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5000 Córdoba, Argentine

October 30, 2007

Abstract

Let (E, q) be a finite dimensional quadratic vector space over a
finite field. For the usual representation of the isometry group of
(E, q) in the space of complex valued functions on E, we analyze when
the polynomial algebra spanned by one mean average operator is the
whole algebra of intertwining operators.

Let F be a finite field with q = pn elements. (From now on, p is an
odd prime number) We fix a m−dimensional vector space E over F. We also
fix b : E × E → F a nondegenerate bilinear symmetric form. We define
Q(x) = b(x, x) and d(x, y) = b(x − y, x − y). The sphere of center x and
radius r will be denoted by Sm(x, r). We usually will drop the subindex m.
As usullay Mr : L2(E) → L2(E) is the mean average operator defined by

(Mrf)(x) =
∑

v∈S(x,r)

f(v) (1)
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The purposse of this note is to analyze, for a fix r, whether or not the
polynomials in Mr span the algebra of intertwining operators for the left
regular representation of the isometry group of b in L2(E). We recall that the
theorem of the intertwining number says the algebra of intertwining operators
is linearly spanned by all the Mr. (cf. [M], [Wa])

More precisely:

Theorem 1. a) If [F : Zp] > 1 or F = Zp and E is odd dimensional then
the algebra spanned by a Mr (r ∈ F ∗ fixed) is a proper subalgebra of the
whole algebra of intertwining operators. This also holds if p = 3.
b) If F = Zp, p > 3 and E is even dimensional then the algebra spanned by
a Mr is the whole algebra of intertwining operators.

Note: In [Sta] D. Stanton proves that one mean average operator gener-
ates the whole intertwining algebra, but his metric is real valued instead of
being F−valued.

We begin collecting the ingredients necessary for the proof.
We denote by Ψ : F → C∗ the composition of the trace from F to the

prime field followed by a generator of the dual group to the additive group
of the prime field.

The eigenfunctions of the operator Mr are the functions

ϕr(y) =
∑

v∈S(~0,r)

Ψ(b(v, y)) (2)

Actually, ϕr only depends on s = d(y,~0) and not on y itself. From now on,
we will write ϕr(s)(s ∈ F ) instead of ϕr(y).
Let A be a 2−dimensional asociative algebra over F. Then A is either iso-
morphic to F × F or to K the second degree extension of F. In F × F we
consider the hyperbolic form h = 1

2
(x1y2+x2y1). Let N denote the associated

quadratic form to h. Thus N(x1, x2) = x1x2. We recall that Tr : A → F is
Tr(x1, x2) = x1 + x2. We will denote by Tr, N the trace and the norm of the
field extension K/F. Since the degree of K over F is two, N is the quadratic
form of a symmetric bilinear form over F on K. We will denote this sym-
metric form by N. We recall that the Bessel function attached to the data
(A, Tr,N, Ψ) is

JA
0 (a) =

∑
w∈A, N(w)=a

Ψ(Tr(w)) (a ∈ F )
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Thus, for A = F × F

JA
0 (a) =

∑
x1x2=a

Ψ(x1 + x2) =
∑
t∈F ∗

Ψ(t +
a

t
)

For A = K
JA

0 (a) =
∑

w∈E, N(w)=a

Ψ(w + w̄)

Here, bar denotes the nontrivial element of the Galois extension K/F.
Up to isomorphism every nondegenerate, even dimensional, quadratic spaces
over F is isomorphic to

(F 2(n−1) ⊕ A, h⊕ · · · ⊕ h⊕N)

For a proof (c.f. [Se]). A lengthly calculation shows that:
Theorem 2.

For s ∈ F ∗ ϕr(s) = qn−1 JA
0 (rs)

For a proof (cf [MMST])
Next, we spell out the two cases. A = F × F, hence the quadratic space is

(F 2n, h⊕ · · · ⊕ h) (n times)

and
ϕr(s) = qn−1

∑
t∈F ∗

Ψ(t +
rs

t
) (He)

A = K, hence the quadratic space is

(F 2(n−1) ⊕K, h⊕ · · · ⊕ h⊕N)

and
ϕr(s) = qn−1

∑
y∈E, yȳ=rs

Ψ(y + ȳ) (Ne)

We now consider the odd dimensional case. Then (E, q) is equivalent to

(F 2n ⊕ F, h⊕ · · · ⊕ h⊕ ax2
0 )

Here a = 1 or a ∈ F ∗ is a nonsquare. For a proof (c.f. [Se].)
Let ε : F → C∗ defined by ε(0) = 0, ε(F ∗2) = 1, ε(x) = −1for x 6∈ F ∗2 .
A lengthly calculation shows:
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Theorem 3.

