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Abstract. Let G be a connected reductive real Lie group and H a closed connected
reductive subgroup. Let Ω be a strongly elliptic coadjoint orbit of G, corresponding to a
square integrable (modulo the center) representation π of G. When the restriction map
ph from Ω into the dual of the Lie algebra h of H is proper, the restriction of π to H is
a direct sum of discrete series representations of H occurring with finite multiplicities
(we say then that the restriction of π to H is admissible). We give a natural simple
condition on Ω which implies the properness of ph. Moreover, this condition allows us
to give a formula in Blattner’s style for the multiplicities of the restriction of π to H.
Our condition is not necessary, but we classify when it is satisfied, and see that it covers
many of the known cases where the restriction of π to H is admissible.

Introduction

In this article, G is a real connected reductive Lie group, and H a closed connected
reductive subgroup of G. We say that an irreducible unitary representation π of G
is a discrete series representation if it is square integrable modulo the center of G.
Consider a discrete series representation π of G whose restrictionπ|H to H is admissible.
It means that the restriction π|H of π to H is isomorphic to an Hilbertian direct sum of
irreducible unitary representations σ of H occurring with finite multiplicities m(σ). The
representations σ which occur (i.e. those for which m(σ) is > 0) are also discrete series
for H. So both π and the σ’s are parameterized by their Harish-Chandra parameters [?].
In this paper we give a simple condition (condition (C), definitions 2 and ?? below)
on π and H which insures that π|H is admissible, and that the multiplicities m(σ) can be
computed in a simple explicit manner by sums of Kostant’s partition functions involving
the roots of gC (the complexified Lie algebra of G) which are not roots of hC.

Two important particular cases are well known.
The first one is the case of a compact (modulo center) connected Lie group K and of

a connected closed subgroup L of K. Then, an irreducible unitary representation π of
K is finite dimensional, and the restriction π|L can be described by Kostant-Heckman’s
[?] formula in terms of partition functions.

The second one is when H = K, where K is a maximal compact subgroup (modulo
the center of G) of G. It is a theorem of Harish-Chandra that π|K is admissible, and
a theorem of Hecht-Schmid [?] that the m(σ) can be computed in term of partition
functions.

However, in general, even if several interesting conditions are known to imply, or to be
equivalent to the admissibility of π|H (see in particular [?], [?], and below), they are not
always easy to check, and they do not imply that the multiplicities m(σ) can be easily
computed in term of partition functions.
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Condition (C) allows us to prove the admissibility of π|H , and to give a simple formula
for the multiplicities m(σ) in terms of partition functions. It is not necessary for the
admissibility of π|H (it is a kind of generic condition, so one might argue that its main
interest is to pinpoint the more interesting cases when π|H is admissible and condition
(C) is not satisfied). However, simple examples show that it is unlikely to expect simple
formulas in term of partition functions when condition (C) is not satisfied.

Condition (C) is expressed in term of the roots of gC , the roots of hC, and the Harish-
Chandra parameter of π. We explore condition (C). An interesting fact is the role of
a particular invariant connected subgroup of K attached to π (see section ??). We
classify when condition (C) is satisfied, in terms of the classification of semi-simple Lie
algebras. We compare our results in term with previous works, notably of Gross-Wallach
[?] on quaternionic homogeneous spaces and (IS IT NECESSARY ? Kobayashi [?] on
symmetric spaces —PLEASE CHECK these references....)

All the previous statements have semi-classical equivalents in terms of the (so called
coadjoint) representation of G in the dual g∗ of the Lie algebra g of G, more precisely
in terms of the Liouville measure of the coadjoint elliptic orbits of G in g∗. Essentially,
we treat these results in a parallel separate manner. However, they are not independent,
and interaction between them is useful.

Condition (C) allows to reduce to the previously known cases: restriction from K to
L, restriction from G to K. So it is not surprising that the references [?, ?, ?] play an
important role in this article.

***

We describe with more details condition (C) and the formulas we obtain for multi-
plicities. To make statements simpler, in this introduction we assume that g and h have
the same rank (see below (??) for the general case). We choose a fundamental Cartan
algebra t ⊂ h. It is also a fundamental Cartan subalgebra of g. We denote by it∗ the
real vector space of linear maps from t to iR. We denote by k ⊂ g the maximal compact
subalgebra containing t, and by l the corresponding subalgebra l = k∩h of h. We denote
by Φg ⊂ it∗ (resp. Φk, etc...) the corresponding system of roots, and Wg (resp. Wk,
etc...) the corresponding Weyl groups.

Let λ ∈ it∗ be a linear form which is a Harish-Chandra parameter for a discrete series
representation πG(λ) of G —we say simply that λ is a Harish-Chandra parameter for
G—. Recall (see [?]) that a Harish-Chandra parameter λ is g-regular, that it satisfies
a certain integrability condition, and that, if λ′ is another Harish-Chandra parameter,
then πG(λ) = πG(λ′) if and only if λ′ ∈ Wkλ. In particular, λ determines a system of
positive roots Ψg(λ) ⊂ Φg. We denote by Ψn

g (λ) ⊂ Ψg(λ) the subset of positive non
compact roots.

If Ψk is a positive system of roots for Φk, we denote by Ψk/l the subset of positive roots
which are not roots of l.

Definition 1. We say that a finite sequence E = {α1, α2, . . . , αn} of elements of it∗ is
strict if it is contained in an open half-space of it∗.

