 2.2 and 2.3 for two-sided oper-
ators and related A, weights are due to Segovia and Torrea (see [18] and
[19]). The improvement in our theorems for the corresponding one-sided
operators is that we take into consideration a wider class of weights. By
taking w € A; (or w € A% (p,q)), one improves not only on the left hand
side of the inequality, but also on the right hand side. Notice the fact that
v =vPw (or v =vw) gives

Juro= 1o cor [ 1o = [ ipopur).

An example that our class of weights is wider can be seen in [7].

Remark 3. Theorems 2.1 and 2.2 in [7], i.e., the same result of Theorem
2.1, for one-sided singular integrals and for the one-sided discrete square
function instead of M ;r , can be obtained applying the extrapolation The-
orem 1.1 and following the same pattern as in the proof of our Theorem
2.1.

Remark 4. Condition b € BMO,, is the natural one. Given v € A,
and assuming that there exists w € A;; with v = vPw € A, then, by
factorization, it can be proved that v € A5 (see [11] and [20]). This fact,
together with the doubling property for v, easily gives that v € As. It can
be proved that b € BMO,, is necessary to obtain the boundedness of M b+
and Mj’b, 0 < v < 1. We shall state and prove this claim for Mb+. In a
similar way the same result can be obtained for M ,y+ b
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Theorem 2.4. Letv € Ay and b € L}, .(R). The following conditions are
equivalent:

(i) M, is bounded from LP(a) to LP(B), for all1 < p < 00, a € A,,
1/p
B € Af such that <3) =v.
(ii) M, is bounded from L*(v) to L?(v~1).
(iii) b€ BMO,.

Proof. (iii) = (i) It is a consequence of Theorem 2.1.

(i) = (i) It is direct, by taking p = 2, a = v € Ay and 3 = v ! €
Ay C A;r

(i) = (ii1) Recall that b € BMO,, is equivalent to prove that there

exists C' such that 1
V(l) /I ’ ! | C,

for any bounded interval I. Fixed I, let ¢ be the right extreme of IT.
Then

1 1 1

— b(y) —br+|dy = —= — b(y) — b dx|d

5 [0 = ety = o [ [ (b0 =t ay
1 / 1

< —= | 5 b(y) — b(x)| dxdy .

ZaPATGE
Observe that, for y € I,
1 1

) ~ bl do = / (@) — bl (@) de

< CMfxr+(y) -

] )+

Therefore, by Holder’s inequality, (ii) and the fact that v is doubling,

ﬁ/lw(y) —by+|dy < Cﬁ /IMJXH () dy

<0 ( [ g <y>12u—1<y>dy)1/2 ( / )/
o ([ |x; 2<y>2u<y>ji/>l/2 (/ >/
(L) ([r) e @

To prove the above theorems we also need the following lemmas. The
first one can be found in [10].

<

IN
N

‘ ~

~

v(I)

Lemma 2.1. Let w be a weight such that w=' € A7 . Then, there exists
e >0 such that, for all1 <r <14e¢, w™ "€ A] C A_ and w" EA; .
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Lemma 2.2. Assume b€ BMO,, x € R and h > 0. For each k € Z, set
Iy = [z +2%h, 2 + 28HLR), and Jy = [z, 2 + 2FFLh). Then for each | € Z
there exists 6 > 0 such that,

9k(1-9)
|szf1 - bIkl <C v,
[ Je—1l i,
for all k > 1.
Proof. Fix | € Z and set I = J;_; for simplicity. First of all observe that
k—1
|bI - b]k:‘ < |bI - bIl' + Z |bIj - bfj+1|'
j=l

Since b € BMO,, we get

1
s =l = | [00) = b o
i),

! _ v(l)
gm/1|b(m) buldo < 012,

Then, using that v € A, there exists § > 0 such that

v(I) |Jek-1| 1
b — bl <C v
br — by, | < V(Jk—l) I | Je=1] S,

<C( ) | Je—1] 1 5
A\ |kl |f| | Jre—1l S,
=C (le 1|) L v
1] [ o1l Js s
1
—C( ) v
2! [Te1l Jg s
2k(1—5)
o1l S,
In the same way,
- k—1
I.
> s, — bryl < C v(L;)
= = 1]
k—1 1-5
Jp— 1
<c <| k 1|> ,
=\ Il [Ti—1l S,
k—1 ;
21—6 k—j
=C —( ) / v
9k(1-6)
C O
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Lemma 2.3. Let v € Ay. Assume that § and o = v are such that
Bt e AT and o' € Ay. Let b € BMO,. Then, there exists € > 0 such
that, for all1 <r <1+e¢,

1 1/r
<|I|/|b_bl|r T) <O0BYz), ae xecITUIT.

