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Abstract. In this note we list the compact subgroups L of an ex-
ceptional simple Lie group such that a holomorphic discrete series
for G has an admissible restriction to L.

1. Introduction

A basic problem in representation theory of Lie groups is to derive
”branching laws”. By this we mean, for a given unitary irreducible rep-
resentation of an ambient group G, consider its restriction to a fixed
subgroup H and find the decomposition as a direct integral, and in
particular compute the multiplicity of each irreducible factor of the re-
striction. There is a vast literature on this subject, and here we just
direct the reader’s attention to the extensive reviews of [13], [14] and
references therein. In this note, we consider Holomorphic Discrete Se-
ries and we split the problem in two subproblems, namely, to determine
whether or not the given representation has an admissible restriction
to a subgroup H and secondly, for an admissible representation com-
pute the multiplicity of each irreducible factor. Let us recall that a
unitary representation of a topological group is admissible if it is a dis-
crete Hilbert sum of irreducible unitary subrepresentations and each
irreducible summand occurs with finite multiplicity.
Let G be a connected reductive Lie group, a unitary irreducible rep-
resentation (π, V ) of G is a discrete series representation when each
matrix coefficient is square integrable with respect to Haar measure in
G. We fix H a reductive subgroup of G, L a maximal compact sub-
group of H and (π, V ) a discrete series representation of G. In [6] we
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have shown,
Fact 1: the restriction of (π, V ) to H is admissible if and only if the
restriction of (π, V ) to L is admissible.
We also have shown a formula that allows to compute H−multiplicities
from the knowledge of L−multiplicites and conversely. Thus, in order
to understand admissible restriction of discrete series to reductive sub-
groups of G we are left to consider compact subgroups.
For a Lie group we denote its Lie algebra by the corresponding German
lower case letter, to denote its complexification we add the subscript
C.
Next, we fix a maximal compact K subgroup of G. This choice gives rise
to a Cartan decomposition of the Lie algebra of G, g = k⊕s. It is known
that the homogeneous space G/K carries a G−invariant complex struc-
ture if and only if sC splits us the sum of two K−subrepresentations
s± such that s+ is dual to s−. Assume G/K admits a G−invariant
complex structure, a representation of G is holomorphic when its un-
derlying Harish-Chandra module has a non zero vector so that s− is
included in its annihilator.
From now on, we fix an exceptional simple Lie group G so that G/K
admits an invariant complex structure and (π, V ) and a holomorphic
discrete series for G. The aim of this note is to determine the closed
subgroups L of K so that (π, V ) is admissible when restricted to L.
As another application of our technique we obtain noncompact semisim-
ple subgroups H of E6(−14) such that π has admissible restriction to
H and condition (C) does not hold for the system of positive roots
associated to π. In turn, [6], this implies that to actually compute
H−multiplicities, for these examples, by means of a Blattner-Kostant
type formula we need two partition functions, whereas when condition
(C) holds one partition function suffices. These are the first known
examples of noncompact subgroups H such that a discrete series rep-
resentation has admissible restriction to H and condition (C) does not
holds. In [6] we present discrete series of real rank one Lie groups whose
restriction to a compact subgroup L is admissible, condition (C) does
not hold and L is not contained in any noncompact subgroup of H.

The exceptional connected simple Lie groups whose quotient by a
maximal compact subgroup carries an invariant complex structure has
been classified by E. Cartan. They are, up to covering, the groups
E6(−14), E7(−25). The respective Cartan decompositions are

e6(−14) = so(10)C + R + (s+ ⊕ s−)
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Here, s± are the half spin representations.

e7(−25) = e6 + R + ($1 ⊕$6).

Here, $? are the two fundamental representations of dimension twenty
seven.

We would like to point out that in his Ph.D. thesis [17] has obtained
results which follow from Theorem 1. His technique is different from
the one considered in this note.

