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Abstract. d-v means the June 1 version of what i wrote.

1. xx

I follow the notation on your writing.
Let G ⊇ K ⊇ T be so that G is a simple, connected Lie group of

finite center, K a maximal compact subgroup of G and T a maximal
torus of G contained in K.

We fix a compact connected subgroup L of K and let Z denote the
connected center of K.

We fix a maximal torus U of L contained in T.
We fix compatible systems of positive roots Ψk, Ψl in Φk and Φl re-

spectively. That is, if a root in Ψk has a nonzero restriction to u then
it belongs to Ψl.

Φz roots in Φk that vanishes on u.
qu the restriction map from t? onto u?.
We fix a system of positive roots Ψ in Φg which contains Ψk.
Let ki(Ψ), ti = ki(Ψ) ∩ t as usual .

Lemma 1. If g is simple, not locally isomorphic to so(2, 2q + 1) and
k1(Ψ) is nontrivial, then every noncompact root has a nonzero restric-
tion to t1.

Proof: Case z = 0, then, if a noncompact root had a trivial restriction
to t1. We would have that this noncompact root would belong to t2. The
fact that the simple roots in Ψk2 are simple roots for Ψ together with
z = 0 forces that the root would be a linear combination of compact
simple roots, and hence compact.

Case z 6= 0. We do a case by case analysis. g = su(p, q) then k1

equals to one of su(p), su(q), su(p)× su(q) and it follows by inspection.
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g = so(2, 2q + 1) Here

Ψk = {ε1 ± δk, δk, k = 1, · · · , q}

Φn = {±ε1,±ε1 ± δj, 1 ≤ j ≤ q}.
The center of k is Cε1 and k1(Ψ) is equal to so(2q + 1). Thus, ε1 has
zero restriction to t1

For so(2, 2q), when 2q = 4 the computation follows from Table 2 in
d-v , for the remaining cases, Φn = {±ε1 ± δj, 1 ≤ j ≤ q} and t1 is
equal the subspace spanned by δj.

For sp(2q) is obvious.
For the exceptional groups we use the description of the root system

in Freudenthal, Linear Lie groups,
For e6(−14)

k = so(10) + z we have, up to ±,

Φc = {ei − ej, ei + ej + e6, i, j ≤ 5}

Φn = {ei − e6, ek + ei + ej, e1 + · · ·+ e6 i, j, k ≤ 5}
Then, (ei − e6) + (ej − ei), (e1 + · · ·+ e6)− (e4 + e5 + e6) and (ek +

ei + ej)− (ei + ej + e6) are roots.
For e7(−25), k = e6 + z

Φc = {ei − ej, ei + ej + ek, 2 ≤ i, j, k, e2 + · · ·+ e7}
and

Φn = {e1 − ej, e1 + ei + ej, e1 + · · · ej−1 + ej+1 + · · ·+ e7, 2 ≤ i, j, }

then (e1 − ei) − (e2 − ei), (e1 + ei + ej) + (ek − ei), (e1 + · · · ej−1 +
ej+1 + · · ·+ e7)− (e1 − ej) are roots.

End of the proof.

We now consider the problem of restriction to K1 of a discrete series
whose Harish-Chandra parameter, Λ, is dominant with respect to Ψ.

Lemma 2. Whenever the set qt1(Ψn) is strict we have that πΛ has an
admissible restriction to K1(Ψ).

Proof:
The hypothesis implies that there exists v ∈ it1 so that β(v) > 0 for

every noncompact root in Ψ. The computation now follows as in the
proof in Prop 2 of d-v.

End of the proof.



STRICT VERSUS k1 ⊂ l 3

Note 0. We do not know whether or not the converse statement
holds. In Note 3 we show: pk1(Ψn) is strict iff R+ ∩ iz? = 0

For the next statement we keep the hypothesis and notation from
the beginning of this section.

Proposition 1. If k1(Ψ) + z is contained in l, then, for each w in the
compact Weyl group of G, the multiset

qu(wΨn) ∪ qu(Ψk −Ψz)−Ψl

is strict.
For the converse statement we further assume K1(Ψ) 6= 0. If for each

w in the compact Weyl group of G, the multiset

qu(wΨn) ∪ qu(Ψk −Ψz)−Ψl

is strict, then k1(Ψ) is contained in l.

Proof: For the first statement. Our assumption on the compatibility
between Ψk and Ψl implies that there exists v1 in iu so that α(v1) > 0
for every α ∈ Ψk − Ψz. We fix C an upper bound for the numbers
|γ(v1)|, γ ∈ Ψ. We now recall that k2 is equal to the center of k plus a
semisimple Lie algebra. Hence, we may write t2 = z ⊕ t2,ss and want
to show that (R+Ψn + R+Ψk1) ∩ it?2,ss = 0. This follows from Remark
2 in d-v. Therefore, Lemma 3 in d-v forces that qk1+z(R+Ψn + R+Ψt1)
is a strict cone in it?1 + iz?. Hence, we may choose v0 ∈ it1 + iz so that
γ(v0) ≥ 2C for every root in Ψn∪Ψt1 . We define v = v0 + v1. Thus, for
either γ ∈ Ψk − Ψz or γ ∈ Ψn we have that γ(v) is a positive number.
Thus, since k1+z is contained in u, the multiset qu(Ψn)∪qu(Ψk−Ψz)−Ψl

is strict. We write w = w1w2 with wj in the Weyl group of Kj(Ψ).
Because of Lemma 2 in d-v, w2 is a product of reflections about compact
simple roots in Ψ and we have that w2Ψn = Ψn. Since v ∈ iu and k1

is contained in l we have that w1 lies in the Weyl group of L. Also
w1(qu(Ψk2 − Ψz) = qu(Ψk2 − Ψz). Therefore, the vector w1v makes the
multiset qu(wΨn) ∪ qu(Ψk −Ψz)−Ψl strict.

end of the proof of the first statement.

