1. Encontrar $\frac{df}{dt}$ para:

(a)
$$f(x,y) = x^2 + y^2$$
, $x = t$, $y = t^2$.

(a)
$$f(x,y) = x^2 + y^2$$
, $x = t$, $y = t^2$.
(b) $f(x,y) = xy$, $x = 1 - \sqrt{t}$, $y = 1 + \sqrt{t}$.
(c) $f(x,y) = x/y$, $x = e^t$, $y = e^{2t}$.

(c)
$$f(x,y) = x/y$$
, $x = e^t$, $y = e^{2t}$.

- (a) Si $g(x,y) = e^{x+y}$ y f'(0) = (1,2), calcular F'(0), donde F(t) = g(f(t)) y 2.
 - (b) Si $f(x, y, z) = \operatorname{sen} x$, $F(t) = (\cos t, \sin t, t)$, encuentre $g'(\pi)$, donde g(t) =
- **3.** Sean $f(u,v) = e^{uv} \operatorname{sen}(u^2 + v^2), \ g(u,v,w) = \ln(u^2 + v^2 + w^2 + 1).$ Dadas $u(x,y) = x + y, \quad v(x,y) = xy, \quad w(x,y) = x - y + 1,$

calcular las derivadas parciales de las funciones

$$f(u(x,y),v(x,y))$$
 y $g(u(x,y),v(x,y),w(x,y)),$

utilizando la regla de la cadena.

4. Si $w = \sqrt{x^2 + y^2 + z^2}$ y

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \cos \theta \\ r \sin \theta \\ r \end{pmatrix},$$

hallar $\frac{\partial w}{\partial r}$ y $\frac{\partial w}{\partial \theta}$ usando la regla de la cadena. Comprobar el resultado por sustitución directa.

5. Considerar las funciones

$$f\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u+v \\ u-v \\ u^2-v^2 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \quad \text{y} \quad F(x,y,z) = x^2 + y^2 + z^2 = w.$$

- (a) Hallar la diferencial de $F \circ f$ en (a, b).
- (b) Hallar $\frac{\partial w}{\partial u}$ y $\frac{\partial w}{\partial u}$.
- 6. Dadas

$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^2 + xy + 1 \\ y^2 + 2 \end{pmatrix}$$
 $y \qquad g\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u + v \\ 2u \\ v^2 \end{pmatrix}$

encontrar la matriz de la diferencial de $g \circ f$ en $\mathbf{x}_0 = (1, 1)$.

7. Sean f y g funciones vectoriales definidas por

$$f\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u \cos v \\ u \sin v \end{pmatrix}, \text{ con } \begin{cases} u > 0, \\ -\pi/2 < v < \pi/2, \end{cases}$$
$$g\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2} \\ \arctan \frac{y}{x} \end{pmatrix}, \text{ con } x \neq 0.$$

- (a) Encontrar la matriz jacobiana de $q \circ f$ en (u, v).
- (b) Encontrar la matriz jacobiana de $f \circ g$ en (x, y).

8. Sea f(x,y) una función a valores reales tal que

$$f_x(2,1) = 3,$$
 $f_y(2,1) = -2,$ $f_{xx}(2,1) = 0,$ $f_{xy}(2,1) = 1,$ $f_{yy}(2,1) = 2.$

Sea $q: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por

$$g(u,v) = (u+v, uv).$$

Hallar
$$\frac{\partial^2 (f \circ g)}{\partial u \partial v}$$
 en $(1,1)$.

- **9.** Encuentre el desarrollo de Taylor de tercer grado de $(u+v)^3$, alrededor de:
 - (a) $(u_0, v_0) = (0, 0),$
 - (b) $(u_0, v_0) = (1, 2)$.
- 10. Encuentre la mejor aproximación de segundo grado de la función $f(x,y) = xe^y$ cerca del punto $(x_0, y_0) = (2, 0)$.
- 11. Calcular el desarrollo de Taylor de segundo grado de xe^{x+y} en $(x_0, y_0) = (0, 0)$,
 - (a) calculando las derivadas,
 - (b) por sustitución.
- **12.** Si $f(x,y) = (x^2 + y^2)e^{x^2 + y^2}$, usar el desarrollo de Taylor de f para calcular $\frac{\partial^3 f}{\partial x^2 \partial u}(0,0)$.
- **13.** Hallar el polinomio de Taylor de grado 2n de la función $f(x,y) = \frac{1}{1+xn}$ en el (0,0). ¿Qué ocurre con el de grado n?
- **14.** Probar que (0,0,0) es un punto crítico de $f(x,y,z) = \cos(x^2 + yz)$, y analizar si es extremo relativo o no.
- 15. Encontrar los puntos críticos de las siguientes funciones y decidir si allí la función tiene un máximo local, un mínimo local o ninguno de los anteriores.