2. Admissible restriction of Holomorphic Discrete Series
for E6(−14), E7(−25).

As usual, we denote by E6(−14) the analytic subgroup of the simple
connected complex Lie group of type E6 associated to the real form
e6(−14) of the complex simple Lie algebra e6. The semisimple factor Kss

of a maximal compact subgroup K of E6(−14) is isomorphic to Spin(10)
and K is isomorphic to Spin(10)× SO(2). We show

Proposition 1. Let (π, V ) be a holomorphic discrete series represen-
tation for E6(−14). Then,
i) (π, V ) restricted to Kss = Spin(10) is admissible.

ii) Let U(5) → SO(10) denote one of two usual imbedding and let Û(5)
denote the analytic subgroup of Spin(10) associated to u(5), then the

restriction of π to Û(5) is admissible.
iii) For any other maximal subgroup L of Kss, (π, V ) restricted to L is
not admissible.
iv) Let ŜU(5) denote the simple factor of Û(5). Then, π restricted to

ŜU(5) is not admissible.

Fact 0: Let L ⊂ H reductive subgroups of G. Then, π restricted to
L is admissible implies π restricted to H is admissible. For a proof
[12]. Therefore, we must search for the subgroups L of K so that L is
minimal among the subgroups on which π restricted to them is admis-
sible. Proposition 1, provides un answer when we restrict ourselves to
consider subgroups of Kss. Our next goal is to understand admissible
restriction to other subgroups of K.

In the following paragraph we construct a list of connected Lie sub-
groups of E6(−14). For root tables and fundamental weights for e6 we
follow [7]. We fix a compact Cartan subalgebra t of k. We denote by Φ
the root system for the pair (gC, tC). The system of positive roots as-
sociated to the holomorphic discrete series is denoted by Ψ. We denote
the simple roots for Ψ as

α1, · · · , α5, β
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Here, β is the noncompact simple root, αj is adjacent to αj+1, j =
1, 2, 3; α4 is adjacent to β, α5 is adjacent to α3 and the maximal root is
βM = α1 +2α2 +3α3 +2α4 +β +2α5, βM is adjacent to α5. Besides, βM

is the fundamental weight associated to α5 and is the highest weight of
the representation s+. Let HM denote the vector in t corresponding to
the root iβM . The center of k is spanned by the vector H0 corresponding
to the fundamental weight associated to β. Thus, H0 corresponds to
i1
3
(2α1 + 4α2 + 6α3 + 5α4 + 4β + 3α5).
As usual, we write tC = CH0⊕ ts, where ts is the toric subalgebra of

kss spanned by the vectors Hα1 , · · · , Hα5 . Let ρj denote the fundamen-
tal weight of spin(10) associated to αj. Since the root system of the
centralizer of ρj in spin(10) is spanned by the simple roots different
from αj, we obtain that the centralizer of ρj is equal to a semisimple
Lie algebra rj plus the line spanned by Hρj

.

We fix a, b real numbers, j runs from 1 to 5
We define lj,a,b to be the subalgebra spanned by rj together with the
vector aH0+bHρj

. We only consider a, b such that the analytic subgroup
associated to lj,a,b is compact. Either l4,a,b, or l5,a,b is isomorphic to
u(5). l4,0,1, l5,0,1 are the usual two immersions of u(5) in spin(10). The
subalgebra l4,a,b is not conjugated to l5,a,b.

To define subalgebras hj we mark suitable subroot systems Φj of Φ as
well as vectors in t and then consider the real form hj of the subalgebra
spanned by the root vectors corresponding to the roots in Φj together
with the choice of vectors in t.

Φ1 := Φ∩ < α1, α2, α3, α4 >Z ∪{±βM}.
Hence, h1 is isomorphic to su(5)+sl(2, R). Since HM = 3

4
H0+Hρ5 , l5, 3

4
,1

is a maximally compact subalgebra of h1.

Φ2 := Φ∩ < α1, α2, α3, α5, β + α4 >Z .
Hence, h2 is isomorphic to so?(10). The center of k ∩ h2 is spanned by
the vector H2 = 15

8
H0− 1

2
Hρ4 corresponding to i(α1 +2α2 +3α3 + 5

2
(β+

α4)+ 3
2
α5). It follows l4, 15

8
,− 1

2
is a maximally compact subalgebra of h2.

su(5, 1) is the subalgebra obtained from the subroot system spanned by
α1, α2, α3, α4, β. Here, r5 is the semisimple factor of a maximal compact
subalgebra. The center is spanned by 15

4
H0− 3Hρ5 and corresponds to

α1 + 2α2 + 3α3 + 4α4 + 5β.

su(4, 1) + su(2) is the subalgebra constructed from the subroot sys-
tem spanned by α1, α3, α4, α5, β. Here, r2 is the semisimple factor of a
maximally compact subalgebra. The center is spanned by 5H0 − 2Hρ2

corresponds to α5 + 2α3 + 3α4 + 4β.
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From now on, we write C?(aH0+bHρj
) for the group K∩exp(C(aH0+

bHρj
).

