
X-RAY SPECTROMETRY, VOL. 18, 229-234 (1989) 

Backscattering of 10-35 keV Electrons from Thick 
Targets at Normal Incidence 
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Energy distributions of backscattered electrons were obtained by Monte Carlo simulations for a wide range of 
elements for electron beams at normal incidence and with energies E, between 10 and 35 keV. These spectra were 
compared with experimental data and with a theoretical expression. An analytical expression was fitted to the 
simulated data. An expression for the backscattered electron coefficient q as a function of atomic number Z and 
incident energy E, was obtained. A model for q and the energy distribution of backscattered electrons for multi- 
element samples is suggested. 

INTRODUCTION 

Packwood and Brown' showed that the depth distribu- 
tion of characteristic x-ray production ~ ( P z )  can be 
described by a Gaussian expression: 

4 ( P 4  = Yo exPC-a2(Pz)21 

which requires an accurate knowledge of the parameters 
a, b, y o  and 4,, pz being the mass depth. 

Tirira and Riveros' showed that the parameters yo 
and 4o can be described by 

2 r0Q(u) dU 

Q ( ~ o )  r0 dU 
Yo = 

and 

where U is the overvoltage, U, is the incidence overvol- 
tage and Q( U )  is the ionization cross-section. 

In order to assess Eqns (2) and (3), a model for drljdU 
must be used. Czyzewski and Szymanski3 developed an 
expression for this, but it is a complicated function of U 
and makes the integration difficult. For this reason, a 
simple analytical expression to describe dy/dU spectra 
was fitted in this work. An evaluation of the use of the 
complete expression given by Eqns (2) and (3) will be 
the subject of a subsequent paper. 

* Author to whom correspondence should be addressed. 

In order to carry out this fitting, a set of data from 
Monte Carlo simulations was used because of the diffi- 
culties in obtaining experimental spectra. For this 
purpose, the MC program4 was used. 

This simulation model uses Bethe's law' for contin- 
uous energy loss along a segmented path. Each segment 
or step represents the distance between two single 
elastic interactions and is taken as a stochastic variable 
in addition to both angles involved in each deflection. 
In determining the step length and polar scattering 
angle, a single screened Rutherford cross-section is used. 

In this simulation model, approximately 10 OOO paths 
are required in order to obtain a mean square deviation 
of about 1% in the maximum of the backscattered elec- 
tron energy distribution. Thus, about 8 computer hours 
(PC-AT, 8 MI-Iz) are needed in order to obtain each 
spectrum. 

EXPERIMENTAL AND RESULTS 

Backscattering coefficient at normal incidence 

A large number of backscattered spectra (138) for 
normal beam incidence at energies E ,  of 10, 15, 20, 25, 
30 and 35 keV were obtained for atomic numbers Z 
from 13 to 92. The simulations were performed for elec- 
tron energies between E,  and 1 keV. Thus, the fraction 
of backscattered electrons neglected (with energies 
lower than 1 keV) is lower than 0.3% (see, e.g., Ref. 6). 

The results confirmed a strong dependence of q on 
the atomic number of the specimen and a weaker 
dependence on the incidence energy, E ,  ; this behaviour 
has been found previously by other workers. 6-8 This 
can be seen in Fig. 1, where values obtained by MC 
and by Drescher et al.* are plotted as a function of E ,  . 

A simple fitting analytical expression for these data as 
a function of Z and E ,  was developed: 

~(2, E,) = aZ0." + bE, + c (4) 
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Figure 1. Experimental and simulated backscattering coefficient 0 
as a function of beam energy. 0, Drescher et a/.,8 0, this work. 

where a = 10.50 k 0.05, b = -0.00102 f 0.00007 and 
c = -10.911 f 0.007, which fits all 138 data with an 
r.m.s. error (T of 0.007 and a multiple regression coefi- 
cient of 0.9983. Nevertheless, it is necessary to keep in 
mind that this is merely a fit, and therefore it must not 
be used away from the range of values for which it was 
developed. 

