Intertwining operators for $L^{2}(E)$

Jorge Soto Andrade and Jorge Vargas
Universidad de Chile Casilla 653,
Santiago de Chile, Chile and FAMAF Universidad Nacional de Córdoba 5000 Córdoba, Argentine

October 30, 2007

Abstract

Let (E, q) be a finite dimensional quadratic vector space over a finite field. For the usual representation of the isometry group of (E, q) in the space of complex valued functions on E, we analyze when the polynomial algebra spanned by one mean average operator is the whole algebra of intertwining operators.

Let F be a finite field with $q=p^{n}$ elements. (From now on, p is an odd prime number) We fix a m-dimensional vector space E over F. We also fix $b: E \times E \rightarrow F$ a nondegenerate bilinear symmetric form. We define $Q(x)=b(x, x)$ and $d(x, y)=b(x-y, x-y)$. The sphere of center x and radius r will be denoted by $S_{m}(x, r)$. We usually will drop the subindex m. As usullay $M_{r}: L^{2}(E) \rightarrow L^{2}(E)$ is the mean average operator defined by

$$
\begin{equation*}
\left(M_{r} f\right)(x)=\sum_{v \in S(x, r)} f(v) \tag{1}
\end{equation*}
$$

[^0]The purposse of this note is to analyze, for a fix r, whether or not the polynomials in M_{r} span the algebra of intertwining operators for the left regular representation of the isometry group of b in $L^{2}(E)$. We recall that the theorem of the intertwining number says the algebra of intertwining operators is linearly spanned by all the M_{r}. (cf. [M], [Wa])

More precisely:
Theorem 1. a) If $\left[F: Z_{p}\right]>1$ or $F=Z_{p}$ and E is odd dimensional then the algebra spanned by a $M_{r}\left(r \in F^{*}\right.$ fixed $)$ is a proper subalgebra of the whole algebra of intertwining operators. This also holds if $p=3$.
b) If $F=Z_{p}, p>3$ and E is even dimensional then the algebra spanned by a M_{r} is the whole algebra of intertwining operators.

Note: In [Sta] D. Stanton proves that one mean average operator generates the whole intertwining algebra, but his metric is real valued instead of being F-valued.

We begin collecting the ingredients necessary for the proof.
We denote by $\Psi: F \rightarrow C^{*}$ the composition of the trace from F to the prime field followed by a generator of the dual group to the additive group of the prime field.

The eigenfunctions of the operator M_{r} are the functions

$$
\begin{equation*}
\varphi_{r}(y)=\sum_{v \in S(\overrightarrow{0}, r)} \Psi(b(v, y)) \tag{2}
\end{equation*}
$$

Actually, φ_{r} only depends on $s=d(y, \overrightarrow{0})$ and not on y itself. From now on, we will write $\varphi_{r}(s)(s \in F)$ instead of $\varphi_{r}(y)$.
Let A be a $2-$ dimensional asociative algebra over F. Then A is either isomorphic to $F \times F$ or to K the second degree extension of F. In $F \times F$ we consider the hyperbolic form $h=\frac{1}{2}\left(x_{1} y_{2}+x_{2} y_{1}\right)$. Let N denote the associated quadratic form to h. Thus $N\left(x_{1}, x_{2}\right)=x_{1} x_{2}$. We recall that $\operatorname{Tr}: A \rightarrow F$ is $\operatorname{Tr}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$. We will denote by Tr, N the trace and the norm of the field extension K / F. Since the degree of K over F is two, N is the quadratic form of a symmetric bilinear form over F on K. We will denote this symmetric form by N. We recall that the Bessel function attached to the data $(A, \operatorname{Tr}, N, \Psi)$ is

$$
J_{0}^{A}(a)=\sum_{w \in A, N(w)=a} \Psi(\operatorname{Tr}(w)) \quad(a \in F)
$$