Proposition 2. A holomorphic discrete series for E6(−14) has an ad-
missible restriction to the subgroups:

C?(aH0 + bHρ1) iff |a| > | b
2
| ; C?(aH0 + bHρ2) iff |a| > |b|;

C?(aH0 +bHρ3) iff |a| > |3b
2
| ; C?(aH0 +bHρ4) iff (a− 5b

4
)(a+

3b

4
) > 0;

C?(aH0 + bHρ5) iff (a +
5b

4
)(a− 3b

4
) > 0;

L4,a,b iff (a− 5b

4
) 6= 0 ;

L5,a,b iff (a +
5b

4
) 6= 0 ;

H1 ' SU(5)× SL(2, R); H2 ' SO?(10); SU(4, 1)× SU(2).

The restriction of a holomorphic discrete series to any of the groups

SU(5, 1); F4(−20); SO(8, 2); Rj, j = 1 to 5

is discretely decomposable and not admissible.

The subgroups of E6(−14) considered in Proposition 1 are related to the
list of semisimple symmetric spaces (E6(−14), H).

We are now ready to state

Theorem 1. Let (π, V ) be a holomorphic discrete series for E6(−14)

and L a closed subgroup of K so that π restricted to L is admissible.
Then, L is one of the following

a) The center of K is contained in L
b) L contains one of C?(aH0 + bHρ1) j, a, b as in Proposition 2.

Proposition 3. Let (π, V ) be a holomorphic discrete series for E7(−25).
Then, π restricted to the semisimple factor of K, E6, is not admissible.

For (π, V ) a holomorphic discrete series representation, a result of
Harish-Chandra states that the K−module structure of the underlying
Harish-Chandra module for π is equivalent to S[s+] ⊗ V. Here, S[s+]
denotes the symmetric algebra of s+ and V is the lowest K−type of π.

Fact 2: Let L be a closed subgroup of K. In [12], [6] it is shown:
(π, V ) has an admissible restriction to L if and only if the L−module
S[s+] is admissible if and only if S[s+]L = C.
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Since all noncompact roots in a holomorphic chamber takes on the same
value on a generator of the center of K it follows that S[s+]ZK = C.
Hence, a holomorphic discrete series has an admissible restriction to
the center of K. Fact 0 yields that a holomorphic discrete series has an
admissible restriction to any subgroup which contains the center of K.
In particular, we obtain admissible restriction to the subgroups Lj,b,0

for b not equal to zero.

Proposition 3 follows from Fact 2 and the table in [15] which states
S[$1]

E6 is a polynomial algebra in one generator of degree three.

Proof of Proposition 1. We recall the Cartan decomposition of e6(−14) =
so(10) + R⊕ s+ + s− where s+, s− are the two spin representations of
Spin(10).

Therefore, in order to conclude the proof of Proposition 1 we are to
show:

j) S[s+]Spin(10) = C.

jj) S[s+]Û(5) = C.
jjj) S[s+]L 6= C for a maximal subgroup of Kss not locally isomorphic

to U(5).

jv) S[s+]ŜU(5) 6= C

In [2], [15] we find a proof of S[s+]Spin(10) = C. Thus j) follows.
To verify jj), we consider the maximal tori subalgebra ts of so(10) and
a basis ε1, · · · , ε5 of it?s so that a system of positive compact roots is
εi ± εj, i < j and the weights of the representation s+ are 1

2
(±ε1 ± ε2 ±

ε3 ± ε4 ± ε5) with and odd number of +. The positive roots of u(5) are
εi − εj, i < j. As u(5)−module s+ decomposes as

V 1
2
(ε1+ε2+ε3+ε4+ε5) ⊕ Vε1− 1

2
(ε1+ε2+ε3+ε4+ε5) ⊕ Vε1+ε2+ε3− 1

2
(ε1+ε2+ε3+ε4+ε5)

In [10] page 98 we find a proof of

(SL(2m + 1), Λ2(C2m+1)⊕ Λ1(C2m+1)?)

is a prehomogeneous space. Hence, SU(5)C has an open orbit in

Vε1 ⊕ Vε1+ε2+ε3

Then, Û(5)C has an open orbit in s+. Therefore, S[s+]Û(5) = C.

