Sixth Workshop on Lie Theory and Geometry

Branching laws for square integrable representations Jorge Vargas Joint work with Michel Duflo FAMAF-CIEM Córdoba, Argentine November 2007 $H \subset G$ connected reductive matrix Lie groups.

 (π, V) irreducible, square integrable Rep. of G.

Assume (π, V) has an admissible restriction to H. That is, $res_H(\pi)$ is a discrete Hilbert sum of irreducible representations of H and each irreducible factor has finite multiplicity. Hence,

$$res_H(\pi) = \sum_{\sigma \in \hat{H}_{dis}} m(\pi, \sigma)\sigma$$

Want σ such that $m(\pi, \sigma) > 0$ and formulae for $m(\pi, \sigma)$.

Plan of the talk

- 1) Description of Harish Chandra for the set of irreducible square integrable reps.
- 2) Criterium for admissible restriction.
- Via moment map
- Via root systems
- 3) For $res_H(\pi)$ admissible, Kostant-Blattner type multiplicity formulae for irred. *H*-factors.

Irreducible square integrable representations

K maximal compact subgroup of G.

T maximal torus for K. W Weyl group of T.

Theorem (Harish Chandra) G admits irreducible square integrable representations if and only if T is a maximal abelian subgroup of G.

Moreover, he provided a parametrization of the set of equivalence classes of irreducible square integrable representations of G, when $G(\mathbb{C})$ is simply connected is by the set

 $\{e^{\Lambda} \text{ character of } T, \Lambda \text{ regular}\}/W$ For $\Lambda \in i\mathfrak{t}^*$ regular $\rightsquigarrow \pi(\Lambda)$ squa. int. rep. of G asoc to Λ . Moment map and admissibility

 $\lambda \in \mathfrak{t}^{\star}$ such that $\Lambda := i\lambda$,

Think of λ in \mathfrak{g}^* .

 $\Omega_{\lambda} := Ad(G)\lambda = \text{coadjoint orbit defined by }\lambda.$

 $p_{\mathfrak{h}}: \Omega_{\lambda} \to \mathfrak{h}^{\star}$ restriction map.

Theorem $p_{\mathfrak{h}}$ is a proper map if and only if $res_H \pi(\Lambda)$ is admissible.

Description of $p_{\mathfrak{h}}(\Omega_{\lambda})$

Definition

An element X of \mathfrak{h}^* is *strongly elliptic* if its centralizer in H is a compact subgroup.

Theorem

If $p_{\mathfrak{h}} : \Omega_{\lambda} \to \mathfrak{h}^{\star}$ a proper map, then, $p_{\mathfrak{h}}(\Omega_{\lambda})$ is contained in the set of strongly elliptic elements of \mathfrak{h}^{\star} . ${\cal L}$ maximal compact subgroup of ${\cal H}$

U maximal torus in L

so that $U := T \cap H$, $L := K \cap H$.

Assume $p_{\mathfrak{h}}: \Omega_{\lambda} \to \mathfrak{h}^{\star}$ is proper.

Hence, every element of $p_{\mathfrak{h}}(\Omega_{\lambda})$ is conjugated to an element of \mathfrak{u} .

Fix $C_{\lambda,\mathfrak{u}^{\star},+}$ closed Weyl chamber for $\Phi(\mathfrak{l},\mathfrak{u})$ s.t. $p_{\mathfrak{h}}(\Lambda)$ is dominant. Thus,

$$p_{\mathfrak{h}}(\Omega_{\lambda}) = Ad(H)(p_{\mathfrak{h}}(\Omega_{\lambda}) \cap C_{\lambda,\mathfrak{u}^{\star},+}).$$

Theorem There exists a unique open Weyl chamber $C_{\lambda,+}$ for $\Phi(\mathfrak{h},\mathfrak{u})$ so that

- i) $C_{\lambda,+}$ is contained in $C_{\lambda,\mathfrak{u}^{\star},+}$.
- ii) $p_{\mathfrak{h}}(\Omega_{\lambda}) \cap C_{\lambda,\mathfrak{u}^{\star},+}$ is contained in the relative closure of $C_{\lambda,+}$ in $C_{\lambda,\mathfrak{u}^{\star},+}$.

Proposition

When $p_{\mathfrak{h}}$ is a proper map,

 $p_{\mathfrak{h}}(\Omega_{\lambda}) \cap C_{\lambda,\mathfrak{u}^{\star},+}$ is a convex polyhedron,

 $p_{\mathfrak{h}}^{-1}(\mu)$ is connected.

aqui van figuras

(G, H, σ) symmetric pair

Assume set of square int. rep. for G is non empty.

T "maximally split" and $\sigma-{\rm invariant}$ Cartan subgroup.

