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Method of straight lines for a Bingham problem ∗

Germán Torres & Cristina Turner

Abstract

In this work we develop a method of straight lines for a one-dimensional
Bingham problem. A Bingham fluid has viscosity properties that produce
a separation into two regions, a rigid zone and a viscous zone. We pro-
pose a method of lines with the time as a discrete variable. We prove
that the method is well defined, a monotone property, and a convergence
theorem. Behavior of the numerical solution and numerical experiments
are presented at the end of this work.

1 Introduction

We consider a fluid between two parallel plates. Using the Navier-Stokes equa-
tion for the viscous region and Newton’s law for the rigid zone, we model the
behavior of the system. The boundary that separates the two regions is an un-
known that evolves in time. It is one of the most important unknown quantities
of the problem. For weak formulations, in variational form, of free boundary
problems like the Bingham problem the reader is referred to [6, 7, 11, 12, 13].
Moreover in [14] there is an extensive bibliography about these topics. In
[1, 2, 9, 15] there are examples of the implementation of the method of straight
lines for free boundary problems.

We recall that fluids in which the shear stress is a multiple of the shear strain
called Newtonian fluids. The proportionality coefficient is the viscosity. Other
fluids are known as non-Newtonian fluids. Examples of Newtonian fluids are:
water, alcohol, benzene, kerosene and glycerine. Examples of non-newtonian
fluids are: blood plasma, chocolate, tomato sauce, mustard, mayonnaise, tooth-
paste, asphalt, some greases and sewage.

Bingham fluids are non-Newtonian fluids and the relation between shear
stress τ and shear strain σ is linear. That is,

τ = τ0 + ησ. (1.1)

where η > 0 is the viscosity and τ0 > 0 is the threshold value.
We assume that the fluid is incompressible, laminar, and with constant den-

sity ρ. Fixing the x coordinate along the direction of motion, y the perpendicular
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coordinate to the plates, and z the remaining coordinate, we make the following
assumptions:

1. The pressure gradient, ∇p, is applied in only one direction, that is, ∂p
∂y =

∂p
∂z = 0.

2. The fluid is laminar, that is, the velocities v and w satisfy v = w = 0.

3. The non-zero component of the velocity u depends only on time, t, and
on the perpendicular position, y, that is, ∂u∂z = ∂u

∂x = 0.

4. There is no transport of fluid through the free boundary, y = s(t). This
is a condition of no deformation, that is, uy(s(t), t) = 0 ∀ t > 0.

5. The velocity of the fluid u at the walls of the plates is zero. This is an
adherence condition.

Using the above hypotheses, we obtain a system of partial differential equa-
tion, which we call problem (P ). Making a change of variables, we obtain the
dimensionless system.

ut − uyy = f(t), s(t) < y < 1, t > 0, (1.2)
u(1, t) = 0, t > 0, (1.3)

u(y, 0) = u0(y), s(0) = s0, 0 < s0 < y < 1, (1.4)
uy(s(t), t) = 0, t > 0, (1.5)

ut(s(t), t) = f(t)− τ0
s(t)

, t > 0. (1.6)

The problem is similar to a problem of heat transfer, where f is the pressure
gradient that, according to the hypotheses, depends only on t. This system is
called a free boundary problem because the function y = s(t) is the boundary
that separates two regions, and is part of the unknown quantities. We suppose
that the pressure gradient is greater than the threshold value τ0. This condition
allows the movement between the layers of the fluid. That is,

f(t) > τ0, ∀ t > 0. (1.7)

A more general condition can be imposed instead of a fixed boundary condition
(1.3), representing that two distinct fluids are in contact. In this case we can
replace (1.3) by the following equation:

u(1, t) = g(t), t > 0. (1.8)

It can be seen that the function g does not cause problems, because we can
rewrite the system considering a new function for the pressure gradient.
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We transform the problem (P ) using the function w = uy. The new problem
(Py) satisfies the following equations:

wt − wyy = 0, s(t) < y < 1, t > 0, (1.9)
wy(1, t) = −f(t), t > 0, (1.10)
w(y, 0) = u′0(y), s(0) = s0, 0 < s0 < y < 1, (1.11)
w(s(t), t) = 0, t > 0, (1.12)

wy(s(t), t) = − τ0
s(t)

, t > 0. (1.13)

2 Straight Lines Method

We discretize the time and choose a fixed time step ∆t > 0. We define:

tn = (n− 1)∆t, n ∈ N. (2.1)

