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1. Introduction

G, K, T, Ψ, K1(Ψ), K2 as always. Yamashita, Borho ....has shown that the associated variety

for discrete series π(λ) whose Harish-Chandra parameter is dominant with respect to Ψ is

Ass(π) = Ad(KC)(
∑

γ∈Ψn

g−γ).

Since, the Lie algebra of the group Ad(K2) is generated by root vectors associated to compact

simple roots, lemma ?? forces it leaves invariant
∑

γ∈Ψn
g−γ . As an application we have

Lemma 1. For any closed subgroup L of K2, C[
∑

γ∈Ψn
g−γ ]L = C is equivalent π(λ) to be

admissible when restricted to L.

Proof: We apply a theorem due to Huang and Vogan which affirms: C[Ass(π)]L = C, if and

only if π(λ)|L is admissible.

We show for any compact subgroup L of K2 the equivalence,

C[
∑

γ∈Ψn
g−γ ]L = C if and only if C[Ass(π)]L = C.

Let f ∈ C[Ass(π)]L. Because of the hypothesis on L for each y ∈ K1C the function f(Ad(y)?)
restricted to

∑
γ∈Ψn

g−γ is constant. Hence, f(Ad(y)X) = f(Ad(y)0) = f(0) for any y ∈ K1, X ∈∑
γ∈Ψn

g−γ . Thus, f is constant. For the converse statement we recall that when L is a subgroup

of K2, restriction map from C[Ass(π)] onto C[
∑

γ∈Ψn
g−γ ] is L equivariant. 2

Proposition 1. Assume zk = 0. For Harish-Chandra parameter dominant with respect to Ψ

there is admissible restriction to K2(Ψ) if and only if G = Sp(1, p), K1 = Sp(1), K2 = Sp(q).

Moreover, there is no admissible restriction to any proper clossed subgroup of K2.
It is left out the case zk 6= 0.

For this, we check for each group G case the hypothesis of lemma .... We write pΨ =∑
γ∈Ψn

g−γ .
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G K1(Ψ) (K2)ss pΨ A

SU(p, q) Sl(p), 1 ≤ a < p Sl(q) C(p−a)q � (Cqa)∗ N

SO(4, 1) SO(ε1 ± ε2) S0(ε1 ∓ ε2) C2 Y

SO(4, 2q + 1) SO(ε1 ± ε2) S0(ε1 ∓ ε2)× SO(2q + 1) C2 ⊕ C2q+1 N

SO(4, 2q + 1) SO(ε1 ± ε2)× SO(2q + 1) S0(ε1 ∓ ε2) C2 � 12q+1 N

SO(2p, 2q + 1) SO(2p) SO(2q + 1) 1p � C2q+1 N

Sp(1, q) Sp(1) Sp(q) 11 � C2q Y

Sp(1, q) Sp(q), 2 ≤ q Sp(1) C2 � 1q N

Sp(p, q) Sp(p), 2 ≤ p ≤ q Sp(q) 1p � C2q N

SO(4, 2q) SO(ε± ε2) SO(ε1 ∓ ε2)× SO(2q) C2 � C2q N

SO(4, 2q) SO(ε± ε2)× SO(2q) SO(ε1 ∓ ε2) C2 � 12q N

SO(4, 2q) SO(2q) SO(4) C4 � 1q N

SO(2p, 2q) SO(2q) SO(2p) C2p � 1q N

SO(2p, 2q) SO(2p) SO(2q) 1p � C2q N

G2(2) SU2(αlong) SU2(αshort) 1 � S3(C2) N

G2(2) SU2(αshort) SU2(αlong) C2 � 12 N

F4(4) SU2 SP (3) 1 � Λ3(C6)0 N

F4(4) SP (3) SU2 C2 � 17 N

E6(2) SU2 SU(6) 1 � Λ3(C6) N

E6(2) SU(6) SU(2) C2 � 110 N

E7(−5) SU2 Spin(12) 1 � C32 N

E7(−5) Spin(12) SU(2) C2 � 116 N

E8(−24) SU2 E7 1 � C56 N

E8(−24) E7 SU(2) C2 � 128 N

Analysis Thm 4.1 kob 1994

We follow the notation in Thm 4.1 of kob 94, and we show that when we assume L := Lsch,

for Ψ, then hypothesis in Thm. 4.1 of kob 1994 imply K1(Ψ) is a subgroup of K′.
We notice hypothesis 4.1(a) is equivalent to there exists H0 ∈ ik′ so that l is the centralizer in

g of H0 and Φu is the set of roots who takes on a positive value on H0.

Hypothesis 4.1(b): S(u ∩ p)⊗ S(ū ∩ k/ū ∩ k′) is an admissible representations for l ∩ k′.
The hypothesis L is compact implies u∩p = uΨ. We now show [u∩p, u∩p] is contained in u∩k′.

For this we pick Yβj
, βj ∈ Ψn so that its bracket is non zero. If Y−(β1+β2) were not in u∩k′. Then,

the vectors Y r
β1

Y r
β2
⊗ Y r

−(β1+β2)
, r = 1, 2, . . . , would be non zero in the tensor product algebra

and would belong to the invariants under the center of l ∩ k′ which would contradict hypothesis

4.1(b). Hence, we obtain the inclusion [uΨ, uΨ] ⊂ k′. Lemma.... implies k1(Ψ) is contained in k′. 2

When zk 6= 0, zk it is not always contained in k′ as the following shows,

Example: G := SO(2, 2q), k′ := SO(2q), Ψ = {δ1 > · · · > δq > ε}. Then root system for

Lsch := U(q)ZK is ±(δj − δk); roots for usch are δj + δk, δj ± ε. H0 =
∑

j δj . The inclusion

SO(2q)/U(q) → SO(2, 2q)/Lsch is holomorphic. Hence, there is admissible restriction to SO(2q)
and zk is not contained in k′.

Conversely, if L is compact and K1(Ψ)ZK is contained in L then the hypothesis of Thm 4.1 readily
follows.

Next, we deduce a particular case of corollary 4.4 in kob 94 under the hypothesis l := lsch

Corollary 1. If u is an ideal of k so that zlsch
⊆ u, then π(λ) has admissible restriction to u.

Indeed, since zlsch
is the zero set of the compact simple roots in Ψ any root in Φ− Φlsch

has

a nonzero restriction to zlsch
. Otherwise a root in Φ − Φlsch

would be a linear combination of
compact simple roots for Ψ. Thus, if βj are roots in Ψn whose sum is a root there exists H ∈ zlsch

so that (β1 + β2)(H) 6= 0. Since u is an ideal we have that (β1 + β2)(H)Yβ1+β2 = [H, Yβ1+β2 ] is

in u. Hence, uΨ is contained in u and therefore k1(Ψ) is contained in u. The hypothesis forces zk

is also contained in l. We now apply prop..... 2


