ADMISSIBLE RESTRICTION TO K₂

MICHEL DUFLO, JORGE VARGAS

Abstract. Restriction to K2 Analysis of theorem 4.1 kob 1994.

1. INTRODUCTION

 $G, K, T, \Psi, K_1(\Psi), K_2$ as always. Yamashita, Borhohas shown that the associated variety for discrete series $\pi(\lambda)$ whose Harish-Chandra parameter is dominant with respect to Ψ is

$$Ass(\pi) = Ad(K_{\mathbb{C}})(\sum_{\gamma \in \Psi_n} \mathfrak{g}_{-\gamma}).$$

Since, the Lie algebra of the group $Ad(K_2)$ is generated by root vectors associated to compact simple roots, lemma ?? forces it leaves invariant $\sum_{\gamma \in \Psi_n} \mathfrak{g}_{-\gamma}$. As an application we have

Lemma 1. For any closed subgroup L of K_2 , $\mathbb{C}[\sum_{\gamma \in \Psi_n} \mathfrak{g}_{-\gamma}]^L = \mathbb{C}$ is equivalent $\pi(\lambda)$ to be admissible when restricted to L.

Proof: We apply a theorem due to Huang and Vogan which affirms: $\mathbb{C}[Ass(\pi)]^L = \mathbb{C}$, if and only if $\pi(\lambda)_{|L}$ is admissible.

We show for any compact subgroup L of K_2 the equivalence,

$$\mathbb{C}[\sum_{\gamma \in \Psi_n} \mathfrak{g}_{-\gamma}]^L = \mathbb{C}$$
 if and only if $\mathbb{C}[Ass(\pi)]^L = \mathbb{C}$.

Let $f \in \mathbb{C}[Ass(\pi)]^L$. Because of the hypothesis on L for each $y \in K_{1\mathbb{C}}$ the function f(Ad(y)?)restricted to $\sum_{\gamma \in \Psi_n} \mathfrak{g}_{-\gamma}$ is constant. Hence, f(Ad(y)X) = f(Ad(y)0) = f(0) for any $y \in K_1, X \in \sum_{\gamma \in \Psi_n} \mathfrak{g}_{-\gamma}$. Thus, f is constant. For the converse statement we recall that when L is a subgroup

of K_2 , restriction map from $\mathbb{C}[Ass(\pi)]$ onto $\mathbb{C}[\sum_{\gamma \in \Psi_n} \mathfrak{g}_{-\gamma}]$ is L equivariant.

Proposition 1. Assume $\mathfrak{z}_{\mathfrak{k}}$ = 0. For Harish-Chandra parameter dominant with respect to Ψ there is admissible restriction to $K_2(\Psi)$ if and only if $G = Sp(1, p), K_1 = Sp(1), K_2 = Sp(q)$. Moreover, there is no admissible restriction to any proper closed subgroup of K_2 .

It is left out the case $\mathfrak{z}_{\mathfrak{k}} \neq 0$.

For this, we check for each group G case the hypothesis of lemma We write \mathfrak{p}_{Ψ} = $\sum_{\gamma \in \Psi_n} \mathfrak{g}_{-\gamma}.$

Date: Ago-07.

Partially supported by FONCYT, CONICET, AgenciaCbaCiencia, SECYTUNC (Argentina), ECOS A98E05, PICS 340, University of Paris VII(France), ICTP, TWAS (Italy).