Proof. Since 37! € A7 and a=! € Aj, there exists ¢ > 0 such that
B € AT and @™ € Ay, forall 1 < r < 1+e. Let s > 1 be such
that a=" € RHy (see [12] and [15] for definition). Then, by Holder’s and
John-Nirenberg’s inequalities (see Prop. 6, Chap. III in [21]), we have
that

(2.1) |f|/ bt <m/ 'b:bf‘rs) (ﬁ /Ia)
SC(W) ﬁ/ja_r

Using now that v € A, C AL, a™" € Ay C A, C Af and 7" € AT,
Holder’s inequality gives,

( 1] > |I|/ ( -
(22) S(ﬁ/ﬂ) o e

|

for almost every « € I U I". Putting together inequalities (2.1) and (2.2)
we get the desired result. [

We now pass to prove the theorems of this section.

Proof of Theorem 2.1. For b € L* and f bounded of compact support we
have that M+bf € LP(w). Using theorem 4 in [13],

(2.3) /‘M+bf‘p7«U<C/’M+ M+bf ‘pU}<C/’ bf #.+ [P0

To prove the theorem for any b € BM O, we proceed in the same way as
in [7].

Let A\ be an arbitrary constant. Then b(z) — b(y) = (b(x) — A) — (b(y) — A)
and

M2 @) =sup [ o) = bo)lea = )l )] dy

e>0

(2.4) < sup () A|/ pe(x = y)|f(y)] dy

4 sup / T A= byl — )1 F )] dy

e>0 Jg

= |b(x) = AIM f(z) + MZ((A = b)f)(2).
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We will control (M, ;’ »f)#,+ by sum of several one-sided maximal operators,
which using Theorem 1.1, we shall prove that they are bounded from LP(v)
to LP(w). Fix z € R and h > 0. Set J = [z,z + 8h), A = b; and write
f=fi+ fo, where fi = fx . Then

1

x+2h
: / M, f(y) = MF((b—by) fo) (2 + 2h)| dy

x+2h
<7 / ME((b - bs)f1) ()| dy
1

z+2h
+E/ [ME((b = b)) () = ME((b—bs) fo)(w +20)| dy

sr [ b - bl sl dy

=1I(z)+ II(x)+ I1I(x).

Observe that

x+2h
r+2h—y
2. II < _
(25) [ ) — bl )] deda

by the conditions imposed on .
Consider the following sublinear operators:

1 x+2h
M f) =sw [ MG =) )W)l du

x+2h
+2h —vy
MJr ) = su / / * b(z)—b z)| dzdy,
@) = sup - e bl dzdy

and

x+2h
M) =sww g [ ) = bollgl)l dy
h>0
where, for each h > 0, J is the interval [x,z + 8h).
The above inequalities and definitions give that

(26) (M f)p+(x) < C (M f(2) + My f(2) + M (M f)(=)) -

Boundedness of M;":
Let f € C°(R). Let 8 be a weight such that 37! € A] and, defining
a = v3, then a~! € A;. Using Holder’s inequality, the fact that MJ is
bounded from L"(R) to L"(R) (for all 1 < r < c0) and Lemma 2.3 we
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obtain,

z+2h
1 / ME((b = bs)fxa) ()] dy

h
x+2h 1/r
< (% / |M:<<b—bj>ij><y>vdy)

1 [etsh 1/r
<cly [ p-barlira

1 1/r
<Clifall (5 [ - biraay)

< Cl|folloeB™ (@) -

That is,
1BM{ flloo < Cllfelloo -

So, by Theorem 1.1,

(2.7) Ml 2o wy < CN I Le )

holds, whenever w € A} and v = vPw € A, .
Boundedness of M; :

Let g € C°(R). Let 8 be a weight such that 37! € Ay, and such that
defining o = v3, then a~! € A;. By Hélder’s inequality and Lemma 2.3,

1 1

x+2h x+8h
5[ b - balls)ldy < Cllgallagy [ 1bw) ~ bsla™ () dy

3=

<Cligall (g [ Bo) = baFa™"(0)dy
< Cllgal|f ™" (@).

