Appl Math. Lett Vol. 8, No. 3, pp. 21-24, 1096
Pergamon Copyright(©1095 Elsevier Science Ltd
Printed in Great Britain. All righte reserved

0=83-6650,/96 $15.00 + 0.
S0893-9659(96)00025-0 A

The Asymptotic Behavior for
the One-Phase Stefan Problem with
a Convective Boundary Condition

D. A. TarZia
Dpto. Mat., FCE, Univ, Austral, Paraguay 1950, (2000) Rosario, Argenting

C. V. TURNER
FaMAF, UNC.,, Ciudad Universitaria, (5016) Cérdoba, Argentina

{Received and accepted November 1995}

Abstract—We consider the one-phase Slefan problem with & convective boundary condition at
the fixed face, given by the temperature of the external fuid (G{t)] depending on time. Wa study
the asymptotic behavior of the corvesponding free boundary s2(t) when the time poes to infinity and

we abtain limy.cq (2a(}//2 [§ (7] dr) = L for all heat transfer coeMicionts 7 > Q.

Keymrds— Oune-phase Stefan problem, Phass change process, Asymptotic behavior, Melting,
Free boundery problem.

In tiris paper, we study the asymptotic behavior when t — oo of the following purabolic free
boundary problem {onc-phase Stefan problem with a convective boundary condition on the fixed
bonndary = = 0):

Problem (P):
Zo. = 2, in Dy (1)
#{0) =L (2)
z{s(t),t) =0, O<t=T; {3)
2z ((8),8) = —&(t), D<t<T; (4)
z(x,0) = @z}, D<zx]; (5]
=(0,) =B[(0,1) - 6], 0<t<T, (8)

where Dy = {{7,2) |0 <2 <8(t),0<t<T}L F>0,p(2) 20,0z <, GE) =20, > 0and
the compatibility conditions ¢"(0) = 5 [¢(0) — G{0)] and »(1} = 0.

Existence and uniqueness for Problem (P) is given in [1]. Asymptotic behaviors for the one-
phase problem with temperature boundary condition on the fixed face are given by |2,3].

For the particular case G{t) = Const > 0, the study of the ssymptotic behavior is obtained
by using the variational inequality for the multidimensional case [4,5) and in [6] for the one-
dimensional case. A general boundary condition is considered in |7,8] by using a quasi-variational

This paper has been partially sponsored by Crant 221 (CONICET-Rosario, Argentina} and Granot 288304
[CONTCOR-Cdrdoba, Argentina), Grant #80 (SECYT-UNC).

Typeset by AuaS-TEX

e



22 . A. Tareis o OV, TURNER

inequality for the one-dimensional case. The same prablem for the supercooled Stefan problem
{o(z) <D, G{t) < 0) is considered in [9].

THEOREM 1. Let (T.s5,25) be a solution of Problem (P) satisfying the following hypotheses
on o and G,

wiz) <0 for0<x <]y (H1)
ClE) =0, fort > {H2)
b plz) < GO} {H3)

then

{a} zal@ 1) = zm(t.- t} in D, 3.‘]“] = sm{f} YE>0,t>0.

Uﬂ .ﬁl < ﬁ.!: then I {I,f-] = L {'T&t} in Dy and sb.m = .‘fﬁgl:f]l‘
PRrOOF. This is obtained by using the maximum principle.

LEMMA 2. Problem (P) depends monotonically on G
Proog, This is obtained by using the maximuwm principle.

THEOREM 3.

(&) Ifff G{r)dr < oo, then limy_s 5(2) = S0 Whera fo = (/14 A — 1}/ 3 is the unigue
positive solution of the equation

I(1+gz)=.—4lﬁ.u.0), =1,

where A(8.15,G) = 1+ /2 + [{(L+ BE)p(€) de + 8 ;" G(r)dr.
(b} Let {s,z) be a solution of Problem (P} with f,fo G{T)dr — o0, Foreachtg = 0, et (7, v) be
the solution of the following problems:
(i) vez =1, 0 <z <alt), L =i
{I.i} 1‘.’;{01 t) = ﬁ[‘l,'l:ﬁ,f.:l - G{E‘H t > ty;
(iii) w{eo(t),t) =0,¢t> to;
(iv) ot} =0;
t¥) alt) = —velalt), 1), t =t

Then we ohtain .
#(t) Cita)
<o | == Ly ——
1% (cﬂﬂ) <1+ a3y L > tg,

where o
Clio) = (2] + 2s(tg) i 2 i L +,H:B):{$.£g}ff_f:
g g
and
lim ﬂﬂ =1
55 o(1)