~	** (*)	(**)		
G	$K_1(\Psi)$	$(K_2)_{ss}$	\mathfrak{p}_{Ψ}	Α
SU(p,q)	$Sl(p), 1 \le a < p$	Sl(q)	$\mathbb{C}^{(p-a)q}\boxtimes(\mathbb{C}^{qa})^*$	Ν
SO(4, 1)	$SO(\epsilon_1 \pm \epsilon_2)$	$S0(\epsilon_1 \mp \epsilon_2)$	\mathbb{C}^2	Y
SO(4, 2q+1)	$SO(\epsilon_1 \pm \epsilon_2)$	$S0(\epsilon_1 \mp \epsilon_2) \times SO(2q+1)$	$\mathbb{C}^2\oplus\mathbb{C}^{2q+1}$	Ν
SO(4, 2q+1)	$SO(\epsilon_1 \pm \epsilon_2) \times SO(2q+1)$	$S0(\epsilon_1 \mp \epsilon_2)$	$\mathbb{C}^2 \boxtimes 1^{2q+1}$	Ν
SO(2p, 2q+1)	SO(2p)	SO(2q+1)	$1^p \boxtimes \mathbb{C}^{2q+1}$	Ν
Sp(1,q)	Sp(1)	Sp(q)	$1^1 \boxtimes \mathbb{C}^{2q}$	Y
Sp(1,q)	$Sp(q), 2 \le q$	Sp(1)	$\mathbb{C}^2 \boxtimes \mathbb{1}^q$	Ν
Sp(p,q)	$Sp(p), 2 \le p \le q$	Sp(q)	$1^p \boxtimes \mathbb{C}^{2q}$	Ν
SO(4, 2q)	$SO(\epsilon \pm \epsilon_2)$	$SO(\epsilon_1 \mp \epsilon_2) \times SO(2q)$	$\mathbb{C}^2 \boxtimes \mathbb{C}^{2q}$	Ν
SO(4, 2q)	$SO(\epsilon \pm \epsilon_2) \times SO(2q)$	$SO(\epsilon_1 \mp \epsilon_2)$	$\mathbb{C}^2 \boxtimes 1^{2q}$	Ν
SO(4, 2q)	SO(2q)	SO(4)	$\mathbb{C}^4 \boxtimes \mathbb{1}^q$	Ν
SO(2p, 2q)	SO(2q)	SO(2p)	$\mathbb{C}^{2p} \boxtimes 1^q$	Ν
SO(2p, 2q)	SO(2p)	SO(2q)	$1^p \boxtimes \mathbb{C}^{2q}$	Ν
$G_{2(2)}$	$SU_2(\alpha_{long})$	$SU_2(\alpha_{short})$	$1 \boxtimes S^3(\mathbb{C}^2)$	Ν
$G_{2(2)}$	$SU_2(\alpha_{short})$	$SU_2(lpha_{long})$	$\mathbb{C}^2 \boxtimes \mathbb{1}^2$	Ν
$F_{4(4)}$	SU_2	SP(3)	$1 \boxtimes \Lambda^3(\mathbb{C}^6)_0$	Ν
$F_{4(4)}$	SP(3)	SU_2	$\mathbb{C}^2 \boxtimes \mathbb{1}^7$	Ν
$E_{6(2)}$	SU_2	SU(6)	$1 \boxtimes \Lambda^3(\mathbb{C}^6)$	Ν
$E_{6(2)}$	SU(6)	SU(2)	$\mathbb{C}^2 \boxtimes 1^{10}$	Ν
$E_{7(-5)}$	SU_2	Spin(12)	$1 \boxtimes \mathbb{C}^{32}$	Ν
$E_{7(-5)}$	Spin(12)	SU(2)	$\mathbb{C}^2 \boxtimes 1^{16}$	Ν
$E_{8(-24)}$	SU_2	E_7	$1 \boxtimes \mathbb{C}^{56}$	Ν
$E_{8(-24)}$	E_7	SU(2)	$\mathbb{C}^2 \boxtimes 1^{28}$	Ν

Analysis Thm 4.1 kob 1994

We follow the notation in Thm 4.1 of kob 94, and we show that when we assume $L := L_{sch}$, for Ψ , then hypothesis in Thm. 4.1 of kob 1994 imply $K_1(\Psi)$ is a subgroup of K'.

We notice hypothesis 4.1(a) is equivalent to there exists $H_0 \in it'$ so that \mathfrak{l} is the centralizer in \mathfrak{g} of H_0 and $\Phi_{\mathfrak{u}}$ is the set of roots who takes on a positive value on H_0 .