In order to show jjj) we recall the list of maximal subgroups of SO(10).

These subgroups have been classified by Dynkin in [5] They are:
Reducible subgroups: SO(r)× SO(s) for r + s = 10.
Subgroups of equal rank not listed above: U(5).
Irreducible, non-simple subgroups: none.
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Irreducible simple subgroups: L ⊆ SO(10), where L is a simple,
connected subgroup so that the representation in R10 is irreducible.

To continue, we assume for each maximal subgroup L of Spin(10) not
locally isomorphic to U(5) the restriction of π to L is admissible, equiv-
alently, S[s+]L = C, from this we derive a contradiction.
Let s+ : Spin(10) −→ Gl(s+) denote the half spin representation. To
begin with we consider the case τ : L −→ Spin(10) is an irreducible,
simple, maximal subgroup. Then(s+ ◦ τ, s+) decomposes as the sum
irreducible L−modules

V1 ⊕ · · · ⊕ Vr.

We set τj equal to the projection onto Vj followed by s+ ◦ τ. Owing to
our hypothesis, it follows S[Vj]

τj(L) = C for j = 1, · · · , r. In [10], [11]
we find the list of triple (L, τj, Vj) satisfying: L is a simple algebraic
group, τj is an irreducible representation and S[Vj]

τj(L) = C. The list
is:

(An, Λ1, Cn+1); (A2n, Λ2, Cn(2n+1)); (Cn, Λ1, C2n).

We verify none of the Vj is equivalent to (Cn, Λ1). L of type C1 can-
not be because the ten dimensional irreducible representation of C1 is
symplectic. For L of type Cn, n ≥ 2 and r = 1 we obtain n = 8, a
contradiction. For L of type Cn, n ≥ 2 and r ≥ 2 the symplectic form
lead us to S[s+]L 6= C, another contradiction.

For L of type An, n ≥ 2, if at least one Vj is equivalent to (A2n, Λ2),
then n = 2k and k(2k + 1) ≤ 16, hence, L is one of A2, A4. The ten
dimensional irreducible representations of SL(3) has highest weight
(3, 0, 0) = 3Λ1 or is the dual representation, neither of these two repre-
sentations are orthogonal [3]. The ten dimensional representations of
SL(5) have highest weight Λ2 or Λ3 which are not orthogonal.
We are left with the case all Vj are equivalent to (An, Λ1). For L of
type An, n ≥ 2 since L is a subgroup of Spin(10) we have n ≤ 5, hence,
we are left with n = 3, 5. The ten dimensional irreducible representa-
tions of SL(4) have highest weight 2Λ1 or 2Λ3 they are not orthogonal.
SL(6) has no irreducible representation of dimension ten.

To conclude the proof of jjj) we show

S[s+]so(p)⊕so(q) 6= C for p ≥ 1, q ≥ 1, p + q = 10.

We recall the following facts, for a proof, [3] Table 1,
a) A half spin representations (s±) for Spin(2k) restricted to Spin(2k−

1) is equivalent to the spin representation (s).
b) The spin representation for Spin(2k + 1) restricted to Spin(2k)

is equivalent to the sum of the two half spin representations.
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c) Any irreducible spin representation for Spin(9), Spin(8), Spin(7)
is orthogonal.

d) Any irreducible spin representation for Spin(5), Spin(4) is sym-
plectic

For p = 9, q = 1, s+ restricted to Spin(9) is equivalent to the spin
representation of Spin(9). Since the spin representation of Spin(9) is
orthogonal, we obtain S[s+]so(1)⊕so(9) 6= C.