Denoting wn(y) = w(y, tn), fn = f(tn), sn = s(tn) for n ≥ 1, q2 = 1
∆t , and

approximating time derivatives with the incremental quotient, the (Py) system
is transformed in the (Pdy) system.

w′′n+1(y)− q2wn+1 = −q2wn, sn+1 < y < 1, n ≥ 1, (2.2)
wn+1(sn+1) = 0, n ≥ 1, (2.3)

w′n+1(sn+1) = − τ0
sn+1

, n ≥ 1, (2.4)

w′n+1(1) = −fn+1, n ≥ 1, (2.5)
w1(y) = u′0(y), 0 < s1 < y < 1. (2.6)

Observe that with this notation, s1 = s(t1) = s(0) = s0 and w1(y) =
w(y, t1) = w(y, 0) = u′0(y). It is easy to see that (2.2)-(2.4) is a second order
differential equation of the form:

w′′ − q2w = g, s < y < 1,
w(s) = 0,

w′(s) = −τ0
s
.

(2.7)

Lemma 2.1 The above system is satisfied by

w(y) = − τ0
qs

sinh(q(y − s)) +
∫ y

s

g(ξ)
q

sinh(q(y − ξ))dξ, s < y < 1. (2.8)

Proof We transform this second order differential equation into a first order
differential equation system, taking an auxiliary variable v = w′. In this way,
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we obtain: (
w′

v′

)
= A

(
w
v

)
+
(

0
g

)
, s < y < 1,(

w
v

)
(s) =

(
0
− τ0s

)
.

where A =
(

0 1
q2 0

)
. The matrix A is diagonalizable. In fact, if P =

(
1 1
q −q

)
then PAP−1 =

(
q 0
0 −q

)
. Thus if V = P−1

(
w
v

)
the we have the uncoupled

system

V ′ =
(
q 0
0 −q

)
V +

( g
2q

− g
2q

)
, s < y < 1,

V (s) =
(− τ0

2qs
τ0
2qs

)
.

Solving directly the latter system, the lemma follows. �
Suppose that wn and sn are known. We extend wn by zero in the interval

[0, sn]. In this way wn is continuous in the interval [0, 1]. The solution of
(2.2)-(2.4) for sn+1 < y < 1 is

wn+1(y) = − τ0
qsn+1

sinh(q(y − sn+1))−
∫ y

sn+1

qwn(ξ) sinh(q(y − ξ))dξ . (2.9)

Up to now, the value of sn+1 is unknown. We can get sn+1 from the equation
(2.5). Replacing in (2.9) we obtain:

−fn+1 = w′n+1(1) = − τ0
sn+1

cosh(q(1− sn+1))−
∫ 1

sn+1

q2wn(ξ) cosh(q(1− ξ))dξ.

Now we define

Fn+1(s) = fn+1 −
τ0
s

cosh(q(1− s))−
∫ 1

s

q2wn(ξ) cosh(q(1− ξ))dξ. (2.10)

So, sn+1 has to be a root of Fn+1 in the interval (0, 1).

Proposition 2.2 If fn+1 > τ0 then Fn+1 has at least a root in the interval
(0, 1).

Proof It is clear that Fn+1(1) = fn+1 − τ0 > 0 and also that Fn+1(s)→ −∞
when s → 0. So there exists a root in the interval (0, 1) because Fn+1 is
continuous. �

Proposition 2.3 Suppose that fn+1 > 0, wn ≤ 0, and that we have defined
sn+1 ∈ (0, 1) that satisfies (2.2)-(2.6). Then wn+1 ≤ 0.
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Proof If y ∈ [0, sn+1], then wn+1(y) = 0. Let us think in the interval [sn+1, 1].
It can be seen that wn+1 decreases locally around sn+1, taking negative values,
because of (2.3) and (2.4).

Suppose that wn+1 takes positive values in [sn+1, 1]. So wn+1 has a root
in (sn+1, 1]. Let y0 be the first root such that there is a change of sign. Let
us take y1 a point to the right of y0 such that w′n+1(y1) > 0. The hypothesis
says that w′n+1(1) < 0. So, there exists a root y2 of w′n+1 in (y1, 1), such that
wn+1(y2) > 0 and w′′n+1(y2) ≤ 0.

Now q2wn(y2) = q2wn+1(y2) − w′′n+1(y2) > 0, that is a contradiction. This
concludes the proof. �

Lemma 2.4 If A is solution of

A′′ − q2A ≥ 0, 0 < s < y < 1,
A(s) < 0, A(1) < 0,

(2.11)

then A ≤ 0 in [s, 1].