 $\mathfrak{t} = \mathfrak{t}_+ + \mathfrak{t}_-, \ \mathfrak{t}_{\pm} = \pm 1 - \text{eigenspace of } \sigma.$

 $\Psi = \text{roots in } \Phi(\mathfrak{g}, \mathfrak{t})$ has positive inner product with Λ .

 $\mathbb{R}^+ \Psi_n$ cone spanned by noncompact roots in Ψ .

Theorem $p_{\mathfrak{h}} : \Omega_{\lambda} \to \mathfrak{h}^{\star}$ is a proper map if and only if $\mathbb{R}^+ \Psi_n \cap i\mathfrak{t}^{\star}_{-} = \{0\}.$

Theorem Assume (G, H, σ) symmetric pair If \mathfrak{k} is a simple Lie algebra, then no $\pi(\Lambda)$ has admissible restriction to H. General semisimple $H \subseteq G$.

 ${\cal L}$ maximal compact subgroup of ${\cal H}$

 π irreducible square integrable rep. of G

Fact: π restricted to *H* is admissible if and only if π restricted to *L* is admissible.

This has an interpretation in the orbit language

Has two moment maps, one with values in \mathfrak{h}^{\star} and the other in \mathfrak{l}^{\star}

Proposition

 $p_{\mathfrak{h}}:\Omega_{\lambda}\to\mathfrak{h}^{\star}$ is proper iff $p_{\mathfrak{l}}:\Omega_{\lambda}\to\mathfrak{l}^{\star}$ is proper

Let V be an inner product space, a multisubset S of V is *strict* when there exists a non zero vector having positive inner product with each element of S.

Back to arbitrary H, G!Fix system of positive roots Ψ in $\Phi(\mathfrak{g}, \mathfrak{t})$. $\Phi_{\mathfrak{z}} = \text{roots in } \Phi(\mathfrak{k}, \mathfrak{t})$ that vanishes on \mathfrak{u} . $p_{\mathfrak{u}} : \mathfrak{t}^{\star} \longrightarrow \mathfrak{u}^{\star}$ restriction map.

Definition Condition (C) holds for Ψ and L if there exists a system of positive roots Δ_1 in $\Phi(\mathfrak{k},\mathfrak{t})$ so that $p_{\mathfrak{u}}(\Delta_1 - \Phi_3)$ is strict, and for each w in the compact Weyl group of G the multiset

$$p_{\mathfrak{u}}(w\Psi_n) \cup q_{\mathfrak{u}}(\Delta_1 - \Phi_{\mathfrak{z}}) - \Phi(\mathfrak{l}, \mathfrak{u})$$

is strict.

Fix A reg. dominant w.r.t Ψ

Theorem If the center of \mathfrak{k} is contained in \mathfrak{l} and condition (C) holds for Ψ and L, then $\pi(\Lambda)$ restricted to H (or L) is admissible. Technical result

 Ψ system of positive roots in $\Phi(\mathfrak{g},\mathfrak{t})$.

 Δ_1, Δ_2 systems of positive roots for $\Phi(\mathfrak{k}, \mathfrak{t})$.

Assume, each $p_{\mathfrak{u}}(\Delta_j - \Phi_{\mathfrak{z}})$ is strict multiset and $\mathfrak{z}_{\mathfrak{k}} \subseteq \mathfrak{l}$

Proposition If condition (*C*) holds for Ψ, L by mean of Δ_1 , then it holds for Ψ, L by mean of Δ_2 .

Example G = noncpact real form of G_2 , $L = SU_2(shortroot), \Psi s.t.$ short simple is ncp, long simple cpct, then condition (C) holds and $\pi(\Lambda)$ restricted to L is admissible. $L = SU_2(longroot), \Psi s.t.$ short simple is cp, long simple noncpct, then condition (C) holds and $\pi(\Lambda)$ restricted to L is admissible

When Ψ is small, then condition (C) holds for the group K_1 defined by Gross-Wallach, and we do not need the hypothesis center of \mathfrak{k} ... Assume L is a a proper subgroup of SO(2n) which acts transitively on the unit sphere of \mathbb{R}^{2n}

Any admissible irreducible representation for SO(2n, 1) has admissible restriction to L. This is due to the fact that $L \setminus SO(2n)/M$ is a point, now apply Mackey restriction theorem. In particular, square integrable representations. However, condition (C) for Ψ , L is not valid.

Multiplicity formulae

To $\Lambda \rightsquigarrow \Psi$ and ideal of $\mathfrak k$

 $\mathfrak{k}_1(\Psi) := \text{ideal spanned by } \sum_{\alpha,\beta\in\Psi_n} \mathbb{C}X_{\alpha+\beta}$

Proposition $K_1(\Psi) \subseteq L$ iff condition (C) holds for Ψ and L.

