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Abstract

Let G be a connected linear semisimple Lie group having a Holo-
morphic Discrete Series representation π. Let H be a connected re-
ductive subgroup of G so that the global symmetric space attached to
H is a real form of the Hermitian symmetric space associated to G.
Fix a maximal compact subgroup K of G so that H ∩K is a maximal
compact subgroup for H. Let τ be the lowest K−type for π and let τ?

denote the restriction of τ to H∩K. In this note we prove that the re-
striction of π to H is unitarily equivalent to the unitary representation
of H induced by τ?.

Introduction

For any Lie group, we denote its Lie algebra by the corresponding German
lower case letter. In order to denote complexification of either a real Lie group
or a real Lie algebra we add the subindex c. Let G be a connected matrix
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semisimple Lie group. Henceforth, we assume that the homogeneous space
G/K is Hermitian symmetric. Let H be a connected semisimple subgroup
of G and fix a maximal compact subgroup K of G such that K1 := H ∩K
is a maximal compact subgroup of H. From now on we assume that H/K1

is a real form of the complex manifold G/K. Let (π, V ) be a Holomorphic
Discrete Series representation for G. Let (τ,W ) be the lowest K−type for
(π, V ). For the definition and properties of lowest K−type of a Discrete Series
representation we refer to [K]. Let (τ?, W ) denote the restriction of τ to K1.
We then have:

Theorem 1 The restriction of (π, V ) to H is unitarily equivalent to the
unitary representation of H induced by (τ?, W ).

Thus, after the work of Harish-Chandra and Camporesi [Ca] we have that
the restriction of π to H is unitarily equivalent to

r∑
j=1

∫
ν∈a?

IndH
MAN(σj ⊗ eiν ⊗ 1)dν.

Here, MAN is a minimal parabolic subgroup of H so that M ⊂ K1, and
σ1, · · · , σr are the irreducible factors of τ restricted to M. Whenever, τ is a
one dimensional representation, the sum is unitarily equivalent to to∫

ν∈a?/W (H,A)

IndH
MAN(1⊗ eiν ⊗ 1)dν

as it follows from the computation in [OO], and, hence, our result agrees with
the one obtained by Olafsson and Orsted in [OO].

The symmetric pairs (G, H) that satisfy the above hypothesis have been
classified by A. Jaffee in [J1, J2], A very good source about the subject is by
Olafsson in [Ol], they are: (su(p, q), so(p, q)); (su(n, n), sl(n, C) + R));
(su(2p, 2q), sp(p, q)); (so?(2n), so(n, C)); (so?(4n), su?(2n) + R);
(so(2, p+q), so(p, 1)+so(p, 1)); (sp(n, R), sl(n,R)+R)); (sp(2n, R), sp(n, C));
(e6(−14), sp(2, 2)); (e6(−14), f4(−20); (e7(−25), e6(−26) + R); (e7(−25), su

?(8));
(su(p, q) × su(p, q), sl(p + q, C)); (so?(2n) × so?(2n), so(2n, C)); (so(2, n) ×
so(2, n), so(n + 2, C)); (sp(n, R)× sp(2n, R), sp(n, C)); (e6(−14) × e6(−14), e6);
(e7(−25) × e7(−25), e7).
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For classical groups we can compute specific examples of the decomposition
of τ restricted to M by means of the results of Koike and other authors as
stated in [Koi].
For un update of results on restriction of unitary irreducible representations
we refer to the excellent announcement, survey of T. Kobayashi [Ko] and
references therein.

Proof of the Theorem

In order to prove the Theorem we need to recall some Theorems and prove
a few Lemmas. For this end, we fix compatible Iwasawa decompositions
G = KAN, H = K1A1N1 with K1 = H ∩ K,A1 ⊂ A, N1 ⊂ N. We denote
by ‖X‖ =

√
−B(X, θX) the norm of g determinated by the Killing form B

and the Cartan involution θ.

Lemma 1 The restriction to H of any K−finite matrix coefficient of (π, V )
is in L2(H).