ϕr(s) = qn−1GF

∑
t∈F ∗

ε(
t

a
)Ψ(t +

sr

t
)

Here, GF stands for a Gauss sum associated to F.
For a proof (cf [MMST])
We now begin to study whenever the algebra spanned by a Mr agrees with
the whole algebra of intertwining operators for L2(E). Let Iso(E) be the
group of isometries of E with respect to the nondegenerate quadratic form
Q. Thus, Iso(E) is the semidirect product of O(Q,E) and E. For a proof
consult [Ar]. Let π be the natural representation of Iso(E) in L2(E). It is
clear that Mr belongs to the algebra of intertwining operators for π. Let ϕr(s)
be the s−eigenvalue for Mr (s ∈ F ). (cf. (2))

Lemma 4. The subalgebra spanned by a Mr (r 6= 0) is equal to the
algebra of intertwining operators if and only if the function s → ϕr(s) is one
to one.

Proof: Since (Iso(E), O(q, E)) is a Gelfand pair, L2(E) decomposes with
multiplicity free as Iso(E)−module. Also, the structure of the unitary dual
to Iso(E) implies that we may write L2(E) = ⊕sVs with Vs an Iso(E)−irre-
ducible representation on Vs. Hence, Vs is not equivalent to Vt for t 6= s.
On Vs, Mr acts by ϕr(s). Therefore, the algebra of intertwining operators
has dimension q. The algebra of intertwining operators has a basis es =
(δstidVs)t∈F , (s ∈ F ). The change of basis matrix to the powers of Mr is the
Vandermonde matrix associated to (ϕr(s))(s∈F ). Hence, the lemma follows.

Lemma 5. For σ ∈ Gal(F/Zp), a ∈ F then

JF×F
0 (σ(a)) = JF×F

0 (a)

JK
0 (σ(a)) = JK

0 (a)∑
t∈F ∗

ε(
t

b
)Ψ(t +

σ(a)

t
) =

∑
t∈F ∗

ε(
t

b
)Ψ(t +

a

t
)

Proof: First of all Ψ(z) = Ψ0(Tr(z)), where Tr is the trace of the field
extension F/Zp and Ψ0 is a generator for the dual to the additive group of Zp.

Hence, JF×F
0 (σ(a)) =

∑
t∈F ∗ Ψ0(Tr(t + σ(a)

t
)). Now, σF ∗ = F ∗, T r(σ(u)) =

Tr(u) u ∈ F. Thus, we can make t = σ(s), and the first equality follows.
The proof of the second equality follows from N(σ(u)) = N(u). The third
equality follows after we recall that Gal(F/Zp) is an abelian group.
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Next, we prove the first assertion in a) in theorem 1. Since [F : Zp] > 1,
the Galois group of F over Zp is nontrivial. Hence, lemma 5 says that the
functions JF×F

0 , JK
0 are not one to one. On the other hand multiplication by

a nonzero scalar r is a bijection. Thus, theorem 2 says that ϕr is not injective,
by lemma 4 we have proved the first statement in part a) of theorem 1. The
second statement follows from:

Lemma 6. Let f(s) =
∑

v∈Z∗p
Ψ(v + s

v
)ε(v), then f is not injective.

Proof: For p = 3, f(1) = f(2) follows by a direct calculation. For p > 3
we prove that f(a) = f(b) for any pair a, b not squares in Zp.
Indeed, Ψ(x) = ξx for a fixed p−root of the unity ξ. Let N, S denote the set
of nonsquares (squares) in Zp. Thus f(s) =

∑
v∈S Ψ(v+ s

v
)−∑

v∈N Ψ(v+ s
v
) =∑p−1

k=0 ck(s)ξ
k −∑p−1

k=0 dk(s)ξ
k =

∑p−1
k=0(ck(s)− dk(s))ξ

k. Here,

ck(s) = |{v ∈ S : v +
s

v
= k}|, dk(s) = |{v ∈ N : v +

s

v
= k}|

Now since a, b are non squares we have that c0(a) = c0(b), andd0(a) = d0(b).
Next, if v is a solution to v + a

v
= k the other solution is a

v
, hence for a

nonsquare a we have that ck(a) ∈ {0, 1}. Besides,

ck(a) = 0 ⇐⇒ dk(a) = 0
ck(a) = 1 ⇐⇒ dk(a) = 1

Hence, for a nonsquare in Zp we have that ck(a) = dk(a) for every k ∈ Zp.
Thus, we have proved lemma 6.
Therefore, theorem 3 says that the second statement en a) of theorem 1
follows.
In order to show part b) of theorem 1 we need some lemmas.
Recall that K := F [