Hence, whenever $Z_K K_1(\Psi) \subseteq L$, $res_H(\pi_{\Lambda})$ is admissible.

Write $\mathfrak{k} = \mathfrak{k}_1(\Psi) + \mathfrak{k}_2(\Psi)$ (sum of ideals) $W_j =$ Weyl group of $\mathfrak{k}_j(\Psi)$

Assume $K_1(\Psi)T \subseteq L$.

Q shifted partition function associated to $\Psi - \Phi(\mathfrak{h}, \mathfrak{t}) = \{\gamma_1, \cdots, \gamma_q\}$

 $Q(\nu) := card\{(n_j) : \nu = \sum_{j=1}^{q} (\frac{1}{2} + n_j)\gamma_j\}$

$$\Delta_L := \Phi(\mathfrak{h}, \mathfrak{t}) \cap \Psi$$

 μ analytically integral form dominant for Δ_L , regular $\rightsquigarrow \sigma(\mu)$ squa. int. rep. of H asoc to μ .

Theorem

Multiplicity of $\sigma(\mu)$ in $\pi(\Lambda)$ restricted to H is

$$m(\pi(\Lambda), \sigma(\mu)) = \sum_{w \in W_1, s \in W_2} \epsilon(ws) Q(w\mu - s\Lambda).$$

Partition functions via discrete Heaviside distributions

For $\gamma \in i\mathfrak{u}^* \rightsquigarrow \delta_\gamma$ denote Dirac delta function attached to γ .

Define

$$y_{\gamma} = \sum_{n \ge 0} \delta_{\frac{\gamma}{2} + n\gamma} = \delta_{\frac{\gamma}{2}} + \delta_{\frac{\gamma}{2} + \gamma} + \delta_{\frac{\gamma}{2} + 2\gamma} + \cdots$$

Fix $S = \{\gamma_1, \cdots, \gamma_q\}$ strict multiset,

Fact: there exists the convolution

 $y_{\gamma_1} \star \cdots \star y_{\gamma_q}$

Definition Shifted partition function associated to S

$$Q_S(\nu) := card\{(n_j) : \nu = \sum_{j=1}^q (\frac{1}{2} + n_j)\gamma_j\}$$

Fact:

$$\sum_{\nu \in i\mathfrak{u}^{\star}} Q_S(\nu) \delta_{\nu} = y_{\gamma_1} \star \cdots \star y_{\gamma_q}$$

Assume condition (C) for Ψ and L, and $\mathfrak{z}_{\mathfrak{k}} \subseteq \mathfrak{l}$, hence, for Λ dom. w.r.to. Ψ , $\pi(\Lambda)$ has admissible restriction to L

For irred rep. $\tau(\nu)$ of $L \rightsquigarrow m(\Lambda, \nu)$:=multiplicity in $\pi(\Lambda)$ restricted to L. Kobayashi has shown $m(\Lambda, \nu)$ is of polynomial growth in ν hence

$$\sum_{
u \, inf. \, cha} m(\Lambda,
u) \delta_{
u}$$

converges as a distribution

$$\sum_{\nu \in P_L} m(\Lambda, \nu) \delta_{\nu}$$

$$= \sum_{w \in W} \epsilon(w) \varpi(w\lambda)$$

$$\delta_{p_{\mathfrak{u}}(w\Lambda)} \star \star_{\beta \in p_{\mathfrak{u}}(w\Psi_n) \cup (-1)p_{\mathfrak{u}}(\Delta - \Phi_{\mathfrak{z}}) - \Phi_{\mathfrak{l}} y_{\beta}$$

 Δ compact roots in Ψ , we may arrange $p_{\mathfrak{u}}(\Delta - \Phi_{\mathfrak{z}})$ is strict

 ν is the infinitesimal character of $\tau(\nu),$ dom. w.r.t. Δ

 $m(\Lambda, \nu)$ has been extended to $\nu \in P_L$ to be antisymmetric w.r.t. W_L ,

$$\varpi(\gamma) = \frac{\prod_{\alpha \in \Psi_{\mathfrak{z}}} \gamma(h_{\alpha})}{\prod_{\alpha \in \Psi_{\mathfrak{z}}} \rho_{\Psi_{\mathfrak{z}}}(h_{\alpha})}$$

The proof of the formula is as follows

- Case L contains T

- Case L is normalized by T (here shows up the ϖ factor)

- Hence the formula holds for $K_1(\Psi)Z_KU$ ($U = L \cap T$ max. torus of L)

- If L_1 subgroup L of the same rank, and the formula holds for L_1 then it holds for L.