Proof: We first consider the case that the real rank of H is equal to
the real rank of G. Let f be a K−finite matrix coefficient of (π, V ). For
X ∈ a, we set ρH(X) = 1

2
trace(adH(X)|n1). For an ad(a)−invariant subspace

R of g, let Ψ(a, R) denote the roots of a in R. Let A+
G, A+

H be the positive
closed Weyl chambers for Ψ(a, n), Ψ(a, n1) respectively. Then A+

G ⊂ A+
H .

Let Ψ1 := Ψ(a, n), . . . , Ψs be the positive root systems in Ψ(a, g) such that
Ψi ⊃ Ψ(a, n1). Let A+

i denote the positive closed Weyl chamber associated to
Ψi. Thus, A+

H = A+
1 ∪. . .∪A+

s . For each i, let ρi(X) = 1
2
trace(ad(X)|∑

α∈Ψi
gα).

For X ∈ A+
i we have that ρi(X) ≥ ρH(X). Indeed, for α ∈ Ψi, if α ∈

Ψi ∩ Ψ(a, n1) = Ψ(a, n1), then the multiplicity of α as a g− root is equal to
or bigger than the multiplicity of α as a h−root, if α ∈ Ψi − Ψ(a, n1), then
αi(X) ≥ 0 . Thus,

ρi(X) ≥ ρH(X) for every X ∈ A+
i .

We now recall the Ξ and σ functions for G and H and the usual estimates
for Ξ. (cf [K] page 188). For Y ∈ a, x ∈ G put ρG(Y ) = 1

2
trace(ad|n(Y ), and

ΞG(x) =

∫
K

e−ρG(H(xk))dk.
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Here, H(x) is uniquely defined by the equation x = kexp(H(x))n, (k ∈
K, H(x) ∈ a, n ∈ N). If x = kexp(X), (k ∈ K, X ∈ s, g = k ⊕ s, Cartan
decomposition for g), we put σG(x) = ‖X‖. Since the group H might be
reductive we follow [HC] page 106, 129 in order to define σH . Now, all the
norms in a finite dimensional vector space are equivalent. Thus, have that
σG << σH << σG. The estimates are:

ΞG(exp(X)) ≤ cGe−ρi(X)(1 + σG(exp(X)))r

with r > 0, 0 < cG < ∞, X ∈ A+
i , i = 1, · · · , s, and

e−ρH(X) ≤ ΞH(exp(X)) ≤ cHe−ρH(X)(1 + σH(exp(X)))r1

Therefore, for X ∈ A+
i we have that

ΞG(expX) ≤ cG(1 + σG(expX))re−ρi(X)

= e−ρH(X)cG(1 + σG(expX))reρH(X)−ρi(X)

≤ ΞH(expX)cG(1 + σG(expX))reρH(X)−ρi(X).

Since on A+
i we have the inequality ρH(X) − ρi(X) ≤ 0, and i is arbitrary

from 1, · · · , s, we obtain

ΞG(k1ak2) = ΞG(a) ≤ ΞH(a)cG(1 + σG(a))r

for a ∈ exp(A+
H), k1, k2 ∈ K1.

Now, Trombi and Varadarajan [T-V], have proven that for any K−finite ma-
trix coefficient of a Discrete Series representation of the group G the following
estimate holds,

|f(x)| ≤ cfΞ
1+γ
G (x)(1 + σG(x))q

∀ x ∈ G, with 0 < cf < ∞, γ > 0, q ≥ 0.

Hence, for a ∈ exp(A+
H), k1, k2 ∈ K1, we have:

|f(k1ak2)|2 ≤ CΞH(a)2+2γ(1 + σG(a))2(q+r(γ+1))

≤ Ce(−2−2γ)ρH(loga)(1 + σG(a))2(q+γr+r)(1 + σH(a))r1(1+γ).

