STRICT VERSUS $k_{1} \subset l$

M., DUFLO, J., VARGAS

Abstract. d-v means the June 1 version of what i wrote.

1. xX

I follow the notation on your writing.
Let $G \supseteq K \supseteq T$ be so that G is a simple, connected Lie group of finite center, K a maximal compact subgroup of G and T a maximal torus of G contained in K.

We fix a compact connected subgroup L of K and let Z denote the connected center of K.

We fix a maximal torus U of L contained in T.
We fix compatible systems of positive roots $\Psi_{\mathfrak{k}}, \Psi_{\mathfrak{l}}$ in $\Phi_{\mathfrak{k}}$ and $\Phi_{\mathfrak{l}}$ respectively. That is, if a root in $\Psi_{\mathfrak{k}}$ has a nonzero restriction to \mathfrak{u} then it belongs to Ψ_{r}.
$\Phi_{\mathfrak{z}}$ roots in $\Phi_{\mathfrak{k}}$ that vanishes on \mathfrak{u}.
$q_{\mathfrak{u}}$ the restriction map from \mathfrak{t}^{\star} onto \mathfrak{u}^{\star}.
We fix a system of positive roots Ψ in $\Phi_{\mathfrak{g}}$ which contains $\Psi_{\mathfrak{k}}$.
Let $k_{i}(\Psi), \mathfrak{t}_{i}=k_{i}(\Psi) \cap \mathfrak{t}$ as usual.
Lemma 1. If \mathfrak{g} is simple, not locally isomorphic to $\mathfrak{s o}(2,2 q+1)$ and $k_{1}(\Psi)$ is nontrivial, then every noncompact root has a nonzero restriction to \mathfrak{t}_{1}.

Proof: Case $\mathfrak{z}=0$, then, if a noncompact root had a trivial restriction to \mathfrak{t}_{1}. We would have that this noncompact root would belong to \mathfrak{t}_{2}. The fact that the simple roots in $\Psi_{k_{2}}$ are simple roots for Ψ together with $\mathfrak{z}=0$ forces that the root would be a linear combination of compact simple roots, and hence compact.

Case $\mathfrak{z} \neq 0$. We do a case by case analysis. $\mathfrak{g}=\mathfrak{s u}(p, q)$ then k_{1} equals to one of $\mathfrak{s} u(p), \mathfrak{s} u(q), \mathfrak{s} u(p) \times \mathfrak{s} u(q)$ and it follows by inspection.

[^0]$\mathfrak{g}=\mathfrak{s o}(2,2 q+1)$ Here
\[

$$
\begin{aligned}
\Psi_{\mathfrak{k}} & =\left\{\epsilon_{1} \pm \delta_{k}, \delta_{k}, k=1, \cdots, q\right\} \\
\Phi_{n} & =\left\{ \pm \epsilon_{1}, \pm \epsilon_{1} \pm \delta_{j}, 1 \leq j \leq q\right\} .
\end{aligned}
$$
\]

The center of \mathfrak{k} is $\mathbb{C} \epsilon_{1}$ and $k_{1}(\Psi)$ is equal to $\mathfrak{s o}(2 q+1)$. Thus, ϵ_{1} has zero restriction to \mathfrak{t}_{1}

For $\mathfrak{s o}(2,2 q)$, when $2 q=4$ the computation follows from Table 2 in d -v, for the remaining cases, $\Phi_{n}=\left\{ \pm \epsilon_{1} \pm \delta_{j}, 1 \leq j \leq q\right\}$ and \mathfrak{t}_{1} is equal the subspace spanned by δ_{j}.