Thus, for $A=F \times F$

$$
J_{0}^{A}(a)=\sum_{x_{1} x_{2}=a} \Psi\left(x_{1}+x_{2}\right)=\sum_{t \in F^{*}} \Psi\left(t+\frac{a}{t}\right)
$$

For $A=K$

$$
J_{0}^{A}(a)=\sum_{w \in E, N(w)=a} \Psi(w+\bar{w})
$$

Here, bar denotes the nontrivial element of the Galois extension K / F.
Up to isomorphism every nondegenerate, even dimensional, quadratic spaces over F is isomorphic to

$$
\left(F^{2(n-1)} \quad \oplus A, \quad h \oplus \cdots \oplus h \oplus N\right)
$$

For a proof (c.f. [Se]). A lengthly calculation shows that:
Theorem 2.

$$
\text { For } s \in F^{*} \quad \varphi_{r}(s)=q^{n-1} J_{0}^{A}(r s)
$$

For a proof (cf [MMST])
Next, we spell out the two cases. $A=F \times F$, hence the quadratic space is

$$
\left(F^{2 n}, \quad h \oplus \cdots \oplus h\right)(n \text { times })
$$

and

$$
\begin{equation*}
\varphi_{r}(s)=q^{n-1} \sum_{t \in F^{*}} \Psi\left(t+\frac{r s}{t}\right) \tag{He}
\end{equation*}
$$

$A=K$, hence the quadratic space is

$$
\left(F^{2(n-1)} \oplus K, \quad h \oplus \cdots \oplus h \oplus N\right)
$$

and

$$
\begin{equation*}
\varphi_{r}(s)=q^{n-1} \sum_{y \in E, y \bar{y}=r s} \Psi(y+\bar{y}) \tag{Ne}
\end{equation*}
$$

We now consider the odd dimensional case. Then (E, q) is equivalent to

$$
\left(F^{2 n} \oplus F, \quad h \oplus \cdots \oplus h \oplus a x_{0}^{2}\right)
$$

Here $a=1$ or $a \in F^{*}$ is a nonsquare. For a proof (c.f. [Se].)
Let $\epsilon: F \rightarrow C^{*}$ defined by $\epsilon(0)=0, \epsilon\left(F^{*^{2}}\right)=1, \epsilon(x)=-1$ for $x \notin F^{*^{2}}$.
A lengthly calculation shows:

Theorem 3

$$
\varphi_{r}(s)=q^{n-1} G_{F} \sum_{t \in F^{*}} \epsilon\left(\frac{t}{a}\right) \Psi\left(t+\frac{s r}{t}\right)
$$

Here, G_{F} stands for a Gauss sum associated to F.
For a proof (cf [MMST])
We now begin to study whenever the algebra spanned by a M_{r} agrees with the whole algebra of intertwining operators for $L^{2}(E)$. Let $\operatorname{Iso}(E)$ be the group of isometries of E with respect to the nondegenerate quadratic form Q. Thus, $\operatorname{Iso}(E)$ is the semidirect product of $O(Q, E)$ and E. For a proof consult [Ar]. Let π be the natural representation of $\operatorname{Iso}(E)$ in $L^{2}(E)$. It is clear that M_{r} belongs to the algebra of intertwining operators for π. Let $\varphi_{r}(s)$ be the s-eigenvalue for $M_{r}(s \in F)$. (cf. (2))
Lemma 4. The subalgebra spanned by a $M_{r}(r \neq 0)$ is equal to the algebra of intertwining operators if and only if the function $s \rightarrow \varphi_{r}(s)$ is one to one.

