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1. INTRODUCTION

G,K,T,9,K1(¥), K2 as always. Yamashita, Borho ....has shown that the associated variety
for discrete series w(A) whose Harish-Chandra parameter is dominant with respect to ¥ is

Ass(m) = Ad(Kc)( Z g—r)-
VEYR

Since, the Lie algebra of the group Ad(K32) is generated by root vectors associated to compact
simple roots, lemma 77 forces it leaves invariant sz\I'n g—~. As an application we have

Lemma 1. For any closed subgroup L of K2, C[} . cy, g—~]Y = C is equivalent ©(\) to be
admissible when restricted to L.

Proof: We apply a theorem due to Huang and Vogan which affirms: C[Ass(r)]¥ = C, if and
only if 7()\)|z, is admissible.

We show for any compact subgroup L of K3 the equivalence,

C> ew, g—~]L = C if and only if C[Ass(7)]F = C.

Let f € C[Ass(m)]E. Because of the hypothesis on L for each y € Kic the function f(Ad(y)?)
restricted to 3y, 9—+ is constant. Hence, f(Ad(y)X) = f(Ad(y)0) = f(0) forany y € K1, X €
ZWE‘PTL g—~- Thus, f is constant. For the converse statement we recall that when L is a subgroup

of K3, restriction map from C[Ass(7)] onto C[} ¢y, 8-+] is L equivariant. O

Proposition 1. Assume 3 = 0. For Harish-Chandra parameter dominant with respect to ¥
there is admaissible restriction to Ko(V) if and only if G = Sp(1,p), K1 = Sp(1), K2 = Sp(q).
Moreover, there is no admissible restriction to any proper clossed subgroup of Ka.

It is left out the case 3 # 0.

For this, we check for each group G case the hypothesis of lemma .... We write py =
ZWE‘I’TL G-
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Analysis Thm 4.1 kob 1994

‘We follow the notation in Thm 4.1 of kob 94, and we show that when we assume L := Lg.p,
for W, then hypothesis in Thm. 4.1 of kob 1994 imply Ki(¥) is a subgroup of K'.

We notice hypothesis 4.1(a) is equivalent to there exists Ho € i¥ so that [ is the centralizer in
g of Hp and @, is the set of roots who takes on a positive value on Hy.

Hypothesis 4.1(b): S(unp)® S(uN€/unN¥) is an admissible representations for [N €.

The hypothesis L is compact implies uNp = ugy. We now show [uNp, uNp] is contained in uN¥¢'.
For this we pick ng ,B; € ¥y so that its bracket is non zero. If Y_ (5, 4 g,) were not in un ¢. Then,
the vectors Yﬂr1 Yﬂg ® Yf(51+52),
and would belong to the invariants under the center of [N ¥ which would contradict hypothesis
4.1(b). Hence, we obtain the inclusion [ug, uy] C ¥. Lemma.... implies & (¥) is contained in ¥. O

When 3¢ # 0, 3¢ it is not always contained in ¥ as the following shows,

Example: G := SO(2,2q), ¥ := SO(2q), ¥ = {61 > -+ > 64 > €}. Then root system for
Lgen == U(q)Zk is £(d; — 0y); roots for ugep are 6; + 6y,0; £ e. Ho = E]' dj. The inclusion
SO(2q)/U(q) — SO(2,2q)/Lsch, is holomorphic. Hence, there is admissible restriction to SO(2q)
and 3¢ is not contained in ¥.

r = 1,2,..., would be non zero in the tensor product algebra

Conversely, if L is compact and K7 (¥)Z is contained in L then the hypothesis of Thm 4.1 readily
follows.

Next, we deduce a particular case of corollary 4.4 in kob 94 under the hypothesis [ := [4.p

Corollary 1. If u is an ideal of € so that 3 C u, then 7(X) has admissible restriction to u.

sch

is the zero set of the compact simple roots in ¥ any root in ® — ®;__, has

Indeed, since 3,
a nonzero restriction to 3 _, . Otherwise a root in ® — ®;__, would be a linear combination of
compact simple roots for . Thus, if 8; are roots in ¥, whose sum is a root there exists H € 31,
so that (81 + B2)(H) # 0. Since u is an ideal we have that (81 + B2)(H)Yp,+8, = [H, Y3, +8,] is
in u. Hence, uy is contained in u and therefore £ (%) is contained in u. The hypothesis forces 3¢

is also contained in [. We now apply prop..... ]