In order to show the converse statement, we first verify that qu(γ) is
nonzero for every root in Ψn ∪ Ψk1 and that for α ∈ Ψk1 , qu(α) is root
for the pair (l, u). To begin with, let β ∈ Ψn, we now show that qu(β)
is not equal to qu(γ) for every γ ∈ Ψk1 . Indeed, assume qu(β) = qu(α),
since k1(Ψ) 6= 0 the chamber Ψ is non holomorphic, thus, there exists
w ∈ Wk so that wβ = −β. Hence ±α belong to the strict multiset
associated to w, a contradiction. For α ∈ Ψk1 , in d-v it is shown that
there exists non compact roots β1, β2 in Ψ and w in the Weyl group
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of K1(Ψ) so that α = w(β1 + β2). Thus, qu(α) lies in qu(wR+Ψn), the
hypothesis that the multiset associated to w is strict implies that qu(α)
is non zero. Hence, qu(α) belongs to either Φ(l, u) or Φ(k/l, u). If qu(α)
does not belong to Φ(l, u), then lies in qu(Ψk − Ψz) − Ψl . On the
other hand, in d-v it is proven that there exist w in the Weyl group of
k1 so that −α = w(β1 + β2). Hence, ±α belongs to the strict multiset
qu(wΨn)∪qu(Ψk−Ψz)−Ψl, contradiction and we have shown the claim.
Next we show: if γ ∈ Ψk and α ∈ Ψk1 has the same restriction to u, then
they are equal. Indeed, we choose w in the Weyl group of K1 so that
wα = −α. Then, −qu(α) will belong to the multiset associated to w,
besides qu(α) has at least multiplicity two in the multiset qu(Ψk −Ψz).
Hence, ±α belongs to the multiset associated to w, a contradiction.
In order to show that K1 is contained in L, we consider α ∈ Ψk1 , then
a root vector of qu(α) is a sum of root vectors associated to roots in Ψk

that agree with α in u. Hence, a root vector of qu(α) is equal to a root
vector of α. Thus, all the root vectors of the roots in Ψk1 belongs to lC.
Therefore, k1 is an ideal of l.

This ends the proof of the proposition.

Note 1. For every w in the Weyl group of k we have that the multiset

qt1+z(wΨn) ∪ qt1+z(Ψk −Ψz)−Ψl

is strict. In fact, we write w = w1w2, with wj in the Weyl group of Kj,
then

qu(wΨn) ∪ qu(Ψk −Ψz)−Ψl = qt1(w1Ψn) = w1qt1(Ψn)

Now we apply Remark 2 and Lemma 3 in d-v.

Note 2. The inclusion k1 j l does not always imply that the multiset
in u associated to each w is strict . In fact, let g = so(2, 4) then in
Table 2 in d-v we find systems of positive roots Ψ so that k1 = so(4)
and the corresponding discrete series has no admissible restriction to
so(4). Hence, by inspection on Table 2 or by Lemma 1, we have that
the multiset qu(Ψn) is not strict.

Note 3 The fact that the every multiset is strict does not always
implies that the center of k is contained in l. Indeed, for l = k1 we now
show: R+Ψn∩ iz = {0} iff every multiset is strict. This follows because
for w = w1w2, wj in the Weyl group of Kj we have,

qu(wΨn) ∪ qu(Ψk −Ψz)−Ψl = qt1(w1Ψn) = w1qt1(Ψn)
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Now, we apply Lemma 3 in d-v. Concrete examples that this hypoth-
esis holds are certain systems of positive roots in SU(p, q), Sp(n, R).

Note 4 We know that qu(w...) is strict for every w, then πΛ has an
admissible restriction to L.

The converse statement does not hold. For example, for Spin(4, 1)
consider the system e1 ± e2, e1, e2. Then, k1 = su(e1 + e2). Set l =
su(e1− e2). Then, we know that πΛ restricted to L is admissible (d-v).
We have k1 is not contained in l and pu(Ψn) = ±(e1−e2), hence, pu(Ψn)
is not strict.

Note 5: For the direct statement in proposition, when K1 = 0 the
result still holds. For the converse statement when we consider the case
K1 = 0, that is, a holomorphic chamber, the statement does not make
sense, because the thesis is true in spite of what ever the hypothesis is.

Note 6: Holomorphic discrete series for su(p,q) p smaller that q is
admissible restricted to su(q) this is in d-v, however,

pu(Ψn) = {−δj +
1

q
(
∑

δk)}

is not strict!
Note that su(q) is the k(Ψ

′).