For $\mathfrak{s p}(2 q)$ is obvious.
For the exceptional groups we use the description of the root system in Freudenthal, Linear Lie groups,

For $\mathfrak{e}_{6(-14)}$
$\mathfrak{k}=\mathfrak{s o}(10)+\mathfrak{z}$ we have, up to \pm,

$$
\begin{gathered}
\Phi_{c}=\left\{e_{i}-e_{j}, e_{i}+e_{j}+e_{6}, i, j \leq 5\right\} \\
\Phi_{n}=\left\{e_{i}-e_{6}, e_{k}+e_{i}+e_{j}, e_{1}+\cdots+e_{6} i, j, k \leq 5\right\}
\end{gathered}
$$

Then, $\left(e_{i}-e_{6}\right)+\left(e_{j}-e_{i}\right),\left(e_{1}+\cdots+e_{6}\right)-\left(e_{4}+e_{5}+e_{6}\right)$ and $\left(e_{k}+\right.$ $\left.e_{i}+e_{j}\right)-\left(e_{i}+e_{j}+e_{6}\right)$ are roots.

For $\mathfrak{e}_{7(-25)}, \mathfrak{k}=\mathfrak{e}_{6}+\mathfrak{z}$

$$
\Phi_{c}=\left\{e_{i}-e_{j}, e_{i}+e_{j}+e_{k}, 2 \leq i, j, k, e_{2}+\cdots+e_{7}\right\}
$$

and

$$
\Phi_{n}=\left\{e_{1}-e_{j}, e_{1}+e_{i}+e_{j}, e_{1}+\cdots e_{j-1}+e_{j+1}+\cdots+e_{7}, 2 \leq i, j,\right\}
$$

then $\left(e_{1}-e_{i}\right)-\left(e_{2}-e_{i}\right),\left(e_{1}+e_{i}+e_{j}\right)+\left(e_{k}-e_{i}\right),\left(e_{1}+\cdots e_{j-1}+\right.$ $\left.e_{j+1}+\cdots+e_{7}\right)-\left(e_{1}-e_{j}\right)$ are roots.

End of the proof.
We now consider the problem of restriction to K_{1} of a discrete series whose Harish-Chandra parameter, Λ, is dominant with respect to Ψ.
Lemma 2. Whenever the set $q_{\mathfrak{t}_{1}}\left(\Psi_{n}\right)$ is strict we have that π_{Λ} has an admissible restriction to $K_{1}(\Psi)$.

Proof:
The hypothesis implies that there exists $v \in i \mathfrak{t}_{1}$ so that $\beta(v)>0$ for every noncompact root in Ψ. The computation now follows as in the proof in Prop 2 of $\mathrm{d}-\mathrm{v}$.

End of the proof.

Note 0. We do not know whether or not the converse statement holds. In Note 3 we show: $p_{\mathfrak{k}_{1}}\left(\Psi_{n}\right)$ is strict iff $\mathbb{R}^{+} \cap i \mathfrak{z}^{\star}=0$

For the next statement we keep the hypothesis and notation from the beginning of this section.

Proposition 1. If $\mathfrak{k}_{1}(\Psi)+\mathfrak{z}$ is contained in \mathfrak{l}, then, for each w in the compact Weyl group of G, the multiset

$$
q_{\mathfrak{u}}\left(w \Psi_{n}\right) \cup q_{\mathfrak{u}}\left(\Psi_{\mathfrak{e}}-\Psi_{\mathfrak{z}}\right)-\Psi_{\mathfrak{\imath}}
$$

is strict.
For the converse statement we further assume $K_{1}(\Psi) \neq 0$. If for each w in the compact Weyl group of G, the multiset

$$
q_{\mathfrak{u}}\left(w \Psi_{n}\right) \cup q_{\mathfrak{u}}\left(\Psi_{\mathfrak{e}}-\Psi_{\mathfrak{z}}\right)-\Psi_{\mathfrak{l}}
$$