Proof Suppose that there exists y0 in (s, 1) such that A(y0) > 0. We can
choose y0 such that A′(y0) = 0, A(y0) > 0 and A′′(y0) ≤ 0. This is a contradic-
tion because A′′(y0)− q2A(y0) < 0. This concludes the proof. �

Proposition 2.5 Suppose that fn+1 > τ0 and that w′n ≤ 0. Then w′n+1 ≤ 0.

Proof If we define A = w′n+1, s = sn+1, and deriving (2.2)-(2.6), we conclude
that A satisfies (2.11), that implies

A′′ − q2A ≥ 0, 0 < s < y < 1,

A(s) = −τ0
s
< 0, A(1) = −fn+1 < 0.

(2.12)

By Lemma (2.4) we obtain that w′n+1 ≤ 0. This concludes the proof. �

Observation 2.6 The function h(s) = 1 + sq tanh(q(1 − s)) is concave and
strictly positive in [0, 1] since

h′′(s) =− 2q2
[
1− tanh2(q(1− s))

]
− 2sq3 tanh(q(1− s))

[
1− tanh2(q(1− s))

]
< 0 ,

(2.13)

and h(0) = 1 = h(1).

Proposition 2.7 If wn ≤ 0 and w′n ≤ 0, the function Fn+1 has at most a
critical point, that is, there exists at most a point x0 such that F ′n+1(x0) = 0.
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Proof From (2.10) we obtain:

F ′n+1(s) =
τ0
s2

cosh(q(1−s))+
τ0q

s
sinh(q(1−s))+q2wn(s) cosh(q(1−s)). (2.14)

If Fn+1 has no critical points, the proposition is proved. Suppose now that there
exists at least s∗ such that F ′n+1(s∗) = 0. Clearly s∗ 6= 0 because wn ≡ 0 in

[0, sn]. We multiply by s2∗
τ0 cosh(q(1−s∗)) and we get

h(s∗) +
s2
∗q

2wn(s∗)
τ0

= 0. (2.15)

So, the critical point s∗ satisfies (2.15). Clearly the function above has a unique
root because s2

∗q
2wn(s∗)/τ0 is negative (and decreasing in (sn, 1)). Since h

is concave and positive, we deduce that there exists a unique s∗ that holds
F ′n+1(s∗) = 0. This concludes the proof. �

Observation 2.8 From Proposition (2.2) and (2.7), we conclude that Fn+1 has
a unique root in (0, 1) if in each step of time holds wn ≤ 0 and w′n ≤ 0.

Observation 2.9 The process of the algorithm is as follows: since w0 = u′0 ≤ 0
and w′0 = u′′0 ≤ 0, using Proposition (2.3) and Proposition (2.5) we get that
w1 ≤ 0 and w′1 ≤ 0; then we have a unique solution of F2(s) = 0, and besides
that, w2 ≤ 0 and w′2 ≤ 0; following inductively, we obtain the movement of the
free boundary.

3 Properties of the Straight Lines Method

Proposition 3.1 Suppose that fn > τ0 for all n and that u0
′ ≤ 0. Then wn ≤ 0

for all n ≥ 1.

Proof The hypothesis says that w1 = u′0 ≤ 0. Let us assume that wn ≤ 0.
By Proposition 2.3 we get wn+1 ≤ 0. By induction the proof is concluded. �

Proposition 3.2 Suppose that fn > τ0 for all n and that u′′0 ≤ 0. Then w′n ≤ 0
for all n.

Proof We know that w′1 = u′′0 ≤ 0. Suppose that w′n ≤ 0. By Proposition 2.5
we get that w′n+1 ≤ 0. This inductive step concludes the proof. �

Proposition 3.3 Suppose that fn > τ0 for all n and that u′′0 ≤ 0. Then wn < 0
for all y ∈ (sn, 1] for all n > 1.
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Proof By Proposition 3.2 we know that w′n ≤ 0 ∀ n. Because of wn(sn) = 0
and w′n(sn) = − τ0

sn
< 0. Then wn(y) is strictly decreasing in a neighborhood of

sn, then wn < 0 in (sn, 1]. This concludes the proof. �

Proposition 3.4 The stationary solution of Problem (Py) (2.2)-(2.6) is

s∞ =
τ0
f∞

, w∞(y) =

{
−f∞(y − s∞) if y ∈ [s∞, 1]
0 if y ∈ [0, s∞)

(3.1)

where s∞ = lim
n→∞

sn, w∞(y) = lim
n→∞

wn(y) and f∞ = lim
n→∞

fn, if the limits exist.