We set R = 2(q + γr + r) + 2r1(1 + γ), since σG(expY ) = σH(expY ). The
integration formula for the decomposition H = K1exp(A+

H)K1 yields:∫
H

|f(x)|2dx =

∫
A+

H

∆(Y )

∫
K1×K1

|f(k1exp(Y )k2)|2dk1dk2dY

≤ C

∫
A+

H

∆(Y )e(−2−2γ)ρH(Y )(1 + σG(expY ))RdY

5



Since ∆(Y ) ≤ CHe2ρH(Y ) on A+
H , (CH < ∞) and σG(expY ) is of polynomial

growth on Y. We may conclude that the restriction to H of f is square inte-
grable in H, proving Lemma 1 for the equal rank case.
For the nonequal rank case let A+

H be the closed Weyl chamber in a1 cor-
responding to N1. Let C1, · · ·Cs be the closed Weyl chambers in a so that
interior(A+

H) ∩ Cj 6= ∅, j = 1, · · · s. Thus, A+
H = ∪j(A

+
H ∩ Cj) and∫

A+
H

|f(expY )|2∆(Y )dY ≤
∑

j

∫
Cj∩A+

H

|f(expY )|2∆(Y )dY.

Let ρj(Y ) = 1
2
trace(ad(Y )|∑

α:α(Cj)>0 gα). Then, as before, on Cj∩A+
H we have

|f(expY )|2 << e2(ρH(Y )−ρj(Y ))(1 + ‖Y ‖2)Re−2γρj(Y ).

If α ∈ Φ(a, n(Cj)), the restriction β of α to aH is either zero, or a restricted
root for (aH , n1), or a nonzero linear functional on aH . In the last two cases
we have that β(Cj ∩A+

H) ≥ 0, and if β is a restricted root, the multiplicity of
β is less or equal than the multiplicity of α. Finally, we recall that any β ∈
Ψ(aH , n1) is the restriction of a positive root for Cj. Thus, e2(ρH(Y )−ρj(Y )) ≤ 1,
and ρj(Y ) ≥ 0 for every Y ∈ A+

H . Hence, |f(exp(Y ))|2∆(Y ) is dominated
by an exponential whose integral is convergent. This concludes the proof of
Lemma 1.

�

Remark 1 Under our hypothesis we have the inequality

ΞG(k1ak2) = ΞG(a) ≤ ΞH(a)cG(1 + σG(a))r

for a ∈ exp(A+
H), k1, k2 ∈ K1.

Let (π, V ) be a Holomorphic Discrete Series representation for G and let
(τ,W ) denote the lowest K−type for π. Let E be the homogeneous vector
bundle over G/K attached to (τ,W ). G acts on the sections of E by left
translation. We fix a G−invariant inner product on sections of E. The cor-
responding space of square integrable sections is denoted by L2(E). Since
(π, V ) is a holomorphic representation we may choose a G−invariant holo-
morphic structure on G/K such that the L2−kernel of ∂̄ is a realization of
(π, V ). That is, V := Ker(∂̄ : L2(E) → C∞(E⊗T ?(G/K)0,1). (cf. [K], [N-O],
[Sc]). Since H ⊂ G and K1 = H ∩K we have that H/K1 ⊂ G/K and the
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H−homogeneous vector bundle E? over H/K1, determined by τ? is contained
in E. Thus, we may restrict smooth sections of E to E?. From now on, we
think of (π, V ) as the L2−kernel of the ∂̄ operator.

Lemma 2 Let f be a holomorphic square integrable section of E and assume
that f is left K−finite. Then the restriction of f to H/K1 is also square
integrable.

Proof: Since the ∂̄ operator is elliptic, the L2−topology on its kernel V
is stronger than the topology of uniform convergence on compact subsets.
Therefore, the evaluation map at a point in G/K is a continuous map from
V to W in the L2−topology on V. We denote by λ evaluation at the coset
eK. Fix an orthonormal basis v1, . . . , vm for W. Thus λ =

∑m
i=1 λivi where

the λi are in the topological dual to V. We claim that the λi are K−finite. In
fact: if k ∈ K, v ∈ V, (Lkλ)(f) =

∑
i[(Lkλi)(f)]⊗ vi = f(k−1) = τ(k)f(e) =∑

i λi(f)τ(k)vi =
∑

i

∑
j ci j(k)λi(f)vi =

∑
i[
∑

j cj iλj(f)] ⊗ vi. Thus Lk(λi)
belongs to the subspace spanned by λ1, · · · , λm. Now, f(x) = λ(Lxf) =∑

i λi(Lxf)vi =
∑

i < Lxf, λi > vi. Here,<,> denotes the G−invariant inner
product on V and λi the vector in V that represents the linear functional
λi. Since f and λi are K−finite, Lemma 1 says that the functions x →<
Lxf, λi > are in L2(E?).