Definition 2. We say that g, h, λ satisfy condition (C) if there exists a positive system
of roots Ψk for Φk such that, for all w ∈ Wk, the set w(Ψn

g (λ)) ∪Ψk/l is strict.
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We remark that this definition depends on h only through l = h ∩ k. This is not
so surprising, since for any irreducible unitary representation π of G, square integrable
modulo the center of G, the restriction π|H to H is admissible if and only if the restriction
π|L to L is admissible (see (??) below). We prove that condition (C) implies that πG(λ)|L
(or equivalently πG(λ)|H) is admissible.

To describe our multiplicity formulas, we need some more notations. We use Schwartz’
distributions on it∗, denoting by ∗ the convolution product when it is defined. Let
α ∈ it∗. We denote by δα the Dirac distribution which is the evaluation at α. If α 6= 0,
we denote by yα the distribution

(1) yα = δ 1
2
α ∗ (

∑
n∈N

(δα)
∗n)) = δ 1

2
α + δ 3

2
α + δ 5

2
α + · · · .

Very informally, we may write

(2) yα = δ 1
2
α ∗ (1− δα)

−1 =
−1

δ 1
2
α − δ− 1

2
α

,

because yα is a particular inverse of −(δ 1
2
α − δ− 1

2
α). If E = {α1, α2, . . . , αn} is a strict

sequence of elements of it∗, the convolution product

(3) yE = yα1 ∗ yα2 ∗ · · · ∗ yαn

is well defined. We use the notation

(4) ρE =
1

2
(α1 + α2 + · · ·+ αn).

Then,

(5) yE =
∑
ν

KE(ν − ρE) δν ,

where KE(ν) is (by definition) the Kostant partition function defined by E, that is the
number of sequences (p1, . . . , pn) ∈ Nn such that ν = p1α1 + p2α2 + · · ·+ pnαn.

Consider a Harish-Chandra parameter λ for a representation πG(λ), such that condi-
tion (C) is satisfied.

For each w ∈ Wk, let Ew be the subset of w(Ψn
g (λ)) ∪ Ψk/l consisting of the elements

which are not roots of h. Condition (C) implies that the distributions yEw are well
defined. Moreover, we define (see formula (??) below) a constant θw ∈ {1,−1}. For
instance, when H = L, θw is equal to the usual signature ε(w) of w. In general, it
involves also the number of positive non compact roots of h which are in w(Ψn

g (λ)).
VERIFIER

We prove the following formula :

(6)
∑
w∈Wk

θw δwλ ∗ yEw =
∑
ν

k(ν) δν ,

then k(ν) is 0 if ν is not an Harish-Chandra parameter for H, and

(7) m(πH(ν)) = |k(ν)|
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if ν is an Harish-Chandra parameter for H, and m(πH(ν)) the multiplicity of πH(ν) in
πG(λ). More explicitly, it gives the formula

(8) m(πH(ν)) =

∣∣∣∣∣∑
w∈Wk

θwKEw(ν − wλ− ρEw)

∣∣∣∣∣ .
Remark 1. If ν ′ ∈ Wlν, the formula (8) for m(πH(ν)) and m(πH(ν ′)) are essentially
the same (see ?? below). VERIFIER !

However, different choices of Ψk (if they are available subject to condition (C)) may
give genuinely different formulas for the multiplicities m(πH(ν)), that is, involving the
computation of partition functions which are not naturally equivalent to each other. Go-
ing on, appropriate linear combinations of such formulas will give also new (more com-
plicated) formulas in terms of partition functions.

Remark 2. When g and h are not supposed to have the same rank, we still define
condition (C), and obtain a formula similar to (8). The main difference is that the
constant θw may take value in Z rather than in {1,−1}.

***

Condition (C) is not necessary for the admissibility of πG(λ)|L, but is necessary (at
least when H = L) to write the simple formula (8). Assume that πG(λ)|L is admissible.
Considering the structure of formula (8) and remark 1, we will say that πG(λ)|L is
computable in terms of partition functions if there exists, for each w ∈ Wk, a family
(Ψw,i)i=1,...,nw of positive root systems for Φg and for each i = 1, . . . , nw, a constant
θw,i ∈ C, such that, denoting by Ew,i the subset of elements of Ψw,i which are not roots
of h, we have the following formula for the Harish-Chandra parameters ν for H :

(9) m(πH(ν)) =

∣∣∣∣∣∑
w∈Wk

∑
i=1,...,nw

θw,iKEw,i
(ν − wλ− ρEw,i

)

∣∣∣∣∣ .
We will give (see ?? below) an example where condition (C) is not satisfied, but where

a formula of type (9) is still valid. I hope to find an example where this is impossible ...

***

Why do we care about formulas for multiplicities in terms of partition functions? It
is well known that this type of formulas, because they involve signs, are not easily used
to answer questions like “does a specific representation πH(ν) occurs in πG(λ)?”.

Our point of view is that this question is a natural manner of analyzing the complexity
of πG(λ)|H : we classify the simplest cases, and leave the more interesting more singular
cases for further studies.

It could also be useful for computational purposes : very efficient computer programs
exist for partition functions (see [?, ?]), and in some cases, the combinatorics of Weyl
groups involved in formula (8) have also been handled efficiently (see [?]).

***

In the rest of this article, we investigate condition (C). Recall that in this introduction

we assume that t ⊂ l. Let k̃ be the largest ideal of k contained in l and K̃ be the



PROPER MAP AND MULTIPLICITIES 5

corresponding subgroup of K. Then we prove that πG(λ)|K̃ is still admissible (in fact,
condition (C) —which we did not yet state in the case of unequal rank—is still satisfied

up to k̃). It allow us to classify when condition (C) is satisfied in terms of the classification
of real semi-simple Lie algebras and of Harish-Chandra parameters.