- When L_1 subgroup L of the same rank, and the multiplicity formula holds for L_1 then it holds for L.

$$d_{\alpha}(f) = (\delta_{-\alpha/2} - \delta_{\alpha/2}) \star f, \ f \in \mathcal{D}'(i\mathfrak{u}^{\star}).$$

$$\bigstar_{\alpha \in \Delta_L - \Delta_{L_1}} d_{\alpha} \left(\sum_{\nu_1 \in P_{L_1}} m_1(\Lambda, \nu_1) \delta_{\nu_1} \right) = \sum_{\nu \in P_L} m(\Lambda, \nu) \delta_{\nu}$$

Formula to deduce H-multiplicity $m(\Lambda, \mu)$ from L-multiplicity $m(\Lambda, \nu)$.

$$d_{\alpha}(f) = (\delta_{-\alpha/2} - \delta_{\alpha/2}) \star f, \ f \in \mathcal{D}'(i\mathfrak{u}^{\star}).$$
$$d^{n,\mathfrak{h}} = \prod_{\alpha \in \Psi_n(p\mathfrak{u}(\Lambda))} d_{\alpha}$$
$$d^{n,\mathfrak{h}} \left[\sum_{\nu \in P_L} m(\Lambda, \nu) \,\delta_{\nu}\right] = \sum_{\mu \in P_L} m(\Lambda, \mu) \delta_{\mu}$$

$$\begin{split} \mathfrak{g} &= \mathfrak{so}(4,2q), q \geq 3, \\ \Delta &= \{\epsilon_1 \pm \epsilon_2, \delta_r \pm \delta_s, 1 \leq r < s \leq q\}, \Phi_n = \{\pm \epsilon_i \pm \delta_j\}. \\ \Psi_{\pm a} &= \{\delta_1 > \dots > \delta_a > \epsilon_1 > \pm \epsilon_2 > \delta_{a+1} > \dots > \delta_q\} \\ K_1(\Psi_{\pm 0}) &= \mathfrak{su}_2(\epsilon_1 \pm \epsilon_2). \text{ Both systems are small.} \\ 1 \leq a < q \\ \mathfrak{k}_1(\Psi_{\pm a}) &= \mathfrak{su}_2(\epsilon_1 \pm \epsilon_2) \oplus \mathfrak{so}(2q) \\ m(\Psi_1) &= m(S_{\epsilon_2 + \delta_q} S_{\epsilon_2 - \delta_q} \Psi_1) = 3 \\ m(\Psi_a) &= m(S_{\epsilon_2 + \delta_q} S_{\epsilon_2 - \delta_q} \Psi_a) = 4 \text{ for } 1 < a < q \\ q \geq 3, \mathfrak{k}_1(\Psi_{\pm q}) &= \mathfrak{so}(2q). \quad \Psi \pm q \text{ are small.} \end{split}$$

Any other system of positive roots $\mathfrak{k}_1(\Psi) = \mathfrak{k}$. Every ideal is equal to a $\mathfrak{k}_1(\Psi)$ but $\{0\}, \mathfrak{so}(4)$. The subgroups $K_1(\Psi)$

The zero ideal is equal to a $\mathfrak{k}_1(\Psi)$ if and only if G/K is Hermitian. Any non zero, semisimple ideal in \mathfrak{k} is equal to an ideal $\mathfrak{k}_1(\Psi)$ except for: four ideals in $\mathfrak{so}(4) \times \mathfrak{so}(4) \subset \mathfrak{so}(4,4)$; $\mathfrak{so}(2q+1)$ in $\mathfrak{so}(2p, 2q + 1), p \geq 2$; $\mathfrak{so}(4)$ in $\mathfrak{so}(4, n), (n \neq 2)$. Tensor products Δ system of positive roots in $\Phi(\mathfrak{k},\mathfrak{t})$.

 $\Psi, \tilde{\Psi}$ system of positive roots in $\Phi(\mathfrak{g}, \mathfrak{t})$ both of them containing Δ .

 $\lambda, \Psi-$ dominant, regular

 $\mu, \tilde{\Psi}-$ dominant regular...

 $\pi(\gamma)$ squar. int. of Harish-Chandra param γ .

If $\pi(\lambda) \otimes \pi(\mu)$ is admissible under the diagonal action of G, then $\Psi = \tilde{\Psi}$ and Ψ is a holomorphic system. The converse statement is also true.

Existence of discrete factors

Arbitrary G, H.

 π square int. rep. of G.

W lowest K-type of π . Write $W_{|_L} = Z_1 \oplus \cdots$

Assume there exists square int. irred. rep μ of H with lowest L-type Z_1

Then, μ is a subrepresentation of $res_H(\pi)$.