That is,
HﬁM:;_QHOO < Cllgalloo -

By Theorem 1.1,
(2.8) 1M gl| 2oy < Cllgll o) »

provided that w € A and v = P € A,,.
Boundedness of M, :

Let f € C>(R). Let 8 be a weight such that ~! € A, and such
that defining o« = vf3, then a=! € A;. For each j € N, write I; =
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[z +27h,z + 27t h) and J; = [z, 2 + 27T h). Then

z+42h "
/ / Ay 2|b(z)_bJHf(Z)|dzdy

van (2 — 33+2h))

x+2h bJ|
<
Ch/ hz/ (z — :1;+2h) 31/(2)| dzdy

> 9J+1 .
< Chllfall Y. gz [, 1D —bsla™ ()
i=3 j
(2.9 .

27+1

SCH]EO‘HOOZ (2] 2) <2j+1h/ ‘b _bI ’Oé_1< )dZ

=3
+.L/ ]bI,—bJ]a_l(z)dz>
20t h Jp
> 9it+1

= C||f@\|o02m (V(z)+V(z)) .

Jj=3

By Holder’s inequality and Lemma 2.3,

1 1/r
(2.10) IV(z) <C (ﬂ /Ij |b— bIj|Tar> <CB ).

On the other hand, using Lemma 2.2,

1 1 2](1 5) ]_ 1
Viw) < lb, = bilgmmy /1 o =C Tl Sy, 2T /I v

Since a1 € A; C Ay, observe that,

1 _ _
2j+1h/1_0‘ t<CamH(y),

for almost all y € J;_1. Therefore, using again that 3~ € A7,

23 (1-6)

(2.11) V(z)<C -

va~t < 0270=9571(y)

Put together inequalities (2.9), (2.10) and (2.11) to get,

My (@) < Cllfalle > (;Jﬁw—l(@ 90951 ()
j=3
. — (1 1
<o @lifalle Y (5 + 57

i=3

< a7 (@)|Ifallo -
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As before,
1BMS flloo < Cllfelloo -

So, by Theorem 1.1,

(2.12) M3 fl| o) < ClFl e

holds, whenever w € A} and v = vPw € A,. Going back to (2.3) and
collecting (2.6), (2.7), (2.8) and (2.12), get

/R M fPw < C / (M f) s PP
<c / (M f + My f + My (M f))Pw
R

< C (IIfllzeey + 1f Loy + IME flle )
< Cllfllzr (o) - O

Proof of Theorem 2.2. Fix b€ BMO, and A € R. Then, as in (2.4),
Ly f (@) = L7 ((b = AN f)(@) + (b(x) = N IT f(2) .

If b € L*° and f is bounded with compact support, then Iibf € L1(37),
and by theorem 4 in [13],

@13 [ < [ et < ¢ [ e

To prove the theorem for any b € BM O, proceed as in [7].
Let us bound (I,;tbf)#’+ pointwise. Fix z € R and h > 0. Set J =
[z, + 8h) and write f = f1 + f2, where f; = fx. Then, with A = b,

1 x+2h
! / L5, f () = IO = b)) fo) ( + 20) | dy
r+2h
< % / L (b= b) 1) ()| dy
(2.14) 1

x+2h
bu [ @b - L (@ b))+ 20)] dy

x+2h
br [ b - bl sy
= I(x)+ [I(x)+ I[II(x).