***

Finally, we compare this classification with previous works, notably of Gross-Wallach
on quaternionic representations, and COMPLETE....

***

TENTATIVE PLAN
Mostly notations
Partition functions
Blattner’s formula
Kostant-Heckman formulas
Condition C
Our formula
Necessary and sufficient condition for admissibility : asymptotic cones, etc... Some

examples showing what can happen when there is admissibility, but condition (C) fails.
Implications of condition (C) : the ideal k1.
Classification.
Comparison with results of Gross-Wallach, and others.

1. Mostly notations

1.1. Roots. For any Lie group A, we denote by the corresponding German letter a its
Lie algebra, and by Z(A) the center of A.

We choose a subgroup K of G which contains Z(G) and such that K/Z(G) is a
maximal compact subgroup of G/Z(G). We choose a Cartan subalgebra t of k, and we
denote by T the corresponding Cartan subgroup of K (it is the connected subgroup of
K with Lie algebra t).

We denote by V ∗ the dual of a (real or complex) vector space V . If V is real, let VC
the its complexification; we identify (VC)∗ and (V ∗)C in the usual way. In particular,
iV ∗ (where i ∈ C is a fixed square root of −1) is the real vector space of linear forms on
VC which are purely imaginary on V . If λ ∈ iV ∗, then eλ is a unitary character of the
group V , and we identify in this way iV ∗ and the group of unitary characters of V .

We denote by X(T ) the group of unitary characters of T . The differential of such a
character belongs to it∗. We denote by P the set of λ ∈ it∗ which exponentiate to a
character eλ of T . It is a closed subgroup of it∗. If G is semi-simple with finite center,
it is a lattice (the so called lattice of weights) in it∗.

Let u be a subspace of t. If V and W are uC-invariant subspaces of gC such that
W ⊂ V , we denote by Φ(u, V/W ) the multiset of non zero roots of uC in V/W : formally
it is the function from iu∗ to N which associate 0 to 0, and the multiplicity of α in V/W
to a non zero element α of iu∗. Informally, we consider it as the set of non zero roots of
u in V/W , where each root is repeated as many time as its multiplicity.

We use the notation Φg for Φ(t, gC), Φk for Φ(t, kC), Φn for Φ(t, gC/kC). For example,
Φk is the root system of k.
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We denote by p the unique K-stable complement of k in g. We use the decomposition
g = k⊕p to identify k∗ and the orthogonal of p in g∗. In a similar manner, t has a unique
T -stable complement in k, and we identify t∗ with the appropriate subspace of k∗. Thus
we identify t∗ with a specific subspace of g∗.

We fix a bilinear symmetric G-invariant form (., .) on g which is non degenerate,
positive definite on p, and negative definite on k. We use the same notation for the form
deduced on g∗, and on the various subspaces and complexifications. Then it is positive
definite on it, which is then an Euclidian real vector space.

1.2. Strongly elliptic orbits. Let f ∈ g∗ (in fact we will use more often f ∈ ig∗). The
centralizer G(f) of f in G contains Z(G). We say that f is strongly elliptic (or strongly
g-elliptic if there is ambiguity) if the group G(f)/Z(G) is compact. Strongly elliptic
elements are studied by Weinstein in [?] under the name of strongly stable elements. He
proves that there exists strongly elliptic elements if and only if t is a Cartan subalgebra
of g.

Note that this condition is the same than Harish-Chandra’s condition for the existence
of square integrable (modulo Z(G)) irreducible representations ofG (the so called discrete
series representations). discrete series representations and strongly elliptic coadjoint
orbits are the main object of this paper. So, for the rest of the article, we assume that
t is a Cartan subalgebra of g.

Then Φg is the root system of g. For each α ∈ Φg, we denote by gα ⊂ gC the
corresponding root space, and by hα ∈ it the corresponding coroot (so that hα ∈ [gα, g−α]
and α(hα) = 2). We denote by WG the group NG(T )/T where NG(T ) is the normalizer
of T in G. Considered as a subgroup of linear transformations of it∗, it is a subgroup
of Wg, the complex Weyl group. Similarly the groups WK and Wk are defined, and it is
well known that WG = WK = Wk.

An element λ ∈ t∗C is said to be g-regular if λ(hα) 6= 0 for all α ∈ Φg. In a similar
manner, using Φk and Φn, we define k-regular elements, and n-regular elements of t∗C.

For the rest of the article, we fix a positive system of roots Ψ̃ ⊂ Φg and we

put Ψ̃k = Ψ̃g ∩ Φk.

We denote by Ck ⊂ it∗ the corresponding open positive chamber, i. e. the set of
λ ∈ it∗ such that λ(hα) > 0 for all α ∈ Ψ̃k. The closure cl(Ck) of Ck in it∗ is a system of
representatives for the elliptic orbits of G in ig∗. It is also a system of representatives
for the orbits of K in ik∗, and for the orbits of WK in it∗.

We denote by Cg
k the set of g-regular elements of Ck. So, we have Ck

k = Ck. For each
system of positive roots Ψ for Φg, we denote by C(Ψ) ⊂ it∗ the corresponding open
positive chamber. Then Cg

k is the disjoint union of the C(Ψ) for the set of Ψ such that

Ψ̃k ⊂ Ψ, and it is a set of representatives for the g-regular elliptic orbits of G in ig∗.