For p = 8, q = 2 s+
|Spin(8)

= s+ ⊕ s−, besides spin(2) acts on s± by ±1
2
.

Let b± denote a Spin(8) invariant quadratic form in s±. Then b+b− is
invariant under Spin(8)× Spin(2).

For p = 7, q = 3, s+
|Spin(7)

= s ⊕ s. Hence, s+
|Spin(7)×Spin(3)

= s � C2. In

[15] it is shown there is an invariant of degree four. Else, in [11], it
is shown it is not an irreducible prehomogeneous vector space. Since
Spin(7) × Spin(3) is a semisimple Lie group, there are polynomials
invariant under its action.

For p = 6, q = 4, s+
|Spin(6)

= (s+ ⊕ s−)⊕ (s+ ⊕ s−).

It follows Spin(4)s± = s±.
Here, L = SL(4)× SL(2)+ × SL(2)− and the restriction of s+ to L is
equivalent to

C4 � C2 � C⊕ (C4)? � C � C2

Hence, the restriction of s+ to L is equivalent to

C4×2 ⊕ C4×2

with action

(T, A, B)−1(X, Y ) = (T−1XA, T tY B)

T ∈ SL(4), A,B ∈ SL(2), X, Y ∈ C4×2

We claim this action is not a prehomogeneous vector space. Therefore,
since L is semisimple it admits invariant polynomials. To verify it is
not a prehomogeneous space we apply [11] Prop. 7.52. The statement
of the proposition is: (G, ρ1 ⊕ ρ2) is a prehomogeneous space if and
only if (G, ρ1) is a prehomogeneous space and (Gv, ρ2|Gv

, V2) is a pre-

homogeneous vector space. Here, Gv = generic stabilizer of ρ1.
In our case, ρ1 is the first summand, for

v =

(
I
0

)
,

Lv = {(
(

A R
0 B

)
, A−1, B), A,B ∈ SL(2), R ∈ C2×2}
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It readely follows dimension of a generic orbit for ρ2(Gv) is seven. Ac-
tually, each generic orbit is the set (X, Y ) satisfying detX = c, hence,
(Gv, ρ2|Gv

, V2) is not a prehomogeneous vector space.

Finally we examine p = q = 5. Here, the restriction of s+ to Spin(5)×
Spin(5) is equivalent to s � s. In [11] Apendix, it is shown that this
representation is not a prehomogeneous vector space. Else, the spin
representation of Spin(5) is a symplectic representation. Hence,
S[s+]Spin(5)×Spin(5) 6= C and we have concluded the proof of Proposition
1.

Proof of Proposition 2: For a root γ let Yγ denote one of its nonzero
root vectors. From the root tables for e6, [7], we find that restriction
of s+ to the semisimple factor of l5,a,b ' su(5) decomposes as

V0 + VΛ1 + VΛ3 .

Here Λj is the fundamental weight of l5,0,0 w su(5) attached to αj. A
highest weight vector for each submodule is respectively:

YβM
, Yα1+α2+α3+α4+β, Yα1+2α2+3α3+2α4+β+α5

In [11] we find a proof SL(5) has an open orbit in VΛ1 + VΛ3 . Since
ρ5 = 1

2
α1 + 2

2
α2 + 3

2
α3 + 3

4
α4 + 5

4
α5, we obtain βM(aH0 + bHρ5) =

(a
2

+ 13b
8

)(β, β). Thus, the complexification of L5,a,b has an open orbit

in s+ if and only if a
2

+ 13b
8
6= 0. Therefore, a

2
+ 13b

8
6= 0 if and only if

there is no invariant polynomial by L5,a,b. Thus, the claim for L5,a,b, H1

follows.
We now show the statement on C?(aH0 + bHρ5). For this, after a com-
putation follows

(aH0 + bHρ5)(α1 + α2 + α3 + α4 + β) = (
a

2
− 3b

8
)(β, β)

(aH0 + bHρ5)(α1 + 2α2 + 3α3 + 2α4 + β + α5) = (
a

2
+

b

8
)(β, β)

We recall
Fact 3 Let C? acting on vector space V. Then the representation of C?

in S[V ] is admissible iff the weights of C? in V lies in an open half
space. In our case, this condition for admissibility is equivalent to the
real numbers a

2
+ 13b

8
, a

2
− 3b

8
, a

2
+ b

8
have the same positivity. Thus, the

statement on C?(aH0 + bHρ5) follows.