Hypothesis 4.1(b): $S(\mathfrak{u} \cap \mathfrak{p}) \otimes S(\overline{\mathfrak{u}} \cap \mathfrak{k}'/\overline{\mathfrak{u}} \cap \mathfrak{k}')$ is an admissible representations for $\mathfrak{l} \cap \mathfrak{k}'$.

The hypothesis L is compact implies $\mathfrak{u} \cap \mathfrak{p} = \mathfrak{u}_{\Psi}$. We now show $[\mathfrak{u} \cap \mathfrak{p}, \mathfrak{u} \cap \mathfrak{p}]$ is contained in $\mathfrak{u} \cap \mathfrak{k}'$. For this we pick $Y_{\beta_j}, \beta_j \in \Psi_n$ so that its bracket is non zero. If $Y_{-(\beta_1+\beta_2)}$ were not in $\mathfrak{u} \cap \mathfrak{k}'$. Then, the vectors $Y_{\beta_1}^r Y_{\beta_2}^r \otimes Y_{-(\beta_1+\beta_2)}^r$, $r = 1, 2, \ldots$, would be non zero in the tensor product algebra and would belong to the invariants under the center of $\mathfrak{l} \cap \mathfrak{k}'$ which would contradict hypothesis 4.1(b). Hence, we obtain the inclusion $[\mathfrak{u}_{\Psi}, \mathfrak{u}_{\Psi}] \subset \mathfrak{k}'$. Lemma... implies $\mathfrak{k}_1(\Psi)$ is contained in \mathfrak{k}' . \Box When $\mathfrak{z}_{\mathfrak{k}} \neq 0, \mathfrak{z}_{\mathfrak{k}}$ it is not always contained in \mathfrak{k}' as the following shows,

Example: $G := SO(2, 2q), \ \mathfrak{t}' := SO(2q), \ \Psi = \{\delta_1 > \cdots > \delta_q > \epsilon\}$. Then root system for $L_{sch} := U(q)Z_K$ is $\pm(\delta_j - \delta_k)$; roots for \mathfrak{u}_{sch} are $\delta_j + \delta_k, \delta_j \pm \epsilon$. $H_0 = \sum_j \delta_j$. The inclusion $SO(2q)/U(q) \to SO(2, 2q)/L_{sch}$ is holomorphic. Hence, there is admissible restriction to SO(2q) and \mathfrak{z} is not contained in \mathfrak{t}' .

Conversely, if L is compact and $K_1(\Psi)Z_K$ is contained in L then the hypothesis of Thm 4.1 readily follows.

Next, we deduce a particular case of corollary 4.4 in kob 94 under the hypothesis $\mathfrak{l} := \mathfrak{l}_{sch}$

Corollary 1. If \mathfrak{u} is an ideal of \mathfrak{k} so that $\mathfrak{z}_{\mathfrak{l}_{sch}} \subseteq \mathfrak{u}$, then $\pi(\lambda)$ has admissible restriction to \mathfrak{u} .

Indeed, since $\mathfrak{g}_{\mathfrak{l}_{sch}}$ is the zero set of the compact simple roots in Ψ any root in $\Phi - \Phi_{\mathfrak{l}_{sch}}$ has a nonzero restriction to $\mathfrak{g}_{\mathfrak{l}_{sch}}$. Otherwise a root in $\Phi - \Phi_{\mathfrak{l}_{sch}}$ would be a linear combination of compact simple roots for Ψ . Thus, if β_j are roots in Ψ_n whose sum is a root there exists $H \in \mathfrak{g}_{\mathfrak{l}_{sch}}$ so that $(\beta_1 + \beta_2)(H) \neq 0$. Since \mathfrak{u} is an ideal we have that $(\beta_1 + \beta_2)(H)Y_{\beta_1+\beta_2} = [H, Y_{\beta_1+\beta_2}]$ is in \mathfrak{u} . Hence, \mathfrak{u}_{Ψ} is contained in \mathfrak{u} and therefore $\mathfrak{k}_1(\Psi)$ is contained in \mathfrak{u} . The hypothesis forces $\mathfrak{z}_{\mathfrak{k}}$ is also contained in \mathfrak{l} . We now apply prop.....