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Abstract

Let G be a connected linear semisimple Lie group having a Holo-
morphic Discrete Series representation 7. Let H be a connected re-
ductive subgroup of G so that the global symmetric space attached to
H is a real form of the Hermitian symmetric space associated to G.
Fix a maximal compact subgroup K of G so that H N K is a maximal
compact subgroup for H. Let 7 be the lowest K —type for m and let 7,
denote the restriction of 7 to HN K. In this note we prove that the re-

striction of 7 to H is unitarily equivalent to the unitary representation
of H induced by .

Introduction

For any Lie group, we denote its Lie algebra by the corresponding German
lower case letter. In order to denote complexification of either a real Lie group
or a real Lie algebra we add the subindex c¢. Let G be a connected matrix
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semisimple Lie group. Henceforth, we assume that the homogeneous space
G /K is Hermitian symmetric. Let H be a connected semisimple subgroup
of G and fix a maximal compact subgroup K of G such that K; .= HN K
is a maximal compact subgroup of H. From now on we assume that H/K;
is a real form of the complex manifold G/K. Let (m, V) be a Holomorphic
Discrete Series representation for G. Let (7,W) be the lowest K—type for
(7, V). For the definition and properties of lowest K —type of a Discrete Series
representation we refer to [K]. Let (7., W) denote the restriction of 7 to K.
We then have:

Theorem 1 The restriction of (m,V) to H is unitarily equivalent to the
unitary representation of H induced by (., W).

Thus, after the work of Harish-Chandra and Camporesi [Ca] we have that
the restriction of 7 to H is unitarily equivalent to

T

Z/ Ind \x(0; @ €™ @ 1)dv.
1 vear

j=

Here, M AN is a minimal parabolic subgroup of H so that M C K, and
o1,--- ,0, are the irreducible factors of 7 restricted to M. Whenever, 7 is a
one dimensional representation, the sum is unitarily equivalent to to

/ Ind ,y(1®e” @ 1)dv
vea* /W (H,A)

as it follows from the computation in [OO], and, hence, our result agrees with
the one obtained by Olafsson and Orsted in [OO].

The symmetric pairs (G, H) that satisfy the above hypothesis have been
classified by A. Jaffee in [J1, J2], A very good source about the subject is by
Olafsson in [Ol], they are: (su(p,q), so(p,q)); (su(n,n), sl(n,C) + R));
(5u(2p, 24), 5p(p, @)); (50*(2n), 50(n, C)); (s0*(4n), su*(2n) + R);

(s0(2, p+q), so(p,1)+so(p, 1)); (sp(n, R), sl(n, R)HR)) (Sp(2n R),sp(mc));
(e6(—14), 8P(2,2)); (€6(-14), fa(~20); (e7(—25), €6(—26) + R); (€7 u*(8));
(su(p,q) x su(p,q),sl(p + q,C)); (so*(2n) x so*(2n), 0(2n C)) (so(2,n) X
50(2,n),s0(n + 2,C)); (sp(n,R) x sp(2n,R), sp(n, C)); (eg(—14) X €6(-14); €6);
(67(725) X €7(-25); er).



For classical groups we can compute specific examples of the decomposition
of 7 restricted to M by means of the results of Koike and other authors as
stated in [Koi].

For un update of results on restriction of unitary irreducible representations
we refer to the excellent announcement, survey of T. Kobayashi [Ko] and
references therein.

Proof of the Theorem

In order to prove the Theorem we need to recall some Theorems and prove
a few Lemmas. For this end, we fix compatible Iwasawa decompositions
G = KAN,H = KA N, with K; = HN K, A, C A, N, C N. We denote
by || X = v/—B(X,0X) the norm of g determinated by the Killing form B
and the Cartan involution 6.

Lemma 1 The restriction to H of any K—finite matriz coefficient of (m, V')
is in L*(H).

Proof: We first consider the case that the real rank of H is equal to
the real rank of G. Let f be a K—finite matrix coefficient of (7, V'). For
X € a, weset py(X) = strace(ady(X)ln, ). For an ad(a)—invariant subspace
R of g, let ¥(a, R) denote the roots of a in R. Let A}, A}; be the positive
closed Weyl chambers for ¥(a,n), ¥(a,ny) respectively. Then Af C Af.
Let Wy := ¥(a,n),..., U, be the positive root systems in W(a, g) such that
U, D W¥(a,ng). Let A; denote the positive closed Weyl chamber associated to
W,. Thus, A}, = A7 U...UAT. For each i, let p;(X) = %trace(ad(Xﬂzae% ga)-
For X € Af we have that p;(X) > pg(X). Indeed, for « € ¥, if a €
U, N¥(a,n;) = ¥(a,ny), then the multiplicity of a as a g— root is equal to
or bigger than the multiplicity of « as a h—root, if & € ¥; — U(a, ny), then
a;(X) >0 . Thus,

pi(X) > pp(X) for every X € A].