√
δ] with δ ∈ F a nonsquare. For this case Tr : K → Zp

is Tr(x +
√

δy) = 2x, N(x +
√

δy) = x2 − δy2. Ψ0 : Zp → C∗ is a generator
of the dual group to Zp. Ψ : F → C∗ is the character Ψ = Ψ0 ◦ Tr

Lemma 7.
For any a ∈ F, JF×F

0 (a) = −JK
0 (a)

Proof: We claim that that if a is not a square in F, then

{a

t
+ t : t ∈ F ∗} ∩ {2x = Tr(w) : w ∈ K, Nw = a} = ∅ (4)

{a

t
+ t : t ∈ F ∗} ∪ {2x = Tr(w) : w ∈ K, Nw = a} = F (4)
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Indeed, a
t

+ t = 2x implies that (1
2
(a

t
+ t))2 − δy2 = a for some y ∈ F. This

yields that 1
4
(−a

t
+ t)2 = δy2. Since a, δ are not squares in F, and y 6= 0 we

have a contradiction. Thus, the intersection is empty. On the other hand,
the fact that a is not a square implies that the function t → a

t
+ t is two to

one. Thus, the cardinal of the first set is q−1
2

. Moreover, the fact that the
prime field is not of order two, implies that the function w → Tr(w) from
Nw = a is two to one. Thus, the number of elements of the second set is q+1

2

and we obtain the second equality in (4).
The same computation shows that if a = t20, t0 ∈ F, then

{a

t
+ t : t ∈ F ∗} ∩ {2x = Tr(w) : w ∈ K, Nw = a} = {±2t0} (5)

{a

t
+ t : t ∈ F ∗} ∪ {2x = Tr(w) : w ∈ K, Nw = a} = F (5)

Indeed, since a = t20 the function t → a
t
+ t is two to one in F ∗−{±t0}. Thus,

the cardinal of the first set is q−1−2
2

+2 = q+1
2

. The cardinal of the second set
is q+1−2

2
+ 2 = q+3

2
. Hence, the union is F.

We now are ready to finish the proof of lemma 7.

JF×F
0 (a) + JK

0 (a) =
∑
t∈F ∗

Ψ0(
a

t
+ t) +

∑
w∈K,x2−δy2=a

Ψ0(2x)

If a is not a square in F, according to (4) in the above sum we are considering
each element of F twice. Thus, the Schur orthogonality relations applied to
Ψ0 yield,

JF×F
0 (a) + JK

0 (a) = 2
∑
u∈F

Ψ0(u) = 0.

According to (5) if a 6= 0 is a square in F, in the sum we are considering each
element of F twice, except for ±t0. Hence,

JF×F
0 (a) + JK

0 (a) = 2(
∑

u∈F,u 6=±t0

Ψ0(u)) + Ψ0(t0) + Ψ0(−t0) =

2
∑
u∈F

Ψ0(u) + 3(Ψ0(t0) + Ψ0(−t0)) = 0

JF×F
0 (0) + JK

0 (0) =
∑

u∈F ∗
Ψ0(u)+
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+
∑

x2−δy2=0

Ψ0(2x) =
∑

u∈F ∗
Ψ0(u) + Ψ0(0) =

∑
t∈F

Ψ0(t) = 0.

And we have conclude the proof of lemma 7.

Lemma 8. For F = Zp, p > 3 JK
0 is an injective function.

Proof: Recall that [K : Zp] = 2 and that K = Zp[
√

δ] with δ a nonsquare in
Zp. Let ξ be the p−root of one that determines Ψ0. Thus, Ψ0(k) = ξk.

J(a) := JK
0 (a) =

∑
x2−δy2=a; x,y∈Zp

Ψ0(2x)

Hence,

J(a) =
∑

x2−δy2=a; x,y∈Zp

ξ2x =
k=p−1∑

k=0

ck(a)ξk.

Where,

ck(a) = ]{w = x +
√

δy : 2x ≡ kmod(p), x2 − δy2 = a}.

Thus, ck(a) = ]{y ∈ Zp : (k
2
)2 − δy2 = a} = ]{y ∈ Zp : k2−4a

4δ
= y2}. Hence,

ck(a) ≤ 2. Actually, since p > 2 we have:
If a is a square in Zp, then c±2

√
a(a) = 1 (6)

For any a in Zp and for k 6= ±2
√

a, ck(a) ∈ {0, 2}. c0(a) = ]{y : −4a
4δ

= y2}.
Thus, c0 is constant on the set of squares in Zp and on the set of nonsquares
in Zp. (7)
For a 6= 0, c0(a) ∈ {0, 2}, c0(0) = 1, ck(0) = 0 for k 6= 0. (8)
The first two affirmations are obvious. The third one follows from the fact
that δ is not a square in Zp.
J(a) = J(b) implies ck(a)− c0(a) = ck(b)− c0(b), for k = 1, . . . , p− 1, (9)
Indeed, since 1 + ξ + · · ·+ ξp−1 = ξp− 1 = 0, we obtain J(a) =