Proof If we take limn→∞ in (2.2)-(2.6) we can get the system

w′′∞ = 0, in [s∞, 1],
w∞(s∞) = 0,

w′∞(s∞) = − τ0
s∞

,

w′∞(1) = −f∞.

(3.2)

Since w′∞ is constant, then w′∞(s∞) = w′∞(1). That implies s∞ = τ0
f∞

. Since
w∞ is a straight line with slope −f∞ and root s∞, then we have w∞(y) =
−f∞(y − s∞) in the interval [s∞, 1]. If y ∈ [0, s∞), then there exists N ∈ N
such that y ∈ [0, sn] for all n ≥ N . This said wn(y) = 0 for all n ≥ N . This is
equivalent to w∞(y) = 0 in [0, s∞]. This concludes the proof. �

Lemma 3.5 If W is a solution of

W ′′ − q2W ≥ 0, 0 < s < y < 1,
W (s) < 0, W ′(1) < 0,

(3.3)

then W ≤ 0 on [s, 1].

Proof Suppose that W takes positive values. Since W (s) < 0 there exists
y0 ∈ (s, 1] such that W (y0) = 0. Now we can choose y1 ∈ (y0, 1) such that
W (y1) > 0 and W ′(y1) > 0. Since W ′(1) < 0 there exists y2 ∈ (y1, 1) such that
W ′(y2) = 0. We can choose y2 such that W (y2) > 0 and W ′′(y2) ≤ 0. This is a
contradiction because W ′′(y2) ≥ q2W (y2) > 0. This concludes the proof. �

Lemma 3.6 If V is solution of

V ′′(y) ≤ 0, 0 < s < y < 1,
V (s) ≥ 0, V ′(1) ≥ 0,

(3.4)

then V ≥ 0 in [s, 1].
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Proof Suppose that V assumes negative values in (s, 1]. There exists y0 ∈
(s, 1] such that V ′(y0) < 0. Since V ′′ ≤ 0 we obtain V ′(1) < 0, and this is a
contradiction. The proof is finished. �

Theorem 3.7 Suppose fn+1 > 0 for all n and u′′0 ≤ 0. Then:

(A) If fn+1 > fn and wn ≤ wn−1 then sn+1 < sn and wn+1 ≤ wn. Moreover,
if {fn+1} is a strictly increasing sequence convergent to f∞ then sn+1 >
τ0
fn+1

, s∞ < sn+1 and w∞ ≤ wn+1.

(B) If fn+1 < fn and wn ≥ wn−1 then sn+1 > sn and wn+1 ≥ wn. Moreover,
if {fn+1} is a strictly decreasing sequence convergent to f∞ then sn+1 <
τ0
fn+1

, s∞ > sn+1 and w∞ ≥ wn+1.

Proof From the expression of Fn in (2.10) we have

Fn+1(s)− Fn(s) = −
∫ 1

s

q2 (wn(ξ)− wn−1(ξ)) cosh (q(1− ξ)) dξ + (fn+1 − fn).

(3.5)
For part (A), since fn+1 > fn and wn ≤ wn−1, we see from (3.5) that Fn+1(s)−
Fn(s) > 0 for all s. From this we deduce that sn+1 < sn.

Let W = wn+1−wn. Then from (2.2)-(2.6), we see that on [sn, 1], W satisfies

W ′′ − q2W = −q2(wn − wn−1) ≥ 0,
W (sn) = wn+1(sn) < 0,

W ′(1) = −(fn+1 − fn) < 0.

Therefore, on the interval [sn, 1], W satisfies

W ′′ − q2W ≥ 0, W (sn) < 0, W ′(1) < 0. (3.6)

and out this interval, W satisfies

W (y) =

{
0, if y ∈ [0, sn+1],
wn+1(y), if y ∈ [sn+1, sn],

Knowing that the wn+1 are negative functions on (sn+1, sn) (Proposition 3.3),
and using the Lemma 3.5, we observe that W ≤ 0 on [sn+1, 1] finally W ≤ 0 on
[0, 1] , and this is equivalent to wn+1 ≤ wn.

When we integrate the equation (2.2) from sn+1 to 1, using (2.4),(2.5) we
obtain: ∫ 1

sn+1

w′′n+1(ξ)dξ =
∫ 1

sn+1

q2 (wn+1(ξ)− wn(ξ)) dξ,

w′n+1(1)− w′n+1(sn+1) = q2

∫ sn

sn+1

wn+1(ξ)dξ +
∫ 1

sn

q2 (wn+1 − wn) (ξ)dξ < 0,
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−fn+1 +
τ0
sn+1

< 0.