In Fig. 2 a plot of q given by the Monte Carlo 
method us. the corresponding q values predicted by the 
fitting can be observed. Experimental data from 
Bishop' and Drescher et al.* were also plotted against 
the corresponding q values given by Eqn (4). It can be 
seen that the Monte Carlo data are closely distributed 
around a straight line of slope unity, showing the 
quality of this fitting. The experimental and simulated 
data show very good agreement, with deviations only 
for high q.  These deviations are more clearly showed in 
Fig. 1 ; a systematic trend for the experimental data to 
remain below the simulated data occurs at high Z, espe- 
cially for low incident energies. The most important fact 
is that also in these cases a difference in the behaviour 
of the data is observed. For simulated data q decreases 
for increasing E o ,  whereas for the experimental data q 
increases. These effects, also noted by Bishop: could be 
due to either the use of Born's approximation in the 
elastic cross-section expression or the continuous 
energy loss approximation. The first possibility is sus- 
tained by the fact that Born's approximation fails for 
large deflection angles, since the scattering probability 
at large angles is high both when the electron to be 
scattered has low energy and when the atomic nucleus 
is heavy. Both conditions are given precisely when the 
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Figure 2. Experimental and simulated backscattering coefficient 0 
as a function of the corresponding values predicted by Eqn (4). 0, 
Drescher eta/.,' 0, B i ~ h o p ; ~  0, this work. 

Energy distribution of backscattered electrons 

As indicated above, spectra with energies between E, 
and 1 keV were obtained from simulations, and this 
range was divided into 51 intervals. 

In Fig. 3, MC data are compared with the experimen- 
tal values published by Darlingtod and with those pre- 
dicted by Czyzewski and Szymanski3 for aluminium, 
copper, silver and gold at 10, 20 and 30 keV. Close cor- 
respondence between the experimental and simulated 
data can be observed; only for all the gold spectra and 
the silver spectrum at 10 keV are the experimental data 
slightly below those produced by the MC program in 
the intermediate region. This agreement shows that the 
set of MC data used to fit an analytical expression is 
adequate ; nevertheless, the deviations of q with respect 
to the experimental data mentioned in the previous 
section, also do affect the shape of the differential 
energy distribution of backscattered electrons in the 
same cases. On the other hand, in all cases the MC data 
approach the experimental values more closely than (or, 
in a few cases, as closely as) those given by Czyzewski 
and S~ymanski.~ 

In analysing the behaviour of simulated spectra, 
typical Poisson shapes were observed. This behaviour is 
in agreement with the relationship found between the 
most probable value and the arithmetic mean value of 
p = 1 - W (W = E/E,) for dq/dp. This ratio was found 
to be approximately 0.5, as expected for a Poisson dis- 
tribution. For this reason, the following trial function, 
normalized to unity, was chosen: 

(5 )  

Since the spectra obtained by simulations may be 
regarded as the sum of an actual distribution and a 

d4 P exP(-P/4 
dP #I2 

largest deviations between the simulated and experi- 
mental data are observed. Perhaps this problem can be 
elucidated using more accurate cross-sections in the 
simulation model, e.g., the cross-sections reported by 
Mott and Massey." 

-- - 
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Figure 3. Experimental and simulated integral spectrum of backscattered electrons for several elements and beam energies. (a) 10; (b) 20; 
and (c) 30 keV. 0, Darlington;6 0, this work. The function obtained by Czyzewski and Szymanski3 is also plotted (solid lines). 

white noise, the integral spectrum ~(p), which represents 
the probability of an electron being scattered with 
values ranging from 0 to p, was used to find the best L 
in Eqn (5). Thus the white noise effect is significantly 
reduced. Then, from Eqn (5), the functional form for fi(p) 
is 

Fib) = 1 - (1 + P/WP(-P) (6) 

A linear fit of the function ~ ( p ) ,  obtained from the 
simulations, us. fib) was performed for each spectrum; 
the following expression is proposed : 

1(P) = C,f i (P) + c2 

where c1 and c2 are constants. In order to carry out this 
fit, A was chosen so as to be capable of minimizing the 
r.m.s. error by means of a numerical method of mini- 
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mization. It was found that all spectra are appropriately 
fitted by this trial function (see Fig. 4), producing in the 
most unfavourable case a linear correlation coefficient 
r = 0.996 and 0 = 4%, the worst values of r correspond- 
ing to high atomic numbers and low energies; on the 
other hand, the best case produces r = 0.99998 and 
B = 0.4%. The multiplicative constant c1 corresponding 
to each spectrum is very close to the v coefficient for 
backscattered electrons. Differences greater than 10% 
were found in only very few cases, all of which also cor- 
respond to high atomic numbers, especially at low ener- 
gies. The greatest additive constant c2 was 0.041, a 
typical value being 0.0051. These considerations lead to 
a definition of fi' as fi'(p) = qfi(p). 