�

Therefore the restriction map from V to L2(E?) is well defined on the
subspace of K−finite vectors in V. Let D be the subspace of functions on V
such that their restriction to H is square integrable. Lemma 2 implies that
D is a dense subspace in V.

We claim that the restriction map r : D → L2(E?) is a closed linear
transformation. In fact, if fn is a sequence in D that converges in L2 to
f ∈ V and such that r(fn) converges to g ∈ L2(E?), then, since fn converges
uniformly on compacts to f, g is equal to r(f) almost everywhere. That is,
f ∈ D.

Since r is a closed linear transformation, it is equal to the product

r = UP (1)

of a positive semidefinite linear operator P on V times a unitary linear map
U from V to L2(E?). Moreover, if X is the closure of the image of r in
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L2(E?), then the image of U is X. Besides, whenever r is injective, U is an
isometry of V onto X ([F], 13.9). Since r is H−equivariant we have that U
is H−equivariant ([F], 13.13).

In order to continue we need to recall the Borel embedding of a bounded
symmetric domain and to make more precise the realization of the holo-
morphic Discrete Series (π, V ) as the square integrable holomorphic sections
of a holomorphic vector bundle. Since G is a linear Lie group, G is the
identity connected component of the set of real points of a complex con-
nected semisimple Lie group Gc. The G−invariant holomorphic structure on
G/K determines an splitting g = p− ⊕ k ⊕ p+ so that p− becomes isomor-
phic to the holomorphic tangent space of G/K at the identity coset. Let
P−, KC, P+ be the associated complex analytic subgroups of Gc Then, the
map P− × KC × P+ −→ Gc defined by multiplication is a diffeomorphism
onto an open dense subset in GC. Hence, for each g ∈ G we may write
g = p−(g)k(g)p+(g) = p−k(g)p+ with p− ∈ P−, k(g) ∈ KC, p+ ∈ P+. More-
over, there exists a connected, open and bounded domain D ⊂ p− such that
G ⊂ exp(D)KCP+ and such that the map

g −→ p−(g)k(g)p+(g) −→ log(p−(g)) ∈ p− (2)

gives rise to a byholomorphism between G/K and D. The identity coset
corresponds to 0. Now we consider the embedding of H into G. Our hypoth-
esis on H implies that there exists a real linear subspace q0 of p− so that
dimRq0 = dimCp− and H ·0 = D∩q0. In fact, let J denote complex multipli-
cation on the tangent space of G/K, then q0 is the subspace {X−iJX} where
X runs over the tangent space of H/K1 at the identity coset. Let E be the
holomorphic vector bundle over G/K attached to (τ,W ). As it was pointed
out we assume that (π, V ) is the space of square integrable holomorphic
sections for E. We consider the real analytic vector bundle E? over H/K1 at-
tached to (τ?, W ). Thus E? ⊂ E The restriction map r : C∞(E) −→ C∞(E?)
maps the K−finite vectors VF of V into L2(E?). Because we are in the situ-
ation H/K1 = D ∩ q0 ⊂ D ⊂ p− and H/K1 is a real form of G/K, r is one
to one when restricted to the subspace of holomorphic sections of E. Thus,
r : V −→ C∞(E?) is one to one. Hence, U gives rise to a unitary equivalence
(as H−module) from V to a subrepresentation of L2(E?). We need to show
that the map U, defined in (1), is onto, equivalently to show that the image
of r is dense. To this end, we use the fact that the holomorphic vector bundle
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E is holomorphically trivial. We now follow [J-V]. We recall that

C∞(E) = {F : G −→ W, F (gk) = τ(k)−1F (g) and smooth}.