From this we deduce that sn+1 > τ0/fn+1. Since fn+1 < f∞ and sn+1 >
τ0/fn+1 > τ0/f∞ = s∞, it followsthat sn+1 > s∞.

Let Vn+1 = wn+1 − w∞ be. Using (2.2) and the Proposition (3.4), the
following equation holds on (sn+1, 1),

V ′′n+1 − q2Vn+1 = −q2Vn. (3.7)

Then is clear that

V ′′n+1 = q2(wn+1 − wn) ≤ 0, in (sn+1, 1),
Vn+1(sn+1) = wn+1(sn+1)− w∞(sn+1) > 0,

V ′n+1(sn+1) = − τ0
sn+1

+
τ0
s∞

> 0,

V ′n+1(1) = −fn+1 + f∞ > 0.

Therefore, on the interval [0, s∞], V satisfies

V ′′n+1 ≤ 0, Vn+1(sn+1) > 0, V ′n+1(sn+1) > 0, V ′n+1(1) > 0. (3.8)

and out of this interval, V satisfies

Vn+1(y) =

{
0, if y ∈ [0, s∞],
−w∞(y), if y ∈ [s∞, sn+1] .

Because of Lemma 3.6 we get that Vn+1 ≥ 0 on [0, 1], and this is equivalent to
wn+1 ≥ w∞

The proof of part (B) is similar to (A) and we omit it. �

Theorem 3.8 Suppose that limn→∞ fn = f∞, fn > 0 ∀ n, u′0 ≤ 0, u′′0 ≤ 0,
limn→∞ sn = s∗ and limn→∞ wn = w∗. Then s∗ = s∞ and w∗ = w∞.

Proof From Theorem 3.7 we can take limn→∞ in (2.9) and we obtain:

w∗ = − τ0
qs∗

sinh(q(y − s∗))−
∫ y

s∗
qw∗(ξ) sinh(q(y − ξ))dξ. (3.9)

Computing the derivatives of the function w∗ we get that

w∗
′′
(y) = 0, w∗

′
(s∗) = − τ0

s∗
, w∗(s∗) = 0. (3.10)

On the other hand, if we differentiate (2.9) for sn+1 < y < 1, we have

w′n+1(y) = − τ0
sn+1

cosh(q(y − sn+1))−
∫ y

sn+1

q2wn(ξ) cosh(q(y − ξ))dξ . (3.11)
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Taking limn→∞ we get:

lim
n→∞

w′n+1(y) = − τ0
s∗

cosh(q(y − s∗))−
∫ y

s∗
q2w∗(ξ) cosh(q(y − ξ))dξ. (3.12)

From (3.9) and (3.16) we obtain that limn→∞ w′n(y) = w∗
′
(y). Then w∗

′
(1) =

limn→∞ w′n+1(1) = − limn→∞ fn+1 = −f∞. Since w∗
′

is constant, we deduce
that w∗

′
(1) = w∗

′
(s∗). Then

s∗ =
τ0
f∞

, w∗ = − τ0
s∗

(y − s∗).

A comparison with Proposition 3.4 completes this proof. �

Observation 3.9 Under the hypotheses of Theorem 3.7, the solutions sn and
wn converge to the stationary solutions, s∞, w∞.
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Figure 1: Solution with s0 = 0.2, τ0 = 1, ∆t = 0.05, f(t) = 2

Numerical Results

The algorithm for the following results was programmed in Fortran. First we
compute the root of Fn+1, and then we compute wn+1 from (2.9). The functions
wn are stored as splines functions and the integrals are computed by the Simp-
son’s Rule. The numerical experiments are shown in Figures 1, 2, and 3. They
show that the algorithm reproduces the theoretical behavior of the solution (see
[3]).
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Figure 2: Solution with s0 = 0.8, τ0 = 1, ∆t = 0.05, f(t) = 2.

Concluding Remarks

For the discrete solution of (2.2) − (2.6), we have obtained the same proper-
ties that the continuous solution of Problem (Py) satisfies (see [3]). That is
wn(y) < 0, w′n(y) < 0, {sn}n is monotone if {fn}n is monotone, the stationary
solution for the discrete problem (which agrees with the stationary solution for
the continuous problem) is established, and the discrete solution converges to
the stationary solution. Moreover the algorithm is well defined for all fn that
satisfy fn > τ0. This condition is the corresponds to the motion between the
layers of the fluid.
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