is strict, then $\mathfrak{k}_{1}(\Psi)$ is contained in \mathfrak{l}.
Proof: For the first statement. Our assumption on the compatibility between $\Psi_{\mathfrak{e}}$ and $\Psi_{\mathfrak{l}}$ implies that there exists v_{1} in $i \mathfrak{u}$ so that $\alpha\left(v_{1}\right)>0$ for every $\alpha \in \Psi_{\mathfrak{k}}-\Psi_{\mathfrak{z}}$. We fix C an upper bound for the numbers $\left|\gamma\left(v_{1}\right)\right|, \gamma \in \Psi$. We now recall that \mathfrak{k}_{2} is equal to the center of \mathfrak{k} plus a semisimple Lie algebra. Hence, we may write $\mathfrak{t}_{2}=\mathfrak{z} \oplus \mathfrak{t}_{2, s s}$ and want to show that $\left(\mathbb{R}^{+} \Psi_{n}+\mathbb{R}^{+} \Psi_{\mathfrak{k}_{1}}\right) \cap i t_{2, s s}^{\star}=0$. This follows from Remark 2 in d-v. Therefore, Lemma 3 in d-v forces that $q_{\mathfrak{k}_{1}+\mathfrak{z}}\left(\mathbb{R}^{+} \Psi_{n}+\mathbb{R}^{+} \Psi_{\mathfrak{t}_{1}}\right)$ is a strict cone in $i \mathfrak{t}_{1}^{\star}+i \mathfrak{z}^{\star}$. Hence, we may choose $v_{0} \in i \mathfrak{t}_{1}+i \mathfrak{z}$ so that $\gamma\left(v_{0}\right) \geq 2 C$ for every root in $\Psi_{n} \cup \Psi_{\mathfrak{t}_{1}}$. We define $v=v_{0}+v_{1}$. Thus, for either $\gamma \in \Psi_{\mathfrak{k}}-\Psi_{\mathfrak{z}}$ or $\gamma \in \Psi_{n}$ we have that $\gamma(v)$ is a positive number. Thus, since $\mathfrak{k}_{1}+\mathfrak{z}$ is contained in \mathfrak{u}, the multiset $q_{\mathfrak{u}}\left(\Psi_{n}\right) \cup q_{\mathfrak{u}}\left(\Psi_{\mathfrak{k}}-\Psi_{\mathfrak{z}}\right)-\Psi_{\mathfrak{l}}$ is strict. We write $w=w_{1} w_{2}$ with w_{j} in the Weyl group of $K_{j}(\Psi)$. Because of Lemma 2 in d-v, w_{2} is a product of reflections about compact simple roots in Ψ and we have that $w_{2} \Psi_{n}=\Psi_{n}$. Since $v \in i \mathfrak{u}$ and \mathfrak{k}_{1} is contained in \mathfrak{l} we have that w_{1} lies in the Weyl group of L. Also $w_{1}\left(q_{\mathfrak{u}}\left(\Psi_{\mathfrak{k}_{2}}-\Psi_{\mathfrak{z}}\right)=q_{\mathfrak{u}}\left(\Psi_{\mathfrak{k}_{2}}-\Psi_{\mathfrak{z}}\right)\right.$. Therefore, the vector $w_{1} v$ makes the multiset $q_{\mathfrak{u}}\left(w \Psi_{n}\right) \cup q_{\mathfrak{u}}\left(\Psi_{\mathfrak{k}}-\Psi_{\mathfrak{z}}\right)-\Psi_{\mathfrak{l}}$ strict.
end of the proof of the first statement.