We now recall the = and o functions for G and H and the usual estimates
for 2. (cf [K] page 188). For Y € a,z € G put pe(Y) = jtrace(ad.(Y'), and

a(z) = / PG (H(k) g1
K



Here, H(z) is uniquely defined by the equation x = kexp(H (z))n,(k €
K,H(z) € ayn € N). If © = kexp(X),(k € K, X € 5,9 = t® s, Cartan
decomposition for g), we put og(z) = || X||. Since the group H might be
reductive we follow [HC] page 106, 129 in order to define oy. Now, all the
norms in a finite dimensional vector space are equivalent. Thus, have that
0g << oy << 0g. The estimates are:

Eg(eap(X)) < cge” "M (1 + og(exp(X)))"
with r > 0,0 < cg < oo, X € Af,i=1,---s,and
e i) < Zy(exp(X)) < ege P (1 4 op(exp(X)))™
Therefore, for X € A we have that
Ec(eapX) < (14 ogexpX)) e )
= e PN (1 4 og(expX)) ern ) —pilX)
< Ep(expX)ea(l 4 og(expX))rern=riX),

Since on A" we have the inequality py(X) — p;(X) < 0, and i is arbitrary
from 1,---,s, we obtain

Za(kraks) = Zg(a) < Eg(a)cg(l 4+ og(a))”
for a € exp(A};), k1, ko € K.

Now, Trombi and Varadarajan [T-V], have proven that for any K —finite ma-
trix coeflicient of a Discrete Series representation of the group G the following
estimate holds,

()] < ¢s267 (@) (1 + o ()
Vo eG,with0<cp <oo,v>0,g>0.
Hence, for a € exp(A};), k1, ke € Ky, we have:
[f(kiaks)[* < CZx(a)***7(1 + 06(a)) @0+
< Ce(—Q—Qv)pH(loga)(l + ag(a))z(qﬂ”r)(l + UH(a))h(lﬂ)_
We set R = 2(q +yr +r) + 2r1(1 + 7), since og(expY) = op(expY’). The
integration formula for the decomposition H = Kjexp(A};) K yields:

/H f@Pdz = [ AW) /K (Rl Pt dbad

<C A(Y)e 22001 4 o (expY ) RdY

+
AH



Since A(Y) < Cye?#®) on Al (Cy < 00) and og(expY) is of polynomial
growth on Y. We may conclude that the restriction to H of f is square inte-
grable in H, proving Lemma 1 for the equal rank case.

For the nonequal rank case let A}, be the closed Weyl chamber in a; cor-
responding to Nj. Let C,---Cs be the closed Weyl chambers in a so that
interior(A;)NC; #0, j =1,---s. Thus, A}, = U;(A}, N C;) and

/ | f(expY)|*PA(Y dY<Z/ flexpY)|PA(Y)dY.
A} mA+

Let p;(Y) = %trace(ad(YﬂZw(vao o). Then, as before, on C;N A7, we have

|feapY)|? << 2onM=pi0)(1 4 ||y |[2)Re2r0i),

If @ € ®(a,n(C})), the restriction (5 of a to ay is either zero, or a restricted
root for (ag,ny), or a nonzero linear functional on ay. In the last two cases
we have that 5(C;NA};) > 0, and if § is a restricted root, the multiplicity of
[ is less or equal than the multiplicity of «. Finally, we recall that any g €
W(ay,ny) is the restriction of a positive root for C;. Thus, e2(Pr()=p(Y) < 1)
and p;(Y) > 0 for every Y € A};. Hence, |f(exp(Y))|?A(Y) is dominated
by an exponential whose integral is convergent. This concludes the proof of
Lemma 1.

0

Remark 1 Under our hypothesis we have the inequality

Eg<k1ak2) = EG( ) < EH( )Cg(l +O'G(CL))T
for a € exp(A}), k1, ko € K.