O(E) = {F : G → W, F (gk) = τ(k)−1F (g) smooth andRY f = 0∀Y ∈ p+}.

We also recall that (τ, W ) extends to a holomorphic representation of KC in
W and to KCP+ as the trivial representation of P+. We denote this extension
by τ. Let C∞(D, W ) = {f : D −→ W, f is smooth}. Then, the following
correspondence defines a linear bijection from C∞(E) to C∞(D, W ) :

C∞(E) 3 F ↔ f ∈ C∞(D, W )

F (g) = τ(k(g))−1f(g · 0), f(z) = τ(k(g))F (g), z = g · 0 (3)

Here, k(g) is as in (2). Note that τ(k(gk)) = τ(k(g))τ(k). Moreover, the map
(3) takes holomorphic sections onto holomorphic functions. The action of G
in E by left translation, corresponds to the following

(g · f)(z) = τ(k(x))τ(k(g−1x))−1f(g−1 · z) for z = x . 0 (4)

Thus, (k · f)(z) = τ(k)f(k−1 · z), k ∈ K. The G−invariant inner product on
E corresponds to the inner product on C∞(D, W ) whose norm is

‖f‖2 =

∫
G

‖τ(k(g))−1f(g · 0) ‖2dg (5)

Actually, the integral is over the G−invariant measure on D because the
integrand is invariant under the right action of K on G. We denote by L2(τ)
the space of square integrable functions from D into W with respect to the
inner product (5). Now, in [Sc] it is proved that the K−finite holomorphic
sections of E are in L2(E). Hence, Lemma 2 implies that

the K−finite holomorphic functions from D into W are in L2(τ). (6)

Via the Killing from, p−, p+ are in duality. Thus, we identify the space of
holomorphic polynomial functions from D into W with the space S(p+)⊗W.
The action (4) of K becomes the tensor product of the adjoint action on
S(p+) with the τ action of K in W. Thus, (6) implies that S(p+)⊗W are the
K−finite vectors in L2(τ) ∩ O(D, W ). In particular, the constant functions
from D to W are in L2(τ). The sections of the homogeneous vector bundle E?

over H/K1 are the functions from H to W such that f(hk) = τ(k)−1f(h), k ∈
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K1, h ∈ H. We identify sections of E? with functions form D∩ q0 into W via
the map (3). Thus, L2(E?) is identified with the space of functions

L2(τ?) := {f : D −→ W,

∫
H

‖τ(k(h))−1f(h · 0)‖2dh < ∞}

The action on L2(τ?) is as in (4). Now, the restriction map for functions
from D into W to functions from D ∩ q0 into W is equal to the map (3)
followed by restriction of sections from D to D∩q0 followed by (3). Therefore,
Lemma 2 together with (6) imply that the restriction to D∩q0 of a K−finite
holomorphic function from D to W is an element of L2(τ?). Since q0 is a real
form of p− when we restrict holomorphic polynomials in p− to q0 we obtain
all the polynomial functions in q0. Thus, all the polynomial functions from
q0 into W are in L2(τ?). In particular, we have that∫

H

‖τ(k(h))−1v‖2dh < ∞, ∀ v ∈ W (7).

Now, given ε > 0 and a compactly supported continuous function f from
D∩q0 to W , the Stone-Weierstrass Theorem produces a polynomial function
p from q0 into W so that ‖f(x) − p(x)‖ ≤ ε, x ∈ D ∩ q0. Formula (7)
says that ‖f − p‖L2(τ?) ≤ ε. Hence, the image by the restriction map of
V = O(D, W ) ∩ L2(τ) is a dense subset. Thus, the linear transformation U
in (1) is a unitary equivalence from V to L2(τ?). Therefore, Theorem 1 is
proved.

Remark 2 For a holomorphic unitary irreducible representations which is
not necessarily square integrable, condition (7) is exactly the condition used
by Olafsson in [O2] to show an equivalent statement to Theorem 1.
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