Proof: Since $(\operatorname{Iso}(E), O(q, E))$ is a Gelfand pair, $L^{2}(E)$ decomposes with multiplicity free as $\operatorname{Iso}(E)$-module. Also, the structure of the unitary dual to $I s o(E)$ implies that we may write $L^{2}(E)=\oplus_{s} V_{s}$ with V_{s} an $I s o(E)$-irreducible representation on V_{s}. Hence, V_{s} is not equivalent to V_{t} for $t \neq s$. On V_{s}, M_{r} acts by $\varphi_{r}(s)$. Therefore, the algebra of intertwining operators has dimension q. The algebra of intertwining operators has a basis $e_{s}=$ $\left(\delta_{s t} i d_{V_{s}}\right)_{t \in F},(s \in F)$. The change of basis matrix to the powers of M_{r} is the Vandermonde matrix associated to $\left(\varphi_{r}(s)\right)_{(s \in F)}$. Hence, the lemma follows.
Lemma 5. For $\sigma \in \operatorname{Gal}\left(F / Z_{p}\right), a \in F$ then

$$
\begin{aligned}
J_{0}^{F \times F}(\sigma(a)) & =J_{0}^{F \times F}(a) \\
J_{0}^{K}(\sigma(a)) & =J_{0}^{K}(a) \\
\sum_{t \in F^{*}} \epsilon\left(\frac{t}{b}\right) \Psi\left(t+\frac{\sigma(a)}{t}\right) & =\sum_{t \in F^{*}} \epsilon\left(\frac{t}{b}\right) \Psi\left(t+\frac{a}{t}\right)
\end{aligned}
$$

Proof: First of all $\Psi(z)=\Psi_{0}(\operatorname{Tr}(z))$, where Tr is the trace of the field extension F / Z_{p} and Ψ_{0} is a generator for the dual to the additive group of Z_{p}. Hence, $J_{0}^{F \times F}(\sigma(a))=\sum_{t \in F^{*}} \Psi_{0}\left(\operatorname{Tr}\left(t+\frac{\sigma(a)}{t}\right)\right)$. Now, $\sigma F^{*}=F^{*}, \operatorname{Tr}(\sigma(u))=$ $\operatorname{Tr}(u) u \in F$. Thus, we can make $t=\sigma(s)$, and the first equality follows. The proof of the second equality follows from $N(\sigma(u))=N(u)$. The third equality follows after we recall that $\operatorname{Gal}\left(F / Z_{p}\right)$ is an abelian group.

Next, we prove the first assertion in a) in theorem 1. Since $\left[F: Z_{p}\right]>1$, the Galois group of F over Z_{p} is nontrivial. Hence, lemma 5 says that the functions $J_{0}^{F \times F}, J_{0}^{K}$ are not one to one. On the other hand multiplication by a nonzero scalar r is a bijection. Thus, theorem 2 says that φ_{r} is not injective, by lemma 4 we have proved the first statement in part a) of theorem 1 . The second statement follows from:
Lemma 6. Let $f(s)=\sum_{v \in Z_{p}^{*}} \Psi\left(v+\frac{s}{v}\right) \epsilon(v)$, then f is not injective.
Proof: For $p=3, f(1)=f(2)$ follows by a direct calculation. For $p>3$ we prove that $f(a)=f(b)$ for any pair a, b not squares in Z_{p}.
Indeed, $\Psi(x)=\xi^{x}$ for a fixed p-root of the unity ξ. Let N, S denote the set of nonsquares (squares) in Z_{p}. Thus $f(s)=\sum_{v \in S} \Psi\left(v+\frac{s}{v}\right)-\sum_{v \in N} \Psi\left(v+\frac{s}{v}\right)=$ $\sum_{k=0}^{p-1} c_{k}(s) \xi^{k}-\sum_{k=0}^{p-1} d_{k}(s) \xi^{k}=\sum_{k=0}^{p-1}\left(c_{k}(s)-d_{k}(s)\right) \xi^{k}$. Here,

$$
c_{k}(s)=\left|\left\{v \in S: v+\frac{s}{v}=k\right\}\right|, d_{k}(s)=\left|\left\{v \in N: v+\frac{s}{v}=k\right\}\right|
$$