To show the admissibility statement for l4,a,b and C?(aH0 + bHρ4) the
proof goes as in the previous case, we now have the same decomposition
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for the restriction of s+ to the semisimple factor of L4,a,b and highest
weight vectors are:

Yβ, YβM
, Yα1+2α2+2α3+α4+β+α5

Since ρ4 = 1
2
α1 + 2

2
α2 + 3

2
α3 + 5

4
α4 + 3

4
α5, we get β(aH0 + bHρ4) =

(a
2
− 5b

8
)(β, β). The claim on L4,a,b, H2 follows.

(aH0 + bHρ4)(βM) = (
a

2
+

3b

8
)(β, β)

(aH0 + bHρ4)(α1 + 2α2 + 2α3 + α4 + β + α5) = (
a

2
− b

8
)(β, β)

Owing to Fact 3, the condition for admissibility to C?(aH0 + bHρ4)
is equivalent to the real numbers a

2
− 5b

8
, a

2
+ 3b

8
, a

2
− b

8
have the same

positivity. Thus, the statement on C?(aH0 + bHρ4) follows.

We now consider the statement related to ρ1. l1,a,b = C(aH0 + bHρ1) +
so(8). s+

|r1
= s+s−. Respective highest weight vectors are

YβM
, Yα2+2α3+2α4+β+α5 .

Both, representations s± are orthogonal representations, we denote by
b± respective nonzero invariant quadratic forms. Then, S[s±] = C[b±].
Hence, Fact 1 implies there is no admissible restriction to r1. Since
ρ1 = α1 + α2 + α3 + 1

2
(α4 + α5) we obtain

(aH0 + bHρ1)(βM) = (
a

2
+

b

4
)(β, β).

(aH0 + bHρ1)(α2 + 2α3 + 2α4 + β + α5) = (
a

2
− b

4
)(β, β).

Therefore, Fact 3, leads to the statement on C?(aH0 + bHρ1)

We now show the statement on l2,a,b = C(aH0 + bHρ2)⊕ r2, C?(aH0 +
bHρ2) where, r2 = su2(α1) ⊕ su4(α5, α3, α4). s+ restricted to SU(2) ×
SU(4) is equivalent to

C � Λ3 + Λ1 � Λ3 + C � Λ1

Highest weight vectors are

YβM
, Yα1+α2+2α3+2α4+β+α5 , Yα3+α4+β+α5

Since for the group SU(4), Λ3 is dual to Λ1, we obtain a polynomial
invariant under SU(2)×SU(4). Thus, there is no admissible restriction
to SU(2)×SU(4). Since ρ2 = α1+2α2+2α3+α4+α5, the next equalities
readily follows

(aH0 + bHρ2)(βM) = (
a

2
+

b

2
)(β, β)
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(aH0 + bHρ2)(α1 + α2 + 2α3 + 2α4 + β + α5) =
a

2
(β, β)

(aH0 + bHρ2)(α3 + α4 + β + α5) = (
a

2
− b

2
)(β, β).

Next we apply Fact 3. Thus, π restricted to C(aH0+bHρ2) is admissible
iff a, a±b lies in an open half space in C. This is equivalent to |a| ≥ |b|.
To show holomorphic discrete series has an admissible restriction to
SU(2)× SU(4, 1) we actually show that holomorphic discrete series is
admissible when restricted to the center of K ∩ (SU(2)× SU(4, 1)). A
generator of the Lie algebra of the center is 5H0 − 2Hρ2 which corre-
sponds to α5+2α3+3α4+4β. It readily follows that α5+2α3+3α4+4β
has positive inner product with any noncompact positive root. Hence,
there is no polynomial invariant under the center unless is a constant
polynomial.

Finally we examine

l3,a,b = C(aH0 + bHρ3)⊕ su3(α1, α2)⊕ su2(α4)⊕ su2(α5).