(a)
$$f(x,y) = x^2 y^2$$
,

(b)
$$f(x,y) = x \operatorname{sen}(y)$$
,

(c)
$$f(x,y) = x^4 + y^4$$
,

(d)
$$f(x,y) = x^2 - xy - y^2 + 5y - 1$$
,

(e)
$$f(x,y) = (x-y)^4$$
,

(f)
$$f(x,y) = (x+y)e^{-xy}$$
,

(g)
$$f(x,y) = (x^2 + y^2) \ln(x^2 + y^2)$$
, (h) $f(x,y) = \sqrt{x^2 + y^2 - 1}$

(h)
$$f(x,y) = \sqrt{x^2 + y^2 - 1}$$

- 16. Encuentre los máximos y mínimos de las siguientes funciones:
 - (a) f(x,y) = x + y en el cuadrado de vértices $(\pm 1, \pm 1)$.
 - (b) f(x, y, z) = x + y + z en la región $x^2 + y^2 + z^2 \le 1$.
 - (c) $f(x,y) = \frac{1}{x^2 + y^2}$ en la región $(x-2)^2 + y^2 \le 1$.

 - (d) $f(x,y) = x^2 + y^2 + \frac{2\sqrt{2}}{3}xy$ en la región $x^2 + 2y^2 \le 1$. (e) $f(x_1, \dots, x_n) = x_1 + \dots + x_n$ en la región $x_1^2 + \dots + x_n^2 = 1$.
- 17. Hallar los puntos más lejanos al origen y que están en la curva

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos t \\ \sin t \\ \sin(t/2) \end{pmatrix}.$$

- 18. Encuentre el valor máximo de la función x(y+z) dado que $x^2+y^2=1$ y xz=1.
- 19. Una caja rectangular sin tapa debe tener una superficie con un área de 32 unidades cuadradas. Encuentre las dimensiones que le darán volumen máximo.
- **20.** Encuentre la distancia mínima en \mathbb{R}^2 entre la elipse $x^2 + 2y^2 = 1$ y la recta x + y = 4. Indicación: considerar el cuadrado de la distancia como función de cuatro variables.
- **21.** Los hiperplanos x + y z 2w = 1 y x y + z + w = 2 se cortan en un conjunto \mathcal{F} en \mathbb{R}^4 . Hallar el punto de \mathcal{F} más cercano al origen.
- **22.** * Demuestre, resolviendo un problema adecuado de mínimo, que si $a_k > 0 \ \forall k = 1$ $1, \ldots, n$, entonces

$$(a_1 \dots a_n)^{\frac{1}{n}} \le \frac{a_1 + \dots + a_n}{n}.$$

23. \star Supóngase que un científico tiene razón en pensar que dos cantidades x e y están relacionadas linealmente, esto es, y = mx + b, por lo menos aproximadamente, para ciertos valores de m y b. El científico lleva a cabo un experimento y colecciona datos en forma de puntos $(x_1, y_1), \ldots, (x_n, y_n)$, los cuales grafica luego. Estos puntos no se encuentran exactamente en una línea recta, por lo que desea encontrar constantes \boldsymbol{m} y b de manera que la recta y = mx + b "se ajuste" a los puntos lo mejor posible. Sea $d_i = y_i - (mx_i + b)$ la desviación vertical del punto (x_i, y_i) con respecto a la recta. El método de los cuadrados mínimos determina los valores de m y b de manera que se minimice $\sum_{i=1}^{n} d_i^2$, la suma de los cuadrados de estas desviaciones. Demuestre que, de acuerdo a este método, la recta de mejor ajuste se obtiene cuando

$$m \sum_{i=1}^{n} x_i + bn = \sum_{i=1}^{n} y_i \quad y$$
$$m \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i,$$

de manera que la recta se encuentra resolviendo estas dos ecuaciones en las incógnitas m y b.

- 24. ★ Desigualdad de Cauchy-Schwarz:
 - (a) Encuentre máximo y mínimo de la función $\sum_{i=1}^n x_i y_i$ sujeta a las restricciones $\sum_{i=1}^n x_i^2 = 1$ y $\sum_{i=1}^n y_i^2 = 1$. (b) Deduzca de (a) la desigualdad de Schwarz:

$$|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}|| \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

Pruebe además que vale la igualdad si y sólo si x e y son paralelos.