We denote by cln(Ck) the set of n regular elements of cl(Ck). It is the set of λ ∈ it∗

such that λ(hα) ≥ 0 for all α ∈ Ψk, and λ(hα) 6= 0 if α ∈ Φn. It is the disjoint union
of the clnC(Ψ) for the set of Ψ such that Ψk ⊂ Ψ, where clnC(Ψ) is the set of λ ∈ it∗

such that λ(hα) ≥ 0 for all α ∈ Ψk, and λ(hα) > 0 if α ∈ Ψn. The set cln(Ck) is a set of
representatives for the strongly elliptic orbits of G in ig∗.

Let λ ∈ cln(Ck) be a strongly elliptic element. We denote by Ψn(λ) the set of α ∈ Φn

such that λ(hα) > 0. Then we have Ψ(λ) = Ψn(λ) ∪ Ψ̃k.
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1.3. Discretely admissible representations of G. We denote by Ĝ the unitary dual
of G, and by Ĝd the subset of classes of square integrable (modulo Z(G)) irreducible uni-
tary representations. Since Bargmann who discovered these representations for SL(2,R),

the elements of Ĝd are called discrete series representations ofG. This name is still a good
one because the subset of Ĝd which have a given restriction to Z(G) is parameterized by
a discrete subset of it∗ (see below).

A unitary representation Π of G is said to be admissible if it is an Hilbertian1 direct
sum of irreducible representations of G which occur with finite multiplicities. It is said
discretely admissible if moreover all irreducible representations which occur are discrete
series. Thus a discretely admissible unitary representation Π of G can be written

(10) Π =
⊕
π∈Ĝd

m(Π, π)π,

where m(Π, π) ∈ N is the multiplicity of π in Π. For example, finite dimensional rep-
resentations of compact groups are obviously discretely admissible, and (in this paper)
we consider discretely admissible representations of G as the simplest generalization of
finite dimensional representations of compact groups. Other representations (e. g. the
regular representation) are interesting too, but the goal of this paper is modest, and we
shall be interested mostly by this “simple” case.

To express collective properties of the numbersm(Π, π) for all π’s , it will be convenient
to associate a measure mG(Π) on it∗, which somehow plays the role of a generating
function. Its definition requires some notations.

First we recall Harish-Chandra’s parametrization of Ĝd.

Let E = {α1, . . . , αn} be a finite multiset of elements of it∗, where the αi are repeated
according to their multiplicity. We use the notation #E = n, and

(11) ρE =
1

2

n∑
i=1

αi.

Let Ψ ⊂ Φg be a positive system of roots. Then the subset ρΨ + P ⊂ it∗ does not
depend on Ψ. We denote it by Pg. Remark that Pg is WK-invariant. Harish-Chandra
defined a bijection

(12) λ→ πG(λ) from Pg ∩ Cg
k to Ĝd.

We shall call an element of Pg ∩ Cg
k a Harish-Chandra parameter.

For λ ∈ Pg ∩ Cg
k and f ∈ Gλ, we also put πG(f) = πG(λ). Harish-Chandra’s

parametrization is then a bijection between a certain set of elliptic regular coadjoint
orbits, those orbits Ω which satisfy the “translated by ρΨ” integrality condition, and Ĝd.
We shall recall below (see remark 4) a consequence of Hecht-Schmid’s theorem on the
restriction πG(λ)|K of πG(λ) to K which (among other things) is sufficient to specify
uniquely πG(λ). For the time being, we recall a few properties of this bijection.

Notice that everything we said applies to the group K. We already choose Ck, Ψk, so
we have at our disposal ρΨk

, Pk = ρΨk
+ P (in general Pk and Pg are not equal). For

µ ∈ Pk∩Ck, Harish-Chandra’s parametrization gives an irreducible unitary representation
πK(µ) of K. As K/Z(G) is compact, this is a finite irreducible representation of K,

1In this article we consider only separable Hilbert spaces, so the there is at most a countable sum
involved.
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which we identify to an irreducible representation of kC. Then πK(µ) is the irreducible
representation of kC with highest weight µ − ρΨk

with respect to the positive system
Ψk ⊂ Φk.

Recall the Harish-Chandra isomorphism γ between the algebra S(tC)Wg ofWg invariant
elements of S(tC) and the center Z(gC) of the enveloping algebra of gC . The action of
an element z ∈ Z(gC) in the set of smooth vectors of πG(λ) is a multiple of the identity
which we denote by πG(λ)(z)Id. It defines a character (the infinitesimal character of
πG(λ)) of Z(gC). Harish-Chandra’s formula for the infinitesimal character is :

(13) πG(λ)(γ(p)) = p(λ)Id for all p ∈ S(tC)Wg .

For the group K, this property of the infinitesimal character implies that (as we
stated above) πK(µ) is the irreducible representation of kC with highest weight µ −
ρΨk

. For the group G, this property is usually not sufficient to determine πK(λ). Still,
we shall also call Harish-Chandra’s parametrization “parametrization by infinitesimal
character” (versus, in the case of compact groups, “parametrization by highest weight”).
When working exclusively with compact groups, parametrization by highest weights and
parametrization by infinitesimal characters do have respective merits. The goal is to
relate properties of an irreducible representation of K to properties (e.g. in algebraic
geometry, in symplectic geometry, in Kähler geometry, etc...) of a suitable coadjoint
orbit, usually either the orbit of the highest weight λ−ρΨk

, or the orbit of the infinitesimal
character λ. These orbits might be very different (e. g. of different dimensions, as when
λ = ρΨk

), and so one gets many genuinely different (and eventually interesting) theorems.
The kind of properties of the irreducible representation of K which can be considered
has no limit : dimension, character, restriction to subgroups, concrete realizations, basis,
explicit formulas for the coefficients in a specific basis, etc ... A simple concrete example
is given below (22) for the second parametrization.