In order to show the converse statement, we first verify that $q_{u}(\gamma)$ is nonzero for every root in $\Psi_{n} \cup \Psi_{\mathfrak{k}_{1}}$ and that for $\alpha \in \Psi_{\mathfrak{k}_{1}}, q_{\mathfrak{u}}(\alpha)$ is root for the pair $(\mathfrak{l}, \mathfrak{u})$. To begin with, let $\beta \in \Psi_{n}$, we now show that $q_{\mathfrak{u}}(\beta)$ is not equal to $q_{\mathfrak{u}}(\gamma)$ for every $\gamma \in \Psi_{\mathfrak{k}_{1}}$. Indeed, assume $q_{\mathfrak{u}}(\beta)=q_{\mathfrak{u}}(\alpha)$, since $k_{1}(\Psi) \neq 0$ the chamber Ψ is non holomorphic, thus, there exists $w \in W_{\mathfrak{k}}$ so that $w \beta=-\beta$. Hence $\pm \alpha$ belong to the strict multiset associated to w, a contradiction. For $\alpha \in \Psi_{\mathfrak{k}_{1}}$, in d-v it is shown that there exists non compact roots β_{1}, β_{2} in Ψ and w in the Weyl group
of $K_{1}(\Psi)$ so that $\alpha=w\left(\beta_{1}+\beta_{2}\right)$. Thus, $q_{u}(\alpha)$ lies in $q_{u}\left(w \mathbb{R}^{+} \Psi_{n}\right)$, the hypothesis that the multiset associated to w is strict implies that $q_{u}(\alpha)$ is non zero. Hence, $q_{\mathfrak{u}}(\alpha)$ belongs to either $\Phi(\mathfrak{l}, \mathfrak{u})$ or $\Phi(\mathfrak{k} / \mathfrak{l}, \mathfrak{u})$. If $q_{\mathfrak{u}}(\alpha)$ does not belong to $\Phi(\mathfrak{l}, \mathfrak{u})$, then lies in $q_{\mathfrak{u}}\left(\Psi_{\mathfrak{k}}-\Psi_{\mathfrak{z}}\right)-\Psi_{\mathfrak{l}}$. On the other hand, in $\mathrm{d}-\mathrm{v}$ it is proven that there exist w in the Weyl group of k_{1} so that $-\alpha=w\left(\beta_{1}+\beta_{2}\right)$. Hence, $\pm \alpha$ belongs to the strict multiset $q_{\mathfrak{u}}\left(w \Psi_{n}\right) \cup q_{\mathfrak{u}}\left(\Psi_{\mathfrak{k}}-\Psi_{\mathfrak{z}}\right)-\Psi_{\mathfrak{l}}$, contradiction and we have shown the claim. Next we show: if $\gamma \in \Psi_{\mathfrak{k}}$ and $\alpha \in \Psi_{\mathfrak{k}_{1}}$ has the same restriction to \mathfrak{u}, then they are equal. Indeed, we choose w in the Weyl group of K_{1} so that $w \alpha=-\alpha$. Then, $-q_{\mathfrak{u}}(\alpha)$ will belong to the multiset associated to w, besides $q_{\mathfrak{u}}(\alpha)$ has at least multiplicity two in the multiset $q_{\mathfrak{u}}\left(\Psi_{\mathfrak{k}}-\Psi_{\mathfrak{z}}\right)$. Hence, $\pm \alpha$ belongs to the multiset associated to w, a contradiction.
In order to show that K_{1} is contained in L, we consider $\alpha \in \Psi_{\mathfrak{k}_{1}}$, then a root vector of $q_{\mathfrak{u}}(\alpha)$ is a sum of root vectors associated to roots in $\Psi_{\mathfrak{k}}$ that agree with α in \mathfrak{u}. Hence, a root vector of $q_{\mathfrak{u}}(\alpha)$ is equal to a root vector of α. Thus, all the root vectors of the roots in $\Psi_{\mathfrak{k}_{1}}$ belongs to $\mathfrak{l}_{\mathbb{C}}$. Therefore, \mathfrak{k}_{1} is an ideal of \mathfrak{l}.