Now since a, b are non squares we have that $c_{0}(a)=c_{0}(b), \operatorname{and} d_{0}(a)=d_{0}(b)$. Next, if v is a solution to $v+\frac{a}{v}=k$ the other solution is $\frac{a}{v}$, hence for a nonsquare a we have that $c_{k}(a) \in\{0,1\}$. Besides,

$$
\begin{aligned}
& c_{k}(a)=0 \quad \Longleftrightarrow d_{k}(a)=0 \\
& c_{k}(a)=1 \quad \Longleftrightarrow d_{k}(a)=1
\end{aligned}
$$

Hence, for a nonsquare in Z_{p} we have that $c_{k}(a)=d_{k}(a)$ for every $k \in Z_{p}$. Thus, we have proved lemma 6.
Therefore, theorem 3 says that the second statement en a) of theorem 1 follows.
In order to show part b) of theorem 1 we need some lemmas.
Recall that $K:=F[\sqrt{\delta}]$ with $\delta \in F$ a nonsquare. For this case $\operatorname{Tr}: K \rightarrow Z_{p}$ is $\operatorname{Tr}(x+\sqrt{\delta} y)=2 x, N(x+\sqrt{\delta} y)=x^{2}-\delta y^{2} . \quad \Psi_{0}: Z_{p} \rightarrow C^{*}$ is a generator of the dual group to $Z_{p} . \Psi: F \rightarrow C^{*}$ is the character $\Psi=\Psi_{0} \circ \operatorname{Tr}$
Lemma 7.

$$
\text { For any } a \in F, J_{0}^{F \times F}(a)=-J_{0}^{K}(a)
$$

Proof: We claim that that if a is not a square in F, then

$$
\begin{align*}
& \left\{\frac{a}{t}+t: t \in F^{*}\right\} \cap\{2 x=\operatorname{Tr}(w): w \in K, N w=a\}=\emptyset \tag{4}\\
& \left\{\frac{a}{t}+t: t \in F^{*}\right\} \cup\{2 x=\operatorname{Tr}(w): w \in K, N w=a\}=F \tag{4}
\end{align*}
$$

Indeed, $\frac{a}{t}+t=2 x$ implies that $\left(\frac{1}{2}\left(\frac{a}{t}+t\right)\right)^{2}-\delta y^{2}=a$ for some $y \in F$. This yields that $\frac{1}{4}\left(\frac{-a}{t}+t\right)^{2}=\delta y^{2}$. Since a, δ are not squares in F, and $y \neq 0$ we have a contradiction. Thus, the intersection is empty. On the other hand, the fact that a is not a square implies that the function $t \rightarrow \frac{a}{t}+t$ is two to one. Thus, the cardinal of the first set is $\frac{q-1}{2}$. Moreover, the fact that the prime field is not of order two, implies that the function $w \rightarrow \operatorname{Tr}(w)$ from $N w=a$ is two to one. Thus, the number of elements of the second set is $\frac{q+1}{2}$ and we obtain the second equality in (4).
The same computation shows that if $a=t_{0}^{2}, t_{0} \in F$, then

$$
\begin{gather*}
\left\{\frac{a}{t}+t: t \in F^{*}\right\} \cap\{2 x=\operatorname{Tr}(w): w \in K, N w=a\}=\left\{ \pm 2 t_{0}\right\} \tag{5}\\
\left\{\frac{a}{t}+t: t \in F^{*}\right\} \cup\{2 x=\operatorname{Tr}(w): w \in K, N w=a\}=F \tag{5}
\end{gather*}
$$

Indeed, since $a=t_{0}^{2}$ the function $t \rightarrow \frac{a}{t}+t$ is two to one in $F^{*}-\left\{ \pm t_{0}\right\}$. Thus, the cardinal of the first set is $\frac{q-1-2}{2}+2=\frac{q+1}{2}$. The cardinal of the second set is $\frac{q+1-2}{2}+2=\frac{q+3}{2}$. Hence, the union is F.
We now are ready to finish the proof of lemma 7 .