∑
k ck(a)ξk =∑k=p−1

k=1 (ck(a)− c0(a))ξk. Now Galois Theory (c.f. [L], ) says that ξ, . . . , ξp−1

are linearly independent over rational numbers Q. Therefore, (9) follows.
J(a) = J(0) implies a = 0. (10)
We assume a 6= 0. Since J(a) = J(0), (9) implies that ck(0) − c0(0) =
ck(a) − c0(a). Next (8) says that ck(a) − c0(a) = 0 − 1 = −1 if k > 0. Thus,
ck(a) = −1− 0 = −1 or ck(a) = −1 + 2 = 1. If we had ck(a) = 1 for every 1 ≤
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k ≤ p − 1 the hypothesis p > 3 forces that there exist k ≤ p − 1 so that
k 6= ±2

√
a. Hence, we have contradicted (6). Thus, a = 0.

Next, we prove that for a, b squares J(a) = J(b) implies a = b.
Since a, b are squares (7) yields c0(a) = c0(b). Thus, ck(a) = ck(b) for every
k. The last equality and (6) imply 1 = c2

√
a(a) = c2

√
a(b) = c2

√
b(b). Thus,

2
√

a = ±2
√

b. Hence, a = b.
For a a square and b a nonsquare, J(a) = J(b) yields, as before, 1 = c2

√
a(a) =

c2
√

a(b). But, b is a nonsquare, hence ck(b) ∈ {0, 2}. A contradiction.
Finally, we prove if a, b are nonsquares, J(a) = J(b) yields a = b.
The hypothesis on a, b together with (7) gives c0(a) = c0(b). Thus, the hy-
pothesis on J implies ck(a) = ck(b) for every k.
Let Si(a) = {k : ck(a) = i}. The hypothesis on a, b yield Si(a) = Si(b) for
every i, and S1(a) = S1(b) = ∅. Recall that K is a second degree extension
of Zp. T r, N denote the norm and the trace of K over Zp.
T r{z = x +

√
δy ∈ K : x2 − δy2 = a} = S2(a). (11)

In fact, Tr(z) = 2x and (2x)2−4a
4δ

= x2−a
δ

= δy2

δ
= y2. Note that y is nonzero

because a is a nonsquare. Hence, 2x ∈ S2(a). On the other hand, let
u ∈ S2(a). Thus,u2−4a

4δ
= y2 has two solutions y±. Obviously, u

2
+
√

δy± is in
{z ∈ K : x2 − δy2 = a} and we have proved the other inclusion. Also, since
y 6= 0 we obtain that the map Tr : {z = x+

√
δy ∈ K : x2−δy2 = a} → S2(a)

is two to one. Since ]{z = x +
√

δy ∈ K : x2 − δy2 = a} = p + 1 for a 6= 0.
We obtain,
For a a nonsquare in Zp we have ]S2(a) = p+1

2
. (12)

The fact that a, b are nonsquare together with (11) and J(a) = J(b) im-
ply that S2(a) = {2x : x2 − δs2

x = a, for some sx} = {2x : x2 − δy2
x =

b, for some yx} = S2(b). Next, we assume a 6= b. Then x2−δs2
x = a, x2−δy2

x = b
yield y2

x − s2
x = b−a

δ
. Set Ax = (±sx,±yx). Ax has four elements, otherwise

±sx = ±yx for some combination of ±. Thus, a = x2 − δs2
x = x2 − δy2

x = b,
a contradiction. Also, sx, yx are nonzero because a, b are not a square in Zp.
The fact that y2

x − s2
x = b−a

δ
implies that Ax ⊂ H b−a

δ
:= {(s, t) ∈ Zp × Zp :

s2 − t2 = b−a
δ
}.

Note that A−x = Ax. Moreover, Ax ∩ Az 6= ∅ implies z = ±x. In fact,
(±sx,±yx) ∈ Ax ∩Az yields x2 − δs2

x = a, z2 − δs2
x = a, thus, z2 = x2. Let R

be a set of representatives for the equivalence relation x ∼ −x in S2(a). The
above consideration has as a consequence that H b−a

δ
⊇ ∪x∈RAx, a disjoint

union. Now, if −1 is not a square in Zp, then (12) implies that ]R = p+1
4

.
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Finally, we recall that ]H b−a
δ

= p − 1. Hence, we obtain p − 1 ≥ 4p+1
4

, a

contradiction. For the case −1 is a square in Zp we have that p − 1 ≥
4[(p+1

2
− 1)1

2
+ 1] = p + 3, another contradiction. Therefore a = b and we

have proved lemma 8. Now theorem 1 b) follows.
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