The restriction of s+ to r3 + t is equal to

C � C � C2 ⊕ C3 � C2 � C⊕ C3 � C � C2 ⊕ C � C2 � C

Highest weight vectors respectively are,

YβM
, Yα1+2α2+2α3+2α4+β+α5 , Yα1+α2+α3+α4+β+α5 , Yα4+β

In the realm of fundamental weights of r3, the highest weights are

Λ 1
2
α5

, Λα2 + Λ 1
2
α4

, Λα1 + Λ 1
2
α5

, Λ 1
2
α4

Since r3 is a subalgebra of so(6)+so(4) Proposition 1 and Fact 0 imply π
restricted R3 is not admissible. Hence, there are invariant polynomials
under R3 in s+. ρ3 = α1+2α2+3α3+

3
2
(α4+α5) and (ρ3, β) = −3

4
(β, β).

(aH0 + bHρ3)(βM) = (
a

2
+

3b

4
)(β, β)

(aH0 + bHρ3)(α1 + 2α2 + 2α3 + 2α4 + β + α5) = (
a

2
+

b

4
)(β, β)

(aH0 + bHρ3)(α1 + α2 + α3 + α4 + β + α5) = (
a

2
− b

4
)(β, β)

(aH0 + bHρ3)(α4 + β) = (
a

2
− 3b

4
)(β, β).

Thus, Fact 3 implies there is admissible restriction to C?(aH0 + bHρ3)
if the four numbers a ± b

2
, a ± 3b

2
have the same positivity. This is

equivalent to |a| > 3
2
|b|.
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For the second statement we notice that all these restrictions are dis-
cretely decomposable because they contain suitable holomorphic dis-
crete series for the subgroup, hence, we may apply [12], Lemma 1.5.
We now show they are not admissible. The maximal compact subgroup
of SO(8, 2) (resp F4(−20)) SO(8) × SO(2) (resp Spin(9)), is contained
in maximal subgroups of Spin(10) which satisfy iii). Thus, Fact 1 let
us conclude the second statement for this two groups. The center of
k∩su(5, 1) corresponds to the vector α1 +2α2 +3α3 +4α4 +5β which is
orthogonal to βM . Hence, YβM

is fixed by k∩ su(5, 1). Thus, restriction
to su(5, 1) is not admissible. This concludes the proof of Proposition
2.

Proof of Theorem 1 Let L be a proper closed subgroup so that π
restricted to L is admissible. To begin with, we assume L is contained
in Kss and let V be a maximal subgroup of Spin(10) containing L.
Owing to Fact 0, π restricted to L is admissible. Proposition 1 implies
V = L and L is one of the two immersions of U(5) in Spin(10). Next
we consider the case L does not contain the center of K as well as
is not contained in Kss. Hence, the projection onto Spin(10) yields L
is isomorphic to a subgroup of Spin(10) and the projection onto the
center of K shows that the center of L is non trivial. Thus, there exists
number a, a vector Y in spin(10) and a subalgebra l′ of spin(10) which
centralizes Y so that

l = C(aH0 + Y )⊕ l′.

The structure of centralizers of a tori implies there exists a fundamental
weight ρj so that, after conjugation by an element of K,

l ⊆ C(aH0 + bHρj
)⊕ rj.

Hence, Fact 0 implies π restricted to Lj,a,b is admissible, Proposition 2
forces L to be Lj,a,b.

3. Branching laws

Let L denote a compact subgroup of K so that a holomorphic dis-
crete series π has an admissible restriction to L. Since, in our case
condition C does not hold, in order to compute multiplicities by means
of Blattner-Kostant type formulas, we need to compute the restriction
of π to L and to compute restriction to L of irreducible representations
of K. The last computation can be done via a formula shown by Heck-
man and Kostant [8] and the former is done by a formula conjectured
by Blattner and shown by [9]. A different presentation of the formula of
Blattner is in [4], this presentation is more suitable for theoretical de-
velopments. In our setting, Paradan [16] has given a geometric formula
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for multiplicities. For the case considered in this note, the computa-
tion of multiplicity can actually be carried out by means of a computer,
even though the complexity is quite high because the method needs of
two partition functions. For an actual state of the art of computing
multiplicities we refer to the work of Baldoni, Vergne [1].
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