The resulting values of 1 from all the spectra show a 
strong dependence on atomic number. From Eqn (5) it 
can be seen that this parameter represents the value of p 
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Figure 4. Fitting (solid lines) of integral spectrum of backscattered electrons for several elements and beam energies (a) 10; (b) 20; (c) 30 
keV. MC simulated data are also plotted (0). 
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Figure 5. Coefficient A vs. atomic number Z from all M C  spectra 
and the fit (solid curve) given by Eqn (7). 

for maximum backscattering probability. According to 
other w o r k e r ~ , ~ . ~  the parameter il approaches zero for 
increasing Z .  In other words, most of the backscattered 
electrons leave the sample with an energy approaching 
E ,  for increasing Z .  On the other hand, the dependence 
of I on the incidence energy was found to be too weak 
to be clearly determined. 

Taking into account these considerations, a fit of 1 us. 
2 was performed : 

A = A Z - 0 . 5  + B (7) 
producing a regression coefficient r = 0.9879 and 
0 = 0.006, with A = 0.907 k 0.012 and B = -0.012 & 
0.006. Values of A predicted by this expression and 
those produced by the simulations are plotted as a func- 
tion of Z in Fig. 5. 

Then, from Eqns (5)-(7), we obtain 

exp[ -p / (AZ-O.s  + B)] (8) - dij’ ?P 
dp = (AZ-0.5 + B)’ 

and 

In order to assess the performance of Eqn (9), corre- 
sponding r.m.s. errors with respect to simulated data 
were calculated for each of the 138 spectra, the largest 0 

being 9% and the smallest 1%; the respective correla- 
tion coeficients were 0.994 and 0.999985. These con- 
siderations suggest that the trial function ij’(p) is 
adequate to express the integral spectrum of back- 
scattered electrons, ?@). The greatest deviations corre- 
spond to high atomic numbers and low incidence 
energies, as occurs in the fitting of the trial function 
given by Eqn (6), i.e. without including the expression 
fitted to 1. It has been seen that in these cases, simulated 
data apart from experimental data: with improvement 
of the simulation, perhaps better agreement between the 

fit and simulated data would be obtained and, further, 
both the fitted and simulated data would approach the 
experimental values. 

Backscattering in binary samples 

So far only single element samples have been studied 
and nothing has been stated about multielement 
samples. The development of an expression that is able 
to deal with the latter would be of great interest in 
microanalysis. Since the MC program produced very 
good results for pure samples, it is necessary to look at 
the expressions used in the program which involve a 
dependence on any parameter proper of the considered 
element (e.g. atomic number). A more effective way of 
averaging these expressions when more than one 
element is present in the sample will be considered. 

The MC model for electron backscattering involves 
three magnitudes, depending on the elements that con- 
stitute the sample: the stopping power, the differential 
cross-section for elastic scattering, o(8), and the total 
cross-section, oE , Rutherford’s expressions being used 
for cross-sections. 

Bethe’s law for energy loss5 can be stated as 

dE/ds = Ng(E) (10) 
where N represents the number of atoms per unit 
volume in the sample and g(E) is the average stopping 
per scattering centre taking into account all electronic 
levels : 

2ne4 
g(E) = - - 2 ln(1.166EIJ) (1 1) E 

where e is the electron charge and f is the mean ioniza- 
tion potential. 