However, for non compact groups, there is no clear alternative to Harish-Chandra’s
parametrization, so we will stick to it.

Let λ ∈ Pg ∩ Cg
k be a Harish-Chandra parameter. Recall the set Ψn(λ), and let ρn(λ)

the corresponding half sum. It is obvious that we have λ + ρn(λ) ∈ Pk. It is a classical
fact [?] that λ + ρn(λ) ∈ Pk ∩ Ck and that πK(λ + ρn) occurs with multiplicity one in
πG(λ). It is the “minimal K-type of πG(λ)” in the sense of Vogan.

Let Ψ ⊂ Φg be a positive system of roots. We denote by εΨg the corresponding sign
function : it is the function on it∗ which is the sign of

∏
α∈Ψ, where the sign of a real

number x is −1, 0, or 1 depending on the position of x with respect to 0.
If Ψ ⊂ Φg and Ψ′ ⊂ Φg are two positive sets of roots, then there exists a constant

ε(Ψ,Ψ′) (equals to 1 or −1) such that

(14) εΨg = ε(Ψ,Ψ′)εΨ
′

g .

We write

(15) εg = εΨ̃g .

Similarly, we define εk as the sign of
∏

α∈Ψ̃k
. Thus εk(λ) = 0 if λ is not k-regular, and

if λ ∈ it∗ is k-regular, we have

(16) εk(λ) = ε(w),
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where w ∈ WK is the unique element such that wλ ∈ Ck, and ε(w) is the usual signature
of w.

An element of a vector space in which WK acts is said to be WK-skew-invariant if it
is an eigenvalue for the character w → ε(w). For instance, the functions εk and εg are
skew invariant.

Let us go back to a discretely admissible representation Π of G. We consider the
measure mG(Π) on it∗ such that, for all λ ∈ it∗, we have

mG(Π)({λ}) = 0 if λ is not g-regular, or not in Pg(17)

mG(Π)({λ}) = εg(λ)m(Π, πG(λ)) otherwise.(18)

It is a WK-skew-invariant measure. It is determined by its restriction to Cg
k. Of course,

the measuremG(Π) determines the multiplicitiesm(Π, π) for π ∈ Ĝd, and the equivalence
class of Π. For all the representations Π which will occur in this article, the support of
Π is discrete in it∗, so that mG(Π) is a Radon measure.

Example 1. Let λ ∈ Cg
k ∩ Pg. Then

(19) mG(πG(λ)) = εg(λ)
∑
w∈WK

ε(w)δwλ.

Similarly, for µ ∈ Ck ∩ Pk, we have (remind that εk(µ) = 1 for µ ∈ Ck) :

(20) mK(πK(µ)) =
∑
w∈WK

ε(w)δwµ.

1.4. Invariant measures on ig∗. In the method of orbits of Kirillov, irreducible unitary
representations of G correspond2 to coadjoint orbits of G in3 ig∗. Recall that each
coadjoint orbit Ω is a symplectic manifold, and thus is provided with a Liouville measure
βΩ (see details below), which can be considered as an invariant positive measure on ig∗.
In this setting, it is natural to consider that the analog of an unitary representation of G
is a positive invariant measures on ig∗. Considering Harish-Chandra’s bijection, it is also
natural to consider that the analog of discrete series representations of G are g-regular
elliptic orbits of G in g∗ (that is, we forget about integrability conditions, but try to keep
everything else). So we will mimic the previous subsection by considering the problem
of describing G-invariant measures on ig∗ for which the set of elements which are not
regular elliptic is of measure 0.

We provide a coadjoint orbit Ω ⊂ ig∗ with the (real) symplectic structure ωΩ such
that ωΩ,f (Xf, Y f) = if([X, Y ]) for any f ∈ Ω, X ∈ g, Y ∈ g, where Xf (resp. Y f) is
the tangent vector to Ω at f corresponding to the infinitesimal action of X (resp. Y ).
The dimension of Ω is even, let it be 2d. Then

(21) β̃Ω =
1

(2π)d
ωdΩ

is an invariant form of maximal degree on Ω. We denote by βΩ the corresponding positive
invariant measure4. When Ω is compact, the volume of Ω (with respect to the measure

2This correspondence is very far from a well defined and universally accepted correspondence in the
set theoretical sense.

3Considering orbits in ig∗ avoids a choice of a square root of −1.
4It is well known [?] to be a tempered Radon measure.
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βΩ) is called the symplectic volume, and is denoted by vol(Ω). The definition of ωΩ

depends on various rather arbitrary choices of signs or of powers of i, but the definition
of βΩ does not depend on them. The inclusion of the factor 1

(2π)d in the definition of βΩ

is justified by the fact that it simplifies many formulas. We give a well known example,
which will be used later on. Let µ ∈ Pk ∩ Ck. Then we have :

(22) dim(πK(µ)) = vol(Kµ).

This is the evaluation at the origin of Kirillov’s character formula for compact connected
Lie groups (see [?], theorem 8.4).

It is convenient to give a definition. We denote by Cc(ig∗) the space of continuous
functions with compact support on ig∗, and by C∞c (ig∗) the subspace of smooth functions.

