STRICT VERSUS £k, C
M., DUFLO, J., VARGAS

ABSTRACT. d-v means the June 1 version of what 1 wrote.

1. XX

I follow the notation on your writing.

Let G © K O T be so that G is a simple, connected Lie group of
finite center, K a maximal compact subgroup of G and 7" a maximal
torus of G' contained in K.

We fix a compact connected subgroup L of K and let Z denote the
connected center of K.

We fix a maximal torus U of L contained in 7T

We fix compatible systems of positive roots W, ¥ in @, and &, re-
spectively. That is, if a root in W, has a nonzero restriction to u then
it belongs to V.

®, roots in ®¢ that vanishes on u.

¢u the restriction map from t* onto u*.

We fix a system of positive roots ¥ in ®; which contains We.

Let k;(V),t; = k;(V) Nt as usual .

Lemma 1. If g is simple, not locally isomorphic to so(2,2q + 1) and
k1(V) is nontrivial, then every noncompact root has a nonzero restric-
tion to t.

Proof: Case 3 = 0, then, if a noncompact root had a trivial restriction
to t;. We would have that this noncompact root would belong to t,. The
fact that the simple roots in Wy, are simple roots for ¥ together with
3 = 0 forces that the root would be a linear combination of compact
simple roots, and hence compact.

Case 3 # 0. We do a case by case analysis. g = su(p,q) then k;
equals to one of su(p), su(q), su(p) x su(q) and it follows by inspection.
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g =s0(2,2¢ + 1) Here
\IJE:{Elicsk’v(Skvk:l)"' ’Q}

(I)n = {:l:El, :|:€1 + (53',1 S] S q}
The center of ¢ is Ce; and k(W) is equal to so(2¢ + 1). Thus, € has
zero restriction to t;

For s0(2,2q), when 2¢ = 4 the computation follows from Table 2 in
d-v , for the remaining cases, ®, = {£e; £;,1 < j < ¢} and t; is
equal the subspace spanned by §;.

For sp(2q) is obvious.

For the exceptional groups we use the description of the root system
in Freudenthal, Linear Lie groups,

For €6(—14)

t = 50(10) + 3 we have, up to +,

b, = {€i—€j,€i+6j+€672.aj §5}

(I)n:{ez‘_6676k+6z’+€j,61+"'+66 Z,j,]{?§5}
Then, (e; —eg) + (€j — i), (€1 + -+ +e6) — (es + €5 + eg) and (ey, +
e; +€j) — (e; + €; + eg) are roots.
For e7(—25), E=¢g +3

Q. ={e;—ejei+e;+en,2<i,j,kea+---+er}
and
¢, ={e1 —ejerteitejertejtejp e, 2514, )
then (e; —e;) — (ea —e;),(e1 + e +¢;) + (ex —€;), (€1 +---ej_1 +
ejt1+ - +e7) — (e —e;) are roots.
End of the proof.

We now consider the problem of restriction to K of a discrete series
whose Harish-Chandra parameter, A, is dominant with respect to W.

Lemma 2. Whenever the set qi, (V,,) is strict we have that wp has an
admissible restriction to Ky (V).

Proof:

The hypothesis implies that there exists v € it; so that 5(v) > 0 for
every noncompact root in W. The computation now follows as in the
proof in Prop 2 of d-v.

End of the proof.
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Note 0. We do not know whether or not the converse statement
holds. In Note 8 we show: pe, (¥,,) is strict iff Rt Niz* =0

For the next statement we keep the hypothesis and notation from
the beginning of this section.

Proposition 1. If & (V) + 3 is contained in |, then, for each w in the
compact Weyl group of G, the multiset

qu(w\I/n) U qu(\Ifg — \Ifz’) — \I’[

18 strict.
For the converse statement we further assume K1(W) # 0. If for each
w in the compact Weyl group of G, the multiset

qu(w\I/n) U qu(\Ifg — \Ifz’) — \If[
is strict, then €, (V) is contained in [.

Proof: For the first statement. Our assumption on the compatibility
between W, and ¥, implies that there exists v; in iu so that a(v;) > 0
for every a € Wy — W,. We fix C' an upper bound for the numbers
|v(v1)|, v € U. We now recall that € is equal to the center of ¢ plus a
semisimple Lie algebra. Hence, we may write to = 3 @ ty ;s and want
to show that (R*W, +R*W, ) Nit5,, = 0. This follows from Remark
2 in d-v. Therefore, Lemma 3 in d-v forces that ge,4;(R*W,, + RT¥y,)
is a strict cone in it} 4 73*. Hence, we may choose vy € it; + 73 so that
v(vo) > 2C for every root in W,, UWy,. We define v = vy + v;. Thus, for
either v € Wy — ¥, or v € U,, we have that y(v) is a positive number.
Thus, since & +3 is contained in u, the multiset g, (¥,,)Uq,(Ve— ;) — U,
is strict. We write w = wyw, with w; in the Weyl group of K;().
Because of Lemma 2 in d-v, w» is a product of reflections about compact
simple roots in ¥ and we have that wsW,, = ¥,,. Since v € u and &
is contained in [ we have that w; lies in the Weyl group of L. Also
w1 (qu(Ve, — ¥;) = qu(Ve, — ¥;). Therefore, the vector w;v makes the
multiset ¢ (w¥,) U g (Ve — ¥;) — Uy strict.

end of the proof of the first statement.