$$
J_{0}^{F \times F}(a)+J_{0}^{K}(a)=\sum_{t \in F^{*}} \Psi_{0}\left(\frac{a}{t}+t\right)+\sum_{w \in K, x^{2}-\delta y^{2}=a} \Psi_{0}(2 x)
$$

If a is not a square in F, according to (4) in the above sum we are considering each element of F twice. Thus, the Schur orthogonality relations applied to Ψ_{0} yield,

$$
J_{0}^{F \times F}(a)+J_{0}^{K}(a)=2 \sum_{u \in F} \Psi_{0}(u)=0 .
$$

According to (5) if $a \neq 0$ is a square in F, in the sum we are considering each element of F twice, except for $\pm t_{0}$. Hence,

$$
\begin{aligned}
& J_{0}^{F \times F}(a)+J_{0}^{K}(a)=2\left(\sum_{u \in F, u \neq \pm t_{0}} \Psi_{0}(u)\right)+\Psi_{0}\left(t_{0}\right)+\Psi_{0}\left(-t_{0}\right)= \\
& 2 \sum_{u \in F} \Psi_{0}(u)+3\left(\Psi_{0}\left(t_{0}\right)+\Psi_{0}\left(-t_{0}\right)\right)=0 \\
& J_{0}^{F \times F}(0)+J_{0}^{K}(0)=\sum_{u \in F^{*}} \Psi_{0}(u)+
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{x^{2}-\delta y^{2}=0} \Psi_{0}(2 x)=\sum_{u \in F^{*}} \Psi_{0}(u)+\Psi_{0}(0)= \\
& \sum_{t \in F} \Psi_{0}(t)=0
\end{aligned}
$$

And we have conclude the proof of lemma 7.
Lemma 8. For $F=Z_{p}, p>3 J_{0}^{K}$ is an injective function.
Proof: Recall that $\left[K: Z_{p}\right]=2$ and that $K=Z_{p}[\sqrt{\delta}]$ with δ a nonsquare in Z_{p}. Let ξ be the p-root of one that determines Ψ_{0}. Thus, $\Psi_{0}(k)=\xi^{k}$.

$$
J(a):=J_{0}^{K}(a)=\sum_{x^{2}-\delta y^{2}=a ; x, y \in Z_{p}} \Psi_{0}(2 x)
$$

Hence,

$$
J(a)=\sum_{x^{2}-\delta y^{2}=a ; x, y \in Z_{p}} \xi^{2 x}=\sum_{k=0}^{k=p-1} c_{k}(a) \xi^{k}
$$

Where,

$$
c_{k}(a)=\sharp\left\{w=x+\sqrt{\delta} y: 2 x \equiv \operatorname{kmod}(p), x^{2}-\delta y^{2}=a\right\} .
$$