Let φ ∈ C∞c (ig∗). It is known (see below) that the function, defined on the set of
g-regular elements λ of it∗ by

(23) λ→
∫
Gλ

dβGλ(f)φ(f),

extends to a smooth function with compact support on each of the set cl(C(Ψ)) ⊂ it∗,
where Ψ ⊂ Φg is a positive system of roots. However the limiting values of this function
and of its derivatives on a singular element in the boundary of C(Ψ) depends on Ψ, and
it is in general not possible to extend the function (23) to a smooth function on it∗ —and
not even to a continuous function if G is not compact—. Harish-Chandra described a
family of relations between these limiting values, and Bouaziz [?] proved that this family
gives a complete set of relations.

I DO NOT KNOW IF WE WILL HAVE TO USE THAT.

From their work, it follows that it simplifies statements to use the function

(24) IG(f)(λ) = εg(λ)

∫
Gλ

dβGλ(f)φ(f),

defined for g-regular elements of it∗ : it extends to a smooth function on the set of
strongly regular elements.

Consider for instance the group K. In this case

(25) λ→
∫
Kλ

dβKλ(f)φ(f)

extends to a WK-invariant continuous function with compact support on it∗ which is
zero on k-singular elements. It is usually not smooth (locally it might look like |t| for
t ∈ R). However, the function

(26) λ→ IK(f)(λ) = εk(λ)

∫
Kλ

dβKλ(f)φ(f)

extends to a smooth function with compact support I(f) ∈ C∞c (it∗), and f → IK(f) is
a surjection of C∞c (ik∗) to the space of WK-skew-invariant smooth functions on it∗.
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Definition 3. A Radon G-invariant measure ξ on ig∗ is said to be regular elliptic if there
exists a WG-skew-invariant Radon measure Mg(ξ) on it∗ such that the set of g-singular
elements of it∗ is of measure 0, and such that for all φ ∈ Cc(ig∗), we have

(27)

∫
ig∗
dξ(f)φ(f) =

1

#WG

∫
it∗
dMg(ξ)(λ)

(
εg(λ)

∫
Gλ

dβGλ(f)φ(f)

)
.

It follows that the set of elements of ig∗ which are not regular elliptic is of measure
zero for ξ. Formula (27) can be written

(28)

∫
ig∗
dξ(f)φ(f) =

∫
Cg

k

dMg(ξ)(λ)εg(λ)

∫
Gλ

dβGλ(f)φ(f).

So the restriction of the measure εg(λ)Mg(ξ)(λ) to Cg
k can be considered as the quotient

of ξ by the invariant measures βGλ. In particular, it is positive if ξ is positive.

Remark 3. In the case of K, we can consider in an analog manner invariant distribu-
tions on ik∗ which are of the form

(29)

∫
ik∗
dξ(f)φ(f) =

1

#WK

∫
it∗
dMk(ξ)(λ)

(
εk(λ)

∫
Kλ

dβKλ(f)φ(f)

)
for φ ∈ C∞c (ik∗), for a suitable WK-skew invariant distribution Mk(ξ) on it∗. In fact, it
is known [?] that the map ξ →Mk(ξ) is a bijection.

For instance, consider the Dirac measure at the origin of ik∗. For φ ∈ C∞c (ik∗) we
have

(30) φ(0) =< D, IK(φ) >

where, for ψ ∈ C∞c (it∗), we have

(31) < D,ψ >=
1

#WK

(
∏
α∈Ψ̃k

∂α)ψ

 (0).

Example 2. Let λ ∈ it∗. Then the measure βGλ is regular elliptic if and only if λ is
g-regular. If λ ∈ Cg

k , we have

(32) Mg(βGλ) = εg(λ)
∑
w∈WK

ε(w)δwλ.

Similarly, if λ ∈ Ck, we have

(33) Mk(βKλ) =
∑
w∈WK

ε(w)δwλ.

2. Partition functions

Let α be a non zero vector in it∗. We introduce the following Radon measures, which,
on a function φ ∈ Cc(it∗) are defined by the following formulas.
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Yα(φ) =

∫ ∞

0

φ(tα)dt,(34)

yα(φ) =
∑
n∈N

φ((n+
1

2
)α)dt,(35)

tα(φ) =

∫ 1
2

− 1
2

φ(tα)dt,(36)

dα(φ) = φ(−1

2
α)− φ(

1

2
α).(37)

We use the symbol ∗ for the convolution product. Note that

(38) dα ∗ yα = δ0,

so that yα is an inverse of dα. It is often useful to write yα as

(39) yα = δ 1
2
α ∗ (

∑
n∈N

(δα)
∗n)) = δ 1

2
α ∗ (1− δα)

−1),

where (1− δα)
−1 is the inverse obtained by formally writing the geometrical series. We

have :

(40) tα ∗ yα = Yα.

We use also distributions. We define, for a function φ ∈ C∞c (it∗),

(41) Dα(φ) = − d

dt
φ(tα)|t=0.

We have :

(42) Dα ∗ Yα = δ0,

so that Yα is an inverse of Dα.

Let E{α1, . . . , αn} be a finite multiset set of elements of it∗. We will say that E is
strict if there exists some x ∈ it such that α(x) > 0 for all α ∈ E. This condition allows
to define the measure

(43) YE = Yα1 ∗ Yα2 ∗ · · · ∗ Yαn .

We will also write this as

(44) YE = Fα∈EYα.

Similarly we define

(45) yE = Fα∈Eyα.

We define in a similar manner (the “strict” condition is not needed there) the measures
or distributions tE, dE, and DE.