It is clear that
ITI(x) < M3 (IF f)(x),

where M;' is as in the proof of Theorem 2.1. We already know that Mg’
is bounded from LP(«) to LP(3), whenever (3 € A;’ and o = VP € Ay,
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1 < p < oo Sincew € AT(p,q) and v € A(p,q), then w? € Al and
v? =viw? € Ay, by [2]. So

M5 (LF Pl pawey < CNLF fllpagsy < ClIfllLery »

for all f € C°(R).
To control I(x) let us define

M = L IT((b—b d
Fr@) = s g [ IO = b o)Wl

where, for each x € R and h > 0, J = [z, 2 + 8h). Let us prove that MI

is bounded from LP(v?) to L(w?) using Theorem 1.2.
-1
Let g € A+(%,oo) and such that « = v € A(1/v,00). Then 1= €
A; and aty = (Vﬁ)% € A;. Therefore, there exists t; > 1 with the

—t
properties that aTy € Ay, s = 1t_—17 > 1 and Lemma 2.3 holds for such

s. Let r be such that 1/r — 1/s = ~. Then, using Holder’s inequality, the
fact that It is bounded from L"(R) to L*(R) and Lemma 2.3,

x+2h
A ORI

z+2h 1/s
< (%/ 115 (b~ bJ)fXJ)(y)|de>

z+8h 1/r
(215) g (1 / |<b<y>—bj>f<y>|’"ara—rdy>

h
1 x+8h . . % 1 z+8h
<Ch? (ﬁ/ b—1by Trof”) (ﬁ/ |f|%o¢

< Cl|fall1 67 () -

2=

) ¥
As a consequence,

Then, by Theorem 1.2,

M5 fllzaqws) < ClIf e (r),

whenever w € A*(p,q), v =rvw € A(p,q), = and f € CX(R).

1_1
P g

Finally, let estimate

IHw) =5 /

/ U(tpy)dt‘ dy,

+8h

where

o) = 00 =000 (= — = gy )
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Consider the following sublinear operator in C2°(R):

Mgrf(a:) = sup—/

/ o(t, y)dt’ dy.
z+8h

For cach j € N, set I; = [¢+ 2 h,x +27+'h) and J; = [z,2 + 2% h).
Then, by the mean value theorem,

1 x+2h 00
—/ / U(t,y)dt’ dy
h T x+8h

r+2h OO
/ Z/ |o(t, y)| dtdy
x =3 1;

<c3 10 = Bl O et

SIS

o0

219 <O e ( o, o —bJHf()\dt>
gcg(zj L ( =N —b1||f()|dt>
n 0:3 N (zjih [ - bJHf(t)|dt)
< ci (W’ﬁ%(zvg) + V() .

<.
Il
w

Let 5 € A*(%,oo) and such that a = v € A(%,oo). Then a7 € 4
which implies that a=! € A;. Choose r > 1 — 7 such that Lemma 2.3
holds for 117. Then, by Hoélder’s inequality,

Y
2 1 1
v < - Ty
(@) < (Qh/ 1o )
2 1_7
1 —1
X - b(t —b[. Ty i-7
- (Wh IRCE )

< C(2jh)‘”\|fa!|% (ﬁ / (e) - blj\l-za1_z>
C@h) 7| foll 187 a)
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Using again Lemma 2.2 and Holder’s inequality,

V) < giglhs bl [ 150l
2](175) 1 101 1 1 7
<C N Yo R ~
<Cuarl 2ﬂh/fj'f' o Jh/ff“
|J] 1| Ji1 (23

-
1
[a=)
I )
i =1
@™ < Cai(y)

l\D

‘ -

< C291=9(27p)~ wfa||1

>

J
—1
Since a™=7 € A; C A7,

1
27h

for all y € J;_;. Then, using now that s~! € AT,

Via) < 0@ ol o [ va?
J— -1

< 022 | fal |15 (x)

(2.18)

Put together inequalities (2.16), (2.17) and (2.18), to get

1 x+2h [e%)
- / / o(t, y)dt‘ dy
h T z+8h

oo h,y

< C||fa||%ﬁ_1($) Z R ((zjh)—“Y + 23’(1—5)(2jh)—v>
(33

Taking supremum first on A > 0 and then on = € R, get,

<.
I
w

]2

< Cllfoll 1674 ()

<
Il
w

< Cllfallsp (@)

1BM I < Clifals
So, by Theorem 1.2,
IM5" f1]Laqway < ClF e ey

whenever w € AT (p,q) and v = vw € A(p,q),
Ce(R). O

1 1 _
I—D—E—'yandfG

The proof of Theorem 2.3 follows the same pattern as Theorem 2.2, so
we omit it.
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3. PROOF OF THE EXTRAPOLATION THEOREMS

To prove our results on extrapolation, we need the following lemma (see

[16] and [18]).
Lemma 3.1. Let p be a weight, and let 1 < r < oo. Let W € A, such

T

that )" W € A,. Then, for all u € L™ (W), there exists U € L™ (W) such
that

(i) u(z) <U(x), a.e.

