PAMPA Tutorial

1 Introduction

PAMPA (Parameter Assessment Method for PIXE Analysis) is a software package for the analysis of x-ray spectra induced by proton impact (PIXE). The program is based on a method for optimizing atomic parameters related to the elements present in the target, parameters related to the sample, and instrumental parameters.

The software is written in Object Pascal, and runs under Linux and Windows operative systems. PAMPA has a graphical environment developed with the Lazarus IDE tool. Within this environment, the sample characteristics and the parameters to refine can be chosen.

The program allows the analysis of two kinds of samples: thick (bulk) sample and film on a bulk substrate. The analyzable elements range from B to U, involving up to 30 elements per analysis. The present version of PAMPA allows up to 30 K or L lines for each element to be analyzed.

Regarding the ionizing beam, protons in the whole range of interest in PIXE are considered, since the data bases used for both ionization cross section and stopping power are recommended between 10 keV and 10 GeV.

2 Installation

2.1 Needed software

To use PAMPA in Linux the following software packages must be installed:

- Lazarus, fpc, fpc-src: http://www.lazarus-ide.org/index.php?page=downloads
- Gnuplot: http://www.gnuplot.info/download.html

For the Windows version only Lazarus must be installed:

• Lazarus: http://www.lazarus-ide.org/index.php?page=downloads

2.2 File structure

Within the main PAMPA directory there are the following subdirectories:

- dat : Involves the data bases used by the program.
- esps : Involves the files .spe which consists of the experimental spectra. Two example spectra corresponding to a bulk sample and a thin film supported on a substrate are included in the installation package.
- pampa : Involves the program files.
- pampa/ajustes: Involves the input files included in the installation package as examples of thick sample (mgruesa.dat) and thin film (mdelgada.dat) corresponding to the example spectra included in 'esps' directory.

2.3 Installation process

To compile the software package, the following steps must be carried on:

- Open the 'pampa.lpr' project with Lazarus.
- In the 'Unit1.pas' file set SistOp:=1 for Linux and SistOp:=2 for Windows. Set the 'DiUser' variable as the directory where the programa was copied.

3 Structure of input files

3.1 Spectra

The files containing spectra must have the extension '.spe' and the structure shown bellow, where in the second line the inicial and final channel numbers are displayed; the subsequent lines correspond to the number of counts for each channel, with 10 values in each line.

In 'pampa' directory, the program 'PIXtoPAMPA.pas' converts a '.PIX' file involving four columns, to the format used in PAMPA. This routine is given just as an example that should be modified for each particular spectrum file format.

\$DATA:									
Θ	2048								
Θ	0	0	0	Θ	0	0	0	Θ	Θ
Θ	0	0	0	Θ	0	0	0	Θ	Θ
Θ	Θ	0	Θ	Θ	0	0	Θ	Θ	Θ
Θ	0	0	Θ	Θ	0	0	0	Θ	Θ
Θ	0	0	Θ	Θ	0	0	Θ	Θ	Θ
Θ	0	0	Θ	Θ	0	0	0	Θ	Θ
Θ	0	0	Θ	Θ	1	2	3	2	2
2	2	1	0	Θ	0	0	4	14	11
15	13	11	22	42	99	170	452	672	894
1114	1929	4140	6520	7166	7055	8308	16479	33292	47591
42243	23224	9326	2687	775	471	385	443	387	425
399	440	433	458	489	477	502	475	519	509
501	609	555	527	463	406	475	483	491	428
477	517	529	542	611	738	810	1002	1189	1308
1778	2348	2877	2951	2583	2378	2503	4832	13036	28942
52475	68955	70918	59271	44086	28755	16286	9250	5069	2465
1130	549	319	286	290	402	455	488	458	366
332	265	257	226	193	163	148	115	103	91
83	99	84	77	80	81	61	86	67	68
61	59	62	56	58	51	51	57	58	46
37	38	43	47	53	40	37	45	37	35
41	32	28	44	36	28	32	33	20	32
25	42	35	49	66	78	94	76	84	54
51	38	31	19	15	25	12	18	18	18
14	17	14	11	18	12	9	9	11	12
10	11	15	10	14	11	11	11	19	19
19	11	11	9	9	10	5	11	17	8
6	9	14	13	23	21	9	9	8	5
6	11	4	9	6	13	7	9	10	10
8	11	9	3	9	12	12	15	14	14
4	11	8	10	7	4	2	7	5	4

3.2 Input configuration files

The input configuration file has an extension '.dat' and involves all the information related to the analyzed sample, along with all the optimizable parameters. Each parameter has two associated variables: 'Código', which defines if the parameter will be refined (Código=1) or not (Código=0), and 'Lambda', which corresponds to a fraction of the associated parameter (0.1 for default). 'Lambda' defines the searching distance for each parameter in the minimization algorithm.

The configuration file can be created by inputing all the required information in the different windows of the program, or a previously created configuration file can be used. In the last case, the file must be open through File \rightarrow Open.

To open one of the '.dat' example files provided with PAMPA it is necessary to edit it and change the directory where the corresponding spectrum was copied.

4 Optimization procedure

The parameters to refine must be chosen by means of the check-boxes, defining a value for the convergence tolerance and the spectral region to fit.

When the fitting process ends, the program updates the refined parameter values and, thorough the Gnuplot environment, displays a plot of the experimental spectrum, along with the fitted curve and the residuals. In addition, each contribution of continuous background, characteristic peaks, their asymmetric tails, and spurius peaks are displayed separately.

By means of File \rightarrow Save, the '.dat' file is saved together with a '.sal' file, which contains: the experimental spectrum, the fitted curve, the continuum, the characteristic lines, the asymmetric tails and the sum peaks.

4.1 Refinable parameters

The parameter that can be refined during the minimization procedure are the following:

- Calibration: Gain (G) and Zero (Z_0) .
- Detector characteristic thicknesses: window, ohmic contact, dead layer.
- Countinuous background: A, B and C.
- Detector response: Noise (n) and Fano (F).
- Global scale constants: K- and L-line group constants.
- Characteristic energies and relative transition probabilities.
- Peak asymmetric tails: β_{jq} and t_{jq} .
- Mass concentrations of the elements present in a bulk sample (layer 1).
- Mass concentrations of the elements present in a thin sample (layer 2).
- Sum peaks: I_{suma} , b and w.
- Intensity of the internal Si fluorescence.