Let (m,V’) be a Holomorphic Discrete Series representation for G and let
(1, W) denote the lowest K—type for 7. Let E be the homogeneous vector
bundle over G/K attached to (7,WW). G acts on the sections of E by left
translation. We fix a G—invariant inner product on sections of E. The cor-
responding space of square integrable sections is denoted by L?(E). Since
(7, V) is a holomorphic representation we may choose a G—invariant holo-
morphic structure on G/K such that the L?—kernel of 0 is a realization of
(m,V). That is, V := Ker(d : L*(E) — C®(EQT*(G/K)*). (cf. [K], [N-O],
[Sc]). Since H C G and K; = H N K we have that H/K; C G/K and the
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H—homogeneous vector bundle E, over H/K;, determined by T, is contained
in £. Thus, we may restrict smooth sections of E to E,. From now on, we
think of (7, V) as the L*—kernel of the J operator.

Lemma 2 Let f be a holomorphic square integrable section of E and assume
that f is left K—finite. Then the restriction of f to H/K; is also square
integrable.

Proof: Since the 0 operator is elliptic, the L?—topology on its kernel V
is stronger than the topology of uniform convergence on compact subsets.
Therefore, the evaluation map at a point in G/K is a continuous map from
V to W in the L?—topology on V. We denote by A evaluation at the coset
eK. Fix an orthonormal basis vy, ...,v,, for W. Thus \ = 2111 A\;v; where
the \; are in the topological dual to V. We claim that the \; are K —finite. In
fact: if k € K, ve V, (L\)(f) = S l(Lad) ()l @ v = Fk) = 7(k) £(e)
> il N)T(R)vr = 32,005 cij(R)Ni(f)vi = 32,0025 ¢5iAi(f)] ® vi. Thus Li(A;
belongs to the subspace spanned by Ay, -+, A\,. Now, f(z) = A(L,f)
Yo Ai(Laf)vi =, < Lyf, \; > v;. Here,<, > denotes the G—invariant inner
product on V' and \; the vector in V' that represents the linear functional

A;. Since f and \; are K —finite, Lemma 1 says that the functions x —<
L.f,\i > are in L*(E,).

~—

O

Therefore the restriction map from V to L?*(FE,) is well defined on the
subspace of K —finite vectors in V. Let D be the subspace of functions on V
such that their restriction to H is square integrable. Lemma 2 implies that
D is a dense subspace in V.

We claim that the restriction map r : D — L?*(E,) is a closed linear
transformation. In fact, if f, is a sequence in D that converges in L? to
f € V and such that r(f,) converges to g € L*(FE,), then, since f,, converges
uniformly on compacts to f, ¢ is equal to r(f) almost everywhere. That is,
feD.

Since r is a closed linear transformation, it is equal to the product
r=UP (1)

of a positive semidefinite linear operator P on V' times a unitary linear map
U from V to L*(E,). Moreover, if X is the closure of the image of r in
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L?(E,), then the image of U is X. Besides, whenever r is injective, U is an
isometry of V' onto X ([F], 13.9). Since r is H—equivariant we have that U
is H—equivariant ([F], 13.13).

In order to continue we need to recall the Borel embedding of a bounded
symmetric domain and to make more precise the realization of the holo-
morphic Discrete Series (7, V') as the square integrable holomorphic sections
of a holomorphic vector bundle. Since G is a linear Lie group, G is the
identity connected component of the set of real points of a complex con-
nected semisimple Lie group G.. The G—invariant holomorphic structure on
G/K determines an splitting g = p_ @ £ & p, so that p_ becomes isomor-
phic to the holomorphic tangent space of G/K at the identity coset. Let
P_, K¢, P, be the associated complex analytic subgroups of G. Then, the
map P x K¢ x P, — G, defined by multiplication is a diffeomorphism
onto an open dense subset in G¢. Hence, for each ¢ € G we may write
9 = p-(9)k(g9)p+(9) = p-k(g)ps with p_ € P_,k(g9) € Kec,py € Py. More-
over, there exists a connected, open and bounded domain D C p_ such that
G C exp(D)Kc Py and such that the map

g — p—(9)k(9)p+(g9) — log(p—(g)) € p- (2)