Thus, $c_{k}(a)=\sharp\left\{y \in Z_{p}:\left(\frac{k}{2}\right)^{2}-\delta y^{2}=a\right\}=\sharp\left\{y \in Z_{p}: \frac{k^{2}-4 a}{4 \delta}=y^{2}\right\}$. Hence, $c_{k}(a) \leq 2$. Actually, since $p>2$ we have:
If a is a square in Z_{p}, then $c_{ \pm 2 \sqrt{a}}(a)=1$
For any a in Z_{p} and for $k \neq \pm 2 \sqrt{a}, c_{k}(a) \in\{0,2\} . c_{0}(a)=\sharp\left\{y: \frac{-4 a}{4 \delta}=y^{2}\right\}$.
Thus, c_{0} is constant on the set of squares in Z_{p} and on the set of nonsquares in Z_{p}.
For $a \neq 0, c_{0}(a) \in\{0,2\}, c_{0}(0)=1, c_{k}(0)=0$ for $k \neq 0$.
The first two affirmations are obvious. The third one follows from the fact that δ is not a square in Z_{p}.
$J(a)=J(b)$ implies $c_{k}(a)-c_{0}(a)=c_{k}(b)-c_{0}(b)$, for $k=1, \ldots, p-1$,
Indeed, since $1+\xi+\cdots+\xi^{p-1}=\xi^{p}-1=0$, we obtain $J(a)=\sum_{k} c_{k}(a) \xi^{k}=$ $\sum_{k=1}^{k=p-1}\left(c_{k}(a)-c_{0}(a)\right) \xi^{k}$. Now Galois Theory (c.f. [L],) says that ξ, \ldots, ξ^{p-1} are linearly independent over rational numbers Q. Therefore, (9) follows.
$J(a)=J(0)$ implies $a=0$.
We assume $a \neq 0$. Since $J(a)=J(0)$, (9) implies that $c_{k}(0)-c_{0}(0)=$ $c_{k}(a)-c_{0}(a)$. Next (8) says that $c_{k}(a)-c_{0}(a)=0-1=-1$ if $k>0$. Thus, $c_{k}(a)=-1-0=-1$ or $c_{k}(a)=-1+2=1$. If we had $c_{k}(a)=1$ for every $1 \leq$
$k \leq p-1$ the hypothesis $p>3$ forces that there exist $k \leq p-1$ so that $k \neq \pm 2 \sqrt{a}$. Hence, we have contradicted (6). Thus, $a=0$.
Next, we prove that for a, b squares $J(a)=J(b)$ implies $a=b$.
Since a, b are squares (7) yields $c_{0}(a)=c_{0}(b)$. Thus, $c_{k}(a)=c_{k}(b)$ for every k. The last equality and (6) imply $1=c_{2 \sqrt{a}}(a)=c_{2 \sqrt{a}}(b)=c_{2 \sqrt{b}}(b)$. Thus, $2 \sqrt{a}= \pm 2 \sqrt{b}$. Hence, $a=b$.
For a a square and b a nonsquare, $J(a)=J(b)$ yields, as before, $1=c_{2 \sqrt{a}}(a)=$ $c_{2 \sqrt{a}}(b)$. But, b is a nonsquare, hence $c_{k}(b) \in\{0,2\}$. A contradiction.
Finally, we prove if a, b are nonsquares, $J(a)=J(b)$ yields $a=b$.
The hypothesis on a, b together with (7) gives $c_{0}(a)=c_{0}(b)$. Thus, the hypothesis on J implies $c_{k}(a)=c_{k}(b)$ for every k.
Let $S_{i}(a)=\left\{k: c_{k}(a)=i\right\}$. The hypothesis on a, b yield $S_{i}(a)=S_{i}(b)$ for every i, and $S_{1}(a)=S_{1}(b)=\emptyset$. Recall that K is a second degree extension of Z_{p}. Tr, N denote the norm and the trace of K over Z_{p}.
$\operatorname{Tr}\left\{z=x+\sqrt{\delta} y \in K: x^{2}-\delta y^{2}=a\right\}=S_{2}(a)$.
In fact, $\operatorname{Tr}(z)=2 x$ and $\frac{(2 x)^{2}-4 a}{4 \delta}=\frac{x^{2}-a}{\delta}=\frac{\delta y^{2}}{\delta}=y^{2}$. Note that y is nonzero because a is a nonsquare. Hence, $2 x \in S_{2}(a)$. On the other hand, let $u \in S_{2}(a)$. Thus, $\frac{u^{2}-4 a}{4 \delta}=y^{2}$ has two solutions $y_{ \pm}$. Obviously, $\frac{u}{2}+\sqrt{\delta} y_{ \pm}$is in $\left\{z \in K: x^{2}-\delta y^{2}=a\right\}$ and we have proved the other inclusion. Also, since $y \neq 0$ we obtain that the map $\operatorname{Tr}:\left\{z=x+\sqrt{\delta} y \in K: x^{2}-\delta y^{2}=a\right\} \rightarrow S_{2}(a)$ is two to one. Since $\sharp\left\{z=x+\sqrt{\delta} y \in K: x^{2}-\delta y^{2}=a\right\}=p+1$ for $a \neq 0$. We obtain,
For a a nonsquare in Z_{p} we have $\sharp S_{2}(a)=\frac{p+1}{2}$.
The fact that a, b are nonsquare together with (11) and $J(a)=J(b)$ imply that $S_{2}(a)=\left\{2 x: x^{2}-\delta s_{x}^{2}=a\right.$, for some $\left.s_{x}\right\}=\left\{2 x: x^{2}-\delta y_{x}^{2}=\right.$ b, for some $\left.y_{x}\right\}=S_{2}(b)$. Next, we assume $a \neq b$. Then $x^{2}-\delta s_{x}^{2}=a, x^{2}-\delta y_{x}^{2}=b$ yield $y_{x}^{2}-s_{x}^{2}=\frac{b-a}{\delta}$. Set $A_{x}=\left(\pm s_{x}, \pm y_{x}\right)$. A_{x} has four elements, otherwise $\pm s_{x}= \pm y_{x}$ for some combination of \pm. Thus, $a=x^{2}-\delta s_{x}^{2}=x^{2}-\delta y_{x}^{2}=b$, a contradiction. Also, s_{x}, y_{x} are nonzero because a, b are not a square in Z_{p}. The fact that $y_{x}^{2}-s_{x}^{2}=\frac{b-a}{\delta}$ implies that $A_{x} \subset H_{\frac{b-a}{\delta}}:=\left\{(s, t) \in Z_{p} \times Z_{p}\right.$: $\left.s^{2}-t^{2}=\frac{b-a}{\delta}\right\}$.
Note that $A_{-x}=A_{x}$. Moreover, $A_{x} \cap A_{z} \neq \emptyset$ implies $z= \pm x$. In fact, $\left(\pm s_{x}, \pm y_{x}\right) \in A_{x} \cap A_{z}$ yields $x^{2}-\delta s_{x}^{2}=a, z^{2}-\delta s_{x}^{2}=a$, thus, $z^{2}=x^{2}$. Let R be a set of representatives for the equivalence relation $x \sim-x$ in $S_{2}(a)$. The above consideration has as a consequence that $H_{\frac{b-a}{\delta}} \supseteq \cup_{x \in R} A_{x}$, a disjoint union. Now, if -1 is not a square in Z_{p}, then (12) implies that $\sharp R=\frac{p+1}{4}$.