PROOF. (a) The solution of the Problem (P) satisfies
g it}
a0 (1+550) =@~ [ sndr <00 < 45,5.0),
0

where Q(t) = 1+ 8/2 + Jo (1 + Bz)p(z) dz + § [ G(r) dr.
Thus we obtain s(f) < 8. for £ = 0.
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When the [unction & has compact support, let W be the solution of the following problems:
(i) W =W U < w6 < 50

i W e wlr] H0<z<l,
() Wiz0) { ] ifl <o <8
(i) W(sm.t)=0,¢t >0
(i) Wo(0,1) = BW(0,) - G{t)], £ > 0.

Using the maximum principle, we obtain z{z, 1) < Wiz, 1) in D7 and we deduce that
&0
lim (1 dx)z{z, fhde =0
=2 0
Then the proposition holds,
We have 1o complels the preef for zeneral & not necessarily with compuet support. Let

& { GiE), 0<t<n,

(. t =,

For each €p, we have a problem noted 7 for 2, and s, Sinee G has compacl support
Ty s ®n [#] = Snox,- Using manatonicity, it follows that 5, < &,. foralln < m (since G, < @),
and g, 5 E, and Wil s S = S0 (I, &y — 7L

(b Using the moscimon prineiple aml the Gaet that ot} < s(t) for & > ty. we obtain z{z. th =
vl t], B ¢ < gfh) 4 o lp Now, we uge an lntegin] representation associnted to Problem [(P),
with no sdeguate initia] condition st @ = s amnd we get

s(t) + J—’;{f—j = &t} (I -+ ;—j.s;{z])

B0 1 (]
= '—LLL'Z! +f A dr -f (1l Ja)ule, thdde
2 il L

=u(t) (1 - rrl[f__i-:,;—’) + ﬂ}:iu—} < s{t] + sy 4 w

2 2
then o2 (1) < &%(8) = a3() + C{ta). & > #y. from which we obtain the result. [ ]
TrEOREM A, Lee (Tosy.25) be a soligion of Problem (£} with the hvpathesis (H3); thea if

i t
f Sl de = o, f Gy drdioey: et andidy:
o i

st Tinm s maxpyy o) G} = limy — o |Gl e 00) = 0, we have

lim Sult)

| — = forall B >0,
= \JJ;:: (e

Proor. We will use the definition of the function w{x.f) of Theorem 3(b).
If we write an integral representation for the pair {r,v} = (¢p.vg) and use the maximum
prineiple. we obtain va(r.t) < ||G||rro_=| and then

A 1 Ll
oalt) ( 1+ Eﬂslf)) > f BG(r) dr - f (1 + BrHIG e,  d
% T L]

=]

t ) ) a
- -/hﬁ(;['r} dr — |[G|| [tq_gjo'ﬁ‘;tj (1 -+ Eﬂmf]) .
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Thus we obtain J'*
Fil A Glr)dv g
Ty < (14 §esth)-

For {sg, zg), we have
so(t) (1+ £20) < Q0 = Dis.o)+ [ pi)ar.

Since ag(t) < s(t), dividing by 8 [ G{7)dr and taking the limil when ¢ — oc and the limit
when ¢y —+ o0, the inequality becomes

L< i 2O+ E2s@)
it gQ(r)dr

COROLLARY 5. (Convergence when § — co.} If (s4,23) is a solufion of the Problem (P) und
(8201 %ao) i & solution of the Problem (P ), with the hypotheses (H1), (H2) and (H3), then

(i) limg oo #5(t) = 50e(t) for each t > 0,
(1) limg oo 28(2,2) = zoe(z,t) for each 0 = = < 5.,(f), for each t > 0.

Proor. The solutions zg and z., satisfy the following inequality for all 3:
& (8) - 53(1)) 5l
2 i)

Using the fact that s5(t) < s4.(¢} and z5 < 2z, for all 3, the left-hand side terms of the inequality
are poaitive. Thus,

salt)
05_[05 2 (2ea(, £) — z5(x, ) d'::+( [1+ 1G]]

a2 (£ —a2(t +
0 Cil }'2 20 < ”“‘:; i+ IGle}  for all .
Letting 7 tend to infinity for each ¢ > 0, then limg_.o 55(f) = soof?) and limg_oo f3="
T2z, 1} — za(z.f))dr = 0. Then we can conclude limg . za{x 1) = z,.{x,t) for each
0 < x < 5s(t), for each ¢ = 0. 1
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