gives rise to a byholomorphism between G/K and D. The identity coset
corresponds to 0. Now we consider the embedding of H into GG. Our hypoth-
esis on H implies that there exists a real linear subspace qq of p_ so that
dimgqo = dimcp_ and H -0 = DNqo. In fact, let J denote complex multipli-
cation on the tangent space of G/K, then qq is the subspace {X —iJ X} where
X runs over the tangent space of H/K; at the identity coset. Let E be the
holomorphic vector bundle over G/K attached to (7, W). As it was pointed
out we assume that (m,V) is the space of square integrable holomorphic
sections for E. We consider the real analytic vector bundle E, over H/K; at-
tached to (7, W). Thus E, C E The restriction map r : C*(E) — C*®(E,)
maps the K—finite vectors Vi of V into L?*(E,). Because we are in the situ-
ation H/K; =DNqo C D Cp_ and H/K, is a real form of G/K, r is one
to one when restricted to the subspace of holomorphic sections of E. Thus,
r:V — C®(E,) is one to one. Hence, U gives rise to a unitary equivalence
(as H—module) from V to a subrepresentation of L*(E,). We need to show
that the map U, defined in (1), is onto, equivalently to show that the image
of r is dense. To this end, we use the fact that the holomorphic vector bundle



E is holomorphically trivial. We now follow [J-V]. We recall that
C®(E)={F:G — W, F(gk) = 7(k) ' F(g) and smooth}.

O(E) ={F :G — W, F(gk) = 7(k)"'F(g) smoothandRy f = 0VY € p,}.

We also recall that (7,7) extends to a holomorphic representation of K¢ in
W and to K¢ P, as the trivial representation of P,. We denote this extension
by 7. Let C*(D,W) = {f : D — W, fissmooth}. Then, the following
correspondence defines a linear bijection from C*(E) to C*(D, W) :

C¥(E) 5 F s f € C¥(D, W)
F(g) =7(k(g)) "' f(g-0), f(2) = 7(k(g))F(g), z=g-0 (3)

Here, k(g) is as in (2). Note that 7(k(gk)) = 7(k(g))7 (k). Moreover, the map
(3) takes holomorphic sections onto holomorphic functions. The action of G
in E by left translation, corresponds to the following

(9 F)(z) = 7(k(x))r(k(g~'2)) " flg~" - 2) for z=2.0 (4)
Thus, (k- f)(z) =7(k)f(k™' - 2),k € K. The G—invariant inner product on

E corresponds to the inner product on C*(D, W) whose norm is

17 = [ r(ita) ™ - 0) s )

Actually, the integral is over the G—invariant measure on D because the
integrand is invariant under the right action of K on G. We denote by L*(7)
the space of square integrable functions from D into W with respect to the
inner product (5). Now, in [Sc| it is proved that the K —finite holomorphic
sections of F are in L?(FE). Hence, Lemma 2 implies that

the K —finite holomorphic functions from D into W are in L*(7). (6)

Via the Killing from, p_,p, are in duality. Thus, we identify the space of
holomorphic polynomial functions from D into W with the space S(p,) @ W.
The action (4) of K becomes the tensor product of the adjoint action on
S(py) with the 7 action of K in W. Thus, (6) implies that S(py) ® W are the
K —finite vectors in L?(7) N O(D, W). In particular, the constant functions
from D to W are in L?(7). The sections of the homogeneous vector bundle E,
over H/ K are the functions from H to W such that f(hk) = 7(k)"1f(h), k €
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Ky, h € H. We identify sections of E, with functions form DN g into W via
the map (3). Thus, L?(E,) is identified with the space of functions

1(r) = {f:D —W, /H I (k(h) " £ (- 0)] PR < o0}

The action on L*(7y) is as in (4). Now, the restriction map for functions
from D into W to functions from D N qo into W is equal to the map (3)
followed by restriction of sections from D to DNqq followed by (3). Therefore,
Lemma 2 together with (6) imply that the restriction to DNgqq of a K —finite
holomorphic function from D to W is an element of L?(7,). Since g is a real
form of p_ when we restrict holomorphic polynomials in p_ to qo we obtain
all the polynomial functions in qg. Thus, all the polynomial functions from
qo into W are in L?(7,). In particular, we have that

/HHT(k(h))lvHth < oo, Yu € W (7).

Now, given € > 0 and a compactly supported continuous function f from
DNqo to W, the Stone-Weierstrass Theorem produces a polynomial function
p from qo into W so that ||f(z) — p(z)|| < ¢, * € DN qo. Formula (7)
says that ||f — p|lz2(,) < €. Hence, the image by the restriction map of
V = O(D,W) N L*(7) is a dense subset. Thus, the linear transformation U
in (1) is a unitary equivalence from V' to L?(7,). Therefore, Theorem 1 is
proved.

Remark 2 For a holomorphic unitary irreducible representations which s
not necessarily square integrable, condition (7) is exactly the condition used
by Olafsson in [02] to show an equivalent statement to Theorem 1.
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