The Kostant’s partition function associated to E is the function KE on it∗ defined by
the formula

(46) Fα∈E(1− δα)
−1 =

∑
µ

KE(µ)δµ,
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that is, KE(µ) is the cardinal number of the set of (nα) ∈ NE such that µ =
∑
nαα. In

particular the support of KE is the set NE. The definition of yE encodes the function
KE and an appropriate shift of ρE :

(47) yE = δρE
∗Fα∈E(1− δα)

−1 =
∑
µ

KE(µ)δµ+ρE
=
∑
µ

KE(µ− ρE)δµ.

The support of yE is ρE + NE.

Corresponding facts for YE are as follows. The support of YE is the cone R≥0E which
is strictly convex, and has a non empty interior relative to the subspace RE. With
respect to a standard Lebesgue measure on RE, it has a density which is a function
homogeneous of degree #E − dim(RE), and continuous on R≥0E.

For instance, suppose that #E = dim(RE). This situation produces “multiplicity
one” theorems because then KE is the characteristic function of NE, and YE is the
standard Lebesgue measure in the basis E multiplied by the characteristic function of
R≥0E (see [?]).

Let us record some of the formulas relating these distributions which will be needed
in the sequel. They follow immediately of the formulas (40, 38, 42) above.

(48) YE = tE ∗ yE,

(49) DE ∗ YE = δ0,

(50) dE ∗ yE = δ0.

Let F be a multiset of non zero elements of it∗, and suppose that F is symmetric (that
is the multiplicity of α is equal to the multiplicity of −α). Let E be a positive system
in F (we leave to the reader to define it). Then tE does not depend on the choice of E.
It will be denoted by

(51) rF = tE,

where rF is for “square root”, since rF ∗ rF = tF .

3. Restriction to K.

3.1. Blattner’s formula. Let λ ∈ Pg ∩ Cg
k be an Harish-Chandra’s parameter. It is a

basic theorem of Harish-Chandra that any π ∈ Ĝ has an admissible restriction π|K to
K. This is in particular true of the discrete series πG(λ). Moreover, Harish-Chandra’s
description of πG(λ), through its distribution character, impose some constraints on its
restriction to K. Blattner’s formula is the most natural solution to these constraints,
and it very remarkable and pleasant that it is the correct answer. However it was difficult
to prove, and this theorem is due (at least for linear groups) to Hecht and Schmid [?].
Since, other proofs have been provided, taking care also of remaining cases. We quote
[?], because it is used in the present paper. Blattner’s formula can be stated as follows :

(52) mK(πG(λ)|K) =
∑
w∈WK

ε(w)w(δλ ∗ yΨn(λ)).

In particular, the parameter λ can be recovered from πG(λ). We state it in a lemma,
since it is heavily used later on.
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Lemma 1. We have :

(53) dΨn(λ) ∗mK(πG(λ)|K) =
∑
w∈WK

ε(w)w(δλ) =
∑
w∈WK

ε(w)δwλ.

Proof. It follows from (50) and (52). The main point is that dΨn is invariant under WK

for any positive system of roots Ψ ⊂ Φg. It is a consequence from the fact that the sign
character of Wg, when restricted to WK , coincides with that of WK . �

Remark 4. May be, a more elegant way of writing this formula is as follows:

(54) dΨ̃n
∗mK(πG(λ)|K) = mG(πG(λ)).

In particular, we recover λ from mK(πG(λ)|K).

VERIFY SIGNS !!!

3.2. DHV’s formula. We denote by pg,k the projection map (i. e. the restriction map)
from ig∗ to ik∗. If there is no ambiguity, we shall simply denote it by pk. Thus pk means
restriction to k. It is a simple and well known fact that the restriction of pk to any closed
coadjoint G-orbit Ω ⊂ ig∗ is proper. The direct image of the Liouville measure is well
defined. We shall denote it by pk(βΩ). So, pk(βΩ) is a positive K-invariant measure on
ik∗ with support pk(Ω).

When λ ∈ Cg
k is a g-regular element, [?] gives the following formula (which says in

particular that pk(βGλ) is k-regular),

(55) Mk(pk(βGλ)) =
∑
w∈WK

ε(w)w(δλ ∗ YΨn(λ)).

Remark 5. The support of the measure Mk(pk(βGλ)) is the set pk(Gλ) ∩ it∗.

As stated in [?], (55) and (49) implies:

(56) DΨn(λ) ∗Mk(pk(βGλ)) =
∑
w∈WK

ε(w)δwλ,

or,

(57) DΨ̃n
∗Mk(pk(βGλ)) = Mg(βGλ).

VERIFY SIGNS !!!

3.3. Comparison. We shall use the measure5

(58) rg/k = rΦn .

The measure rg/k is a WK-invariant probability measure with compact support. We
denote its support by cg/k. The set cg/k is the convex hull of the ρΨn , for all positive
systems Ψ ⊂ Φg. If g is semi-simple without simple compact factors, it has a non empty
interior.

Let λ ∈ Cg
k ∩ Pg be an Harish-Chandra’s parameter. From (52) and (55), we obtain

(59) rg/k ∗mK(πG(λ)|K) = Mk(pk(βGλ)).

Formula (59) allows to compare the supports of the measures mK(πG(λ)|K) and of
Mk(pk(βGλ)), and so between πG(λ)|K and pk(Gλ).

One type of inclusion is easy :

5We thank David Vogan for this idea.
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Lemma 2. Let ν ∈ pk(Gλ) ∩ it∗. Then there exists a k-regular µ ∈ Pk such that πK(µ)
occurs in πG(λ)|K and ν ∈ µ+ cg/k.