In order to show the converse statement, we first verify that g,(v) is
nonzero for every root in ¥, U W, and that for a € Wy, g,(«) is root
for the pair ([,u). To begin with, let 5 € ¥,,, we now show that ¢,(3)
is not equal to ¢,(7) for every v € Wy, . Indeed, assume ¢,(3) = qu(a),
since k1(¥) # 0 the chamber ¥ is non holomorphic, thus, there exists
w € Wy so that w3 = —f3. Hence £+a belong to the strict multiset
associated to w, a contradiction. For v € Wy, in d-v it is shown that
there exists non compact roots (1, 3y in ¥ and w in the Weyl group
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of K1(¥) so that o = w(f; + B2). Thus, g,(«) lies in ¢,(wRTW,,), the
hypothesis that the multiset associated to w is strict implies that ¢,(«)
is non zero. Hence, ¢,(a) belongs to either ®(I,u) or ®(¢/l,u). If ¢,(a)
does not belong to ®(I,u), then lies in g (Ve — ¥;) — ¥ . On the
other hand, in d-v it is proven that there exist w in the Weyl group of
k1 so that —a = w(f; + (2). Hence, +« belongs to the strict multiset
Qu(w¥,)Ugq(Ve—W,) — ¥y, contradiction and we have shown the claim.
Next we show: if v € W, and o € Uy, has the same restriction to u, then
they are equal. Indeed, we choose w in the Weyl group of K; so that
wa = —a. Then, —¢,(«) will belong to the multiset associated to w,
besides gu(cv) has at least multiplicity two in the multiset ¢, (¥, — ;).
Hence, +a belongs to the multiset associated to w, a contradiction.
In order to show that K; is contained in L, we consider av € Wy, , then
a root vector of ¢,(«) is a sum of root vectors associated to roots in Wy
that agree with « in u. Hence, a root vector of ¢,(«) is equal to a root
vector of a. Thus, all the root vectors of the roots in W, belongs to I¢.
Therefore, £, is an ideal of [.

This ends the proof of the proposition.

Note 1. For every w in the Weyl group of £ we have that the multiset
qt1+3(wlpn) U qt1+3(qj? - qu) - \Ij[

is strict. In fact, we write w = wyws, with w; in the Weyl group of K,
then

Qu(w\Ijn> U Qu(\IjE - \Ilg) - ‘11[ = (y (wl\lln) = W14y (\Ijn)

Now we apply Remark 2 and Lemma 3 in d-v.

Note 2. The inclusion & € [ does not always imply that the multiset
in u associated to each w is strict . In fact, let g = s0(2,4) then in
Table 2 in d-v we find systems of positive roots ¥ so that €, = so(4)
and the corresponding discrete series has no admissible restriction to
s0(4). Hence, by inspection on Table 2 or by Lemma 1, we have that
the multiset ¢,(¥,,) is not strict.

Note 3 The fact that the every multiset is strict does not always
implies that the center of £ is contained in [. Indeed, for [ = €, we now
show: R*W,, Niz = {0} iff every multiset is strict. This follows because
for w = wyws, w; in the Weyl group of K; we have,

Qu(w¥,) U (Ve — V) — U = g (w1 ¥y,) = wigy, (Vy)
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Now, we apply Lemma 3 in d-v. Concrete examples that this hypoth-
esis holds are certain systems of positive roots in SU(p, q), Sp(n,R).

Note 4 We know that g,(w...) is strict for every w, then 7 has an
admissible restriction to L.

The converse statement does not hold. For example, for Spin(4,1
consider the system e; + ey, e1,e9. Then, k1 = su(e; + e3). Set [ =
su(e; — e3). Then, we know that m, restricted to L is admissible (d-v).
We have £, is not contained in [ and py(V,,) = £(e; —e2), hence, p,(V,,)
is not strict.

Note 5: For the direct statement in proposition, when K; = 0 the
result still holds. For the converse statement when we consider the case
K, =0, that is, a holomorphic chamber, the statement does not make
sense, because the thesis is true in spite of what ever the hypothesis is.

Note 6: Holomorphic discrete series for su(p,q) p smaller that q is
admissible restricted to su(q) this is in d-v, however,

pu(0,) = {6, + §<Z 5)}

is not strict!
Note that su(q) is the kU’).