(i) Ul wy < Cllullr )

(iii) UW € A] and UuW € A;.
Proof. Define first the following operator

S(h) =W *MT(Wh) + (uW) ' M(uWh) .

We claim that this operator is bounded from L™ (W) to L™ (W). In-
deed, observe that W e A if, and only if, wi-r' ¢ Aj,. Then MT
is bounded from L™ (W'="") to L™ (W'~="). Also, /’W € A, implies
that (W)~ = p="W'"" € A,. Therefore M is bounded from
L (=" W) to L™ (u=" W'=""). As a consequence,

/(S(h))’“’w < O/W?“’(MﬂWh))T’W + O/(HW)T’(M(MWh))T’W
=C / (M*T(Wh))" W +C / (M(uWh)) =" wi=

<C / (Wh)' W= 4+ C / (LWWh) =" Wi

= 0/ |h|” W .

Then, by lemma 5.1 in [4], given u € L™ (W), there exists U € L" (W)
such that |[U|[, ) < 2[[ul[wy, Ulz) = u(z) and S(U)(z) < CU(x)
a.e. ¢ € R. Then

W IMT(WU)(z) < CU(z) and (uW) 'MT@WU)(z) < CU(x),
a.e. x € R. In other words, WU € A} and pWU € A;. O

Proof of Theorem 1.1. Fix w € A;, such that v = vPw € A,. Let f €
LP(v) and consider

17/

w T @U@@w @) flx) #0,

g(x) = / ||f||LP(v; ’
w T (2)e” if f(z)=0.

Observe that g € LP(w'™?") and gl 2o (wr-»y < 2. On the other hand,
w? e A, and vP WP € Ap. Then, by Lemma 3.1, there exists
G e LP(w'~?"), such that
(i) g(z) < G(x), a.e.
(ii) ||G||Lp(w17p’) < C||g||LP(w1*P’)a
(iii) Gw'™? € A7 and Gv—'w'~? € A;.
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Let 3 = (Gw'™?)~!. Then 87! € A] and, defining o = 13, we also
have ! = (v38)~! € A; and

18T fllo < Cllf|c-
So, /
11120y = llg™ 0™ 7 | |07 [|oc
> |G w5 flrw? o
= I(Gw" )0 f| |0 = llfarlloe
> C|IBT flloo = |G w? ' T f] |0

/ 1/p /
>(C (/ Gpwl_p) ||G_1wp _1Tf||oo

1/
> C (/ G—pwp(p’—l)’Tf‘vapwl—p’) "

=C||Tfl|Le(w) - O

Proof of Theorem 1.2. Fix 1 < p < pg, q such that ]l) — % = plo and
w € AT (p,q) such that v = vw € A(p,q). Observe that, for r = 1+ q/p’
and s = 1+1p'/q (s' = q/p}), we have that w? € AF, v e A, w? € A]

and v = v P w P € A,. Let f € LP(v?) and consider

PPy

[ f1lLeor)

Observe that h € L¥ (w™®"). In fact |||+ (-»y = 1. Therefore, by
Lemma 3.1, there exists H € L* (w™"") such that
(i) h(x) < H(x), a.e.
(i) [[HI Lo -pry < CllAllLer vy = 1,
(i) Hw™? € AT and Hv " w7 € A,.