Finally, we recall that $\sharp H_{\frac{b-a}{\delta}}=p-1$. Hence, we obtain $p-1 \geq 4 \frac{p+1}{4}$, a contradiction. For the case -1 is a square in Z_{p} we have that $p-1 \geq$ $4\left[\left(\frac{p+1}{2}-1\right) \frac{1}{2}+1\right]=p+3$, another contradiction. Therefore $a=b$ and we have proved lemma 8. Now theorem 1 b) follows.

Bibliography

[Ar] Artin, E., Geometric Algebra, Interscience, 1962.
[L] Lang, S., Algebra, Addison Wesley, 1965.
[M] Mackey, G., The theory of unitary group representations. The University of Chicago Univ. Press, 1976
[MMST] Medrano A., Myers P., Stark H., Terras A., Finite analogues of euclidean space, Journal of Computation and Applied Mathematics 68 (1996) 221-238
[Se] Serre J.P., A course in arithmetic, Springer Verlag, 1978.
[St] Stanton D., Orthogonal Polynomials and Chevalley Groups, Special functions: group theoretical aspects and applications, Ed. Askey and Korwinder, Reidel 1984.
[Wa] Warner, Garth, Harmonic Analysis on semisimple Lie Groups, Springer Verlag, 1972.

[^0]: *Supported by CONICYT, Fund. Andes, French Cooperation Office (Chile) and CONICET, CONICOR, SECYTUNC (Argentine)