This ends the proof of the proposition.
Note 1. For every w in the Weyl group of \mathfrak{k} we have that the multiset

$$
q_{\mathfrak{t}_{1}+\mathfrak{z}}\left(w \Psi_{n}\right) \cup q_{\mathfrak{t}_{1}+\mathfrak{z}}\left(\Psi_{\mathfrak{k}}-\Psi_{\mathfrak{z}}\right)-\Psi_{\mathfrak{l}}
$$

is strict. In fact, we write $w=w_{1} w_{2}$, with w_{j} in the Weyl group of K_{j}, then

$$
q_{\mathfrak{u}}\left(w \Psi_{n}\right) \cup q_{\mathfrak{u}}\left(\Psi_{\mathfrak{k}}-\Psi_{\mathfrak{z}}\right)-\Psi_{\mathfrak{l}}=q_{\mathfrak{t}_{1}}\left(w_{1} \Psi_{n}\right)=w_{1} q_{\mathfrak{t}_{1}}\left(\Psi_{n}\right)
$$

Now we apply Remark 2 and Lemma 3 in d-v.
Note 2. The inclusion $\mathfrak{k}_{1} \subseteq \mathfrak{l}$ does not always imply that the multiset in \mathfrak{u} associated to each w is strict. In fact, let $\mathfrak{g}=\mathfrak{s} o(2,4)$ then in Table 2 in d-v we find systems of positive roots Ψ so that $\mathfrak{k}_{1}=\mathfrak{s o}(4)$ and the corresponding discrete series has no admissible restriction to $\mathfrak{s o}(4)$. Hence, by inspection on Table 2 or by Lemma 1, we have that the multiset $q_{u}\left(\Psi_{n}\right)$ is not strict.

Note 3 The fact that the every multiset is strict does not always implies that the center of \mathfrak{k} is contained in \mathfrak{l}. Indeed, for $\mathfrak{l}=\mathfrak{k}_{1}$ we now show: $\mathbb{R}^{+} \Psi_{n} \cap i \mathfrak{z}=\{0\}$ iff every multiset is strict. This follows because for $w=w_{1} w_{2}, w_{j}$ in the Weyl group of K_{j} we have,

$$
q_{\mathfrak{u}}\left(w \Psi_{n}\right) \cup q_{\mathfrak{u}}\left(\Psi_{\mathfrak{k}}-\Psi_{\mathfrak{z}}\right)-\Psi_{\mathfrak{l}}=q_{\mathfrak{t}_{1}}\left(w_{1} \Psi_{n}\right)=w_{1} q_{\mathfrak{t}_{1}}\left(\Psi_{n}\right)
$$

Now, we apply Lemma 3 in d-v. Concrete examples that this hypothesis holds are certain systems of positive roots in $S U(p, q), S p(n, \mathbb{R})$.

Note 4 We know that $q_{\mathfrak{u}}(w \ldots)$ is strict for every w, then π_{Λ} has an admissible restriction to L.

The converse statement does not hold. For example, for $\operatorname{Spin}(4,1)$ consider the system $e_{1} \pm e_{2}, e_{1}, e_{2}$. Then, $k_{1}=s u\left(e_{1}+e_{2}\right)$. Set $\mathfrak{l}=$ $s u\left(e_{1}-e_{2}\right)$. Then, we know that π_{Λ} restricted to L is admissible (d-v). We have \mathfrak{k}_{1} is not contained in \mathfrak{l} and $p_{\mathfrak{u}}\left(\Psi_{n}\right)= \pm\left(e_{1}-e_{2}\right)$, hence, $p_{\mathfrak{u}}\left(\Psi_{n}\right)$ is not strict.

Note 5: For the direct statement in proposition, when $K_{1}=0$ the result still holds. For the converse statement when we consider the case $K_{1}=0$, that is, a holomorphic chamber, the statement does not make sense, because the thesis is true in spite of what ever the hypothesis is.

Note 6: Holomorphic discrete series for $\operatorname{su}(\mathrm{p}, \mathrm{q}) \mathrm{p}$ smaller that q is admissible restricted to $s u(q)$ this is in $d-v$, however,

$$
p_{\mathfrak{u}}\left(\Psi_{n}\right)=\left\{-\delta_{j}+\frac{1}{q}\left(\sum \delta_{k}\right)\right\}
$$

is not strict!
Note that $\mathrm{su}(\mathrm{q})$ is the $\left.k_{(} \Psi^{\prime}\right)$.

[^0]: Date: Nov 3.
 Partially supported by FONCYT, CONICET, AgenciaCbaCiencia, SECYTUNC (Argentina), ECOS A98E05, PICS 340, University of Paris VIII(France), CONICYT (Chile), ICTP, TWAS (Italy).