Let 8 = (Hw™"") *0 and consider a = v8. Then 3 € A (po,c0) and
a € A(pg,00). As a consequence,

1/po
’ 7 1\ P
fllzer) = (/|f|p° (hfl/Poywp /po> 0)
/ 771\ Po 1/po
> (/mpo (H—l/Po,/wP /po) )

= [|fl[zro (aro) = C|IBT f|l
_ CHTfH—l/pbwp'/pBHOO

1/q
> C||TfH™Pow? /Po|| o (/ Hq/péw—p')
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1/q
> C </ \Tf|qH_q/p6wqp//p6Hq/p6w_p/>

= Cl[T fl|La(wa)- O

REFERENCES

[1] H. Aimar, L. Forzani and F.J. Martin-Reyes, On weighted inequalities for one-sided
singular integrals, Proc. Amer. Math. Soc. 125 (1997), 2057-2064.

[2] K. F. Andersen and E. T. Sawyer, Weighted norm inequalities for the Riemann-
Liouville and Weyl fractional integral operators, Trans. Amer. Math. Soc. 308
(1988), no. 2, 547-558.

[3] D. Cruz Uribe, J.M. Martell and C. Pérez, Eztrapolation from Ao weights and
applications, to appear in J. Funct. Anal.

[4] J. Garcia Cuerva, J.L. Rubio de Francia, Weighted norm inequalities and related
topics, North-Holland (1985).

[6] E. Harboure, R.A. Macias, C. Segovia, Extrapolation results for classes of weights,
Amer. Jour. Math. 110 (1988), 383-397.

, An extrapolation theorem for pairs of weights, Cuadernos de Matemaética
y Mecéanica 2-87 (1987).

[7] M. Lorente and M.S. Riveros, Two weight norm inequalities for commutators of
one-sided discrete square function, Jour. Aust. Math. Soc 79 (2005), 77-94.

, Weights for commutators of the one-sided discrete square function, the
Weyl fractional integral and other one-sided operators,, Proc. Roy. Soc. Edinb. A.
135 (4) (2005), 845-862.

[9] R. Macias and M.S. Riveros, One-sided extrapolation at infinity and singular in-
tegrals, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 1081-1102.

[10] F.J. Martin-Reyes, New proofs of weighted inequalities for the one-sided Hardy-
Littlewood mazimal functions, Proc. Amer. Math. Soc. 117 (1993), 691-698.

[11] F.J. Martin-Reyes, P. Ortega and A. de la Torre, Weighted inequalities for one-
sided mazimal functions, Trans. Amer. Math. Soc. 319 (2) (1990), 517-534.

[12] F.J. Martin-Reyes, L. Pick and A. de la Torre, AZX condition, Canad. J. Math. 45
(1993), 1231-1244.

[13] F.J. Martin-Reyes and A. de la Torre, One-sided BMO spaces, J. London Math.
Soc. 2 49 (1994), 529-542.

[14] B. Muckenhoupt, Weighted norm inequalities for classical operators, Proc. Sym-
pos. Pure Math. Amer. Math. Soc., Providence, R.I. 35 (1979), no. 1, 69-83.

[15] M.S. Riveros and A. de la Torre, On the best ranges for A;{ and RH;T, Czechoslo-
vak Math. J. (126) 51, 285-301.

[16] J.L. Rubio de Francia, Factorization Theory and A, Weights, Amer. Jour. Math.
106 (1984), 533-547.

[17] E. T. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood mazimal
functions, Trans. Amer. Math. Soc. 297 (1986), 53-61.

[18] C. Segovia and J.L. Torrea, Weighted inequalities for commutators of fractional
and singular integrals, Publ. Mat. 35 (1991), 209-235.

, Vector-valued commutators and applications, Indiana Univ. Math. J. 38

(4) (1989), 959-971.

, Extrapolation for pairs of related weights, Lect. notes in pure and appl.
math. 122 (1990), 331-345.

[21] J. Stromberg and A. Torchinsky, Weighted Hardy spaces, Lecture Notes in Math.
(Springer-Verlag) (1989).

[19]

[20]

Maria Lorente. ANALISIS MATEMATICO. FACULTAD DE CIENCIAS. UNIVERSIDAD
DE MALAGA. (29071) MALAGA, SPAIN. FAX: +34-95-2131894
E-mail address: lorente@anamat.cie.uma.es

Maria Silvina Riveros. FAMATF, UNIVERSIDAD NACIONAL DE CORDOBA - CIEM
(CONICET). (5000) C6RDOBA, ARGENTINA. FAX: +54-351-4334054
FE-mail address: sriveros@mate.uncor.edu