If the sample is composed of more than one element, 
then a passing electron loses energy because of the 
interactions with each of the atoms of these elements; 
hence Bethe’s law may be expressed as 

(12) 
where N i  represents the number of atoms of type i per 
unit volume in the sample: 

dE/ds = N,g,(E) + N ,  92(E) 

P s a m p 1 e 
Ci NO N .  = - 

’ Ai 

where Ci is the mass concentration, A j  is the atomic 
weight, N o  is Avogadro’s number and psample is the 
density of the sample. Bearing in mind that the depen- 
dence of the stopping power on mean ionization poten- 
tial is weak, the following approximation can be made: 

dE 2ne4 - 
-= -- Z N  ln[1.166E/(O.O115Z)] (14) 
ds E 

in which Wilson’s’ ionization potential has been used, 
and the following definition for 2 has been taken: 

In the most unfavourable cases (e.g. a binary sample 
with 2, < 15, 2, > 90 and N ,  = N, for a typical 
energy of 10 keV), the difference between Eqns (12) and 
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(14) is about 10%. Therefore, the same expression as for 
a pure sample, evaluated with the mean atomic number 
(atomic average), can be used for the stopping power of 
a binary sample. 

It has been shown in Eqn (12) that the stopping 
power must be atomic averaged in order to obtain an 
average with physical meaning. In order to arrive at this 
conclusion, Bethe’s original ideas’ were used. The 
analysis shows that the approximation made by Reed,” 
according to which the stopping power must be mass 
averaged, is not adequate. He assumed that the density 
of a binary sample was a function depending only on 
the density of each of the components and of their 
respective concentrations. 

The cross-section for elastic scattering, a(@, rep- 
resents the probability of an electron being scattered at 
an angle between 8 and 8 + d8 by a scattering centre. 
Rutherford’s expression is 

7 2  -4 
L C  

= 
16E2(sin2 812 + u) 

where u = 4.34 eV ZZi3/E. 
When there is more than one type of element in the 

sample, it is necessary to average cross-sections accord- 
ing to the number of scattering centres of each type 
present in the sample: 

An approximation similar to those carried out in 
dealing with the stopping power can be adopted: 

Z2e4 
16Ez(sin2 8/2 + 5) 

c(e) = 

where E = 4.34 eV Z213/E. 
In comparing Eqns (1 7) and (1 8) small differences are 

observed; for example, for the unfavourable case con- 
sidered above, the relative standard deviation is about 
10% for the angles in which the scattering probability is 
not negligible. In Fig. 6 a plot of exact and approx- 
imated cross-sections as a function of the scattering 
angle, 8, is shown. Good agreement between both 

0.0 012 O k  
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Figure 6. Exact (solid line) and approximated (broken line) 
cross-sections for elastic scattering, a(@, for a hypothetical com- 
pound 50% U-50% A1 (atomic concentrations) at 10 keV as a 
function of scattering angle. 

expressions for cross-section can be observed; this sug- 
gests that the approximation is acceptable. 

The total cross-section, aE, is the integral of a(8) 
between 8 = 0 and 8 = IT: 

Z2e4n 
4E2u(l + u) 

LTE = 

From Eqn (17), it is possible to express the total 
cross-section as 

If the same procedure as for the stopping power and 
the differential cross-section is performed, it can be seen 
that in the cases considered above, the difference 
between Eqn (19) evaluated with 2 and Eqn (20) is also 
small (about 12%). 

The probability density of scattering for an angle 
between 8 and 8 + do, used by the MC program for the 
calculation of scattering angles, is defined as the ratio 
between the differential and total cross-sections. As has 
been seen, in the expressions of both parameters for a 
binary sample it is reasonable to approximate the exact 
expressions by those obtained by evaluating them with 
atomic averaged values of Z ;  hence, this approximation 
applied to the probability density should also be good. 

Summarizing, if binary samples are considered, in 
order to give an analytical expression for q or for spec- 
tral distribution of backscattered electrons, Eqn (4) or 
(8) evaluated with atomic average 2 may be used. 
Samples composed of more than two elements represent 
a straight generalization of the binary case. 

~ ~~ 

CONCLUSIONS 

Analytical expressions for the backscattering coefficient 
and the spectral distribution have been fitted to data 
from MC simulations, showing good agreement with 
experimental data. The range of validity of these expres- 
sions depends on the incident energy, the agreement 
being closer for increasing incident energy. The values 
predicted by these expressions differ from the experi- 
mental data by more than 10% only for elements 
heavier than silver, for which the MC simulation over- 
estimates the experimental data. 

The expressions obtained for the spectrum of back- 
scattered electrons allow an accurate and fairly simple 
assessment of some parameters involved in microanaly- 
sis correction models. An average of spectral distribu- 
tions for pure elements has been suggested for 
multielement samples; its validity should be tested with 
experimental data. 
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