Proof. Let S be the support of mK(πG(λ)|K). It is the set of k-regular µ ∈ Pk such that
πK(µ) occurs in πG(λ)|K . The set pk(Gλ)∩it∗ is the support of the measure Mk(pk(βGλ)).
By equation (59), it is contained in S + cg/k. �

If we prefer to use parameters in Ck, it gives :

Lemma 3. Let ν ∈ pk(Gλ) ∩ cl(Ck). Then there exists µ ∈ Pk ∩ Ck and w ∈ WK such
that πK(µ) occurs in πG(λ)|K and ν ∈ wµ+ cg/k, or equivalently, µ ∈ w−1ν + cg/k.

Proof. The distribution rg/k is WK-invariant and symmetric. �

COMMENT Reverse kind of inclusion (according to Vogan) should follow from the
formula, but I do not know how. I think that the formula is sufficient to get the same
asymptotic support for mK(πG(λ)|K) and Mk(pk(βGλ)). Is it true ? Is it interesting ?

We get some kind of reverse inclusion for “large” parameters.

Remark 6. Suppose that µ ∈ Pk ∩ Ck is far from the walls, more precisely suppose that
the k-regular elements of Pk ∩ (µ+ cg/k) are contained in Ck, and that the representation
πK(µ) occurs in πG(λ)|K. Then µ belongs to pk(Gλ)∩Ck (and even to the relative interior
with respect to the affine subspace λ+ RΨn).

Proof. Consider M = rg/k ∗ mK(πG(λ)|K). If we write mK(πG(λ)|K) =
∑

ν cνδν , then
M =

∑
ν cνrg/k ∗ δν . Let V be a small neighborhood compact convex symmetric of 0 in

it∗. In µ+V , the ν which will contribute to this sum are such that ν + cg/k ∩µ+V 6= ∅,
that is ν ∈ µ+ cg/k + V . The hypothesis implies that, for V small enough, these ν’s will
be in Ck, so that cν is ≥ 0. Since cµ > 0 by hypothesis, we find that in a neighborhood
of µ, the measure M verifies M ≥ cµrg/k ∗ δµ. �

Remark 7. With a similar proof, one obtains the following result : Suppose that µ ∈
Pk ∩ Ck is very far from the walls, more precisely suppose that the k-regular elements of
Pk∩ (µ+2cg/k) are contained in Ck, and that the representation πK(µ) occurs in πG(λ)|K.
Then µ+ cg/k is contained in pk(Gλ)∩ Ck. In particular, for all positive systems of roots
Ψ ⊂ Φg, µ+ ρΨn is contained in pk(Gλ) ∩ Ck.

However, Paradan [?] obtained by more involved method the following better result :

Proposition 1. Let such that the representation πK(µ) occurs in πG(λ)|K. Then µ +
ρn(λ) ∈ pk(Gλ) ∩ Ck.

Paradan proves even more : µ + ρn(λ) belongs to the interior of pk(Gλ) ∩ Ck in the
affine space generated by pk(Gλ) ∩ Ck.

3.4. Asymptotic cones. Let X ⊂ V be a non empty subset of a finite dimensional real
vector space V . The asymptotic cone C(X) of X is the set of v ∈ V such that there
exists a sequence (εn)n>0 of real numbers εn > 0 with limit 0, and a sequence of (xn)n>0

of xn ∈ X, such that v is the limit of the sequence (εnxn)n>0. The asymptotic cone
C(X) is a cone (that is stable by multiplication by t ∈ [0,∞)), and closed in V . The
asymptotic cone is reduced to {0} if and only if X is bounded.

Let W be a vector space, and p : V → W a linear map.

Lemma 4. The restriction p|C(X) is proper if and only if C(X) ∩ ker(p) = {0}.
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Proof. This is true for any closed cone C ⊂ V . �

Lemma 5. If p|C(X) is proper and X closed in V , then p|X is proper.

Proof. We can assume that p is surjective. We can assume that V is a direct sum
V = U ⊕W and that p is the projection on W with kernel U . We choose norms on U
and W . Then there exists c > 0 such that ||w|| ≥ c||u|| for all v = w + u ∈ C(X).

Let 0 < c′ < c. We prove that there exists N > 0 such that if v = w + u ∈ X with
w ∈ W and u ∈ U , ||w||+ ||u|| ≥ N , then ||w|| > c′||u||.

Suppose that it is not the case. Then there exists a sequence (vn = wn + un)n>0 of
elements of X such that ||wn|| + ||un|| ≥ n and ||wn|| ≤ c′||un|| for all n > 0. Let
εn = (||wn|| + ||un||)−1. By extracting a subsequence, we can assume that the limit
v = lim εnvn exists. Then v belongs to C(X), and v 6= 0. Write v = w + u. Then
||w|| ≤ c′||u||. This contradicts the assertion ||w|| ≥ c||u||.

The end of the proof is clear. �

Remark 8. The converse is not always true. Consider the parabola X with equation
y = x2 in V = R2. The asymptotic cone C(X) is the positive y-axis, and the natural
projection p on the x-axis is proper on X but not on C(X).

A simple way to avoid these parabolic branches is the following :

Lemma 6. Let Y ⊂ V be a closed subset. Suppose that there exists a compact set B ⊂ V
such that Y ⊂ B +X. If p|X is proper then p|Y is proper.

Proof. Let ynn>0 be a sequence of elements of Y such that p(yn) is bounded. Write in
some manner yn = bn + xn with bn ∈ B and xn ∈ X. Then p(xn) is bounded. Since p|X
is proper, xn is bounded. Then yn is bounded. �

Lemma 7. a) We have

(60) p(C(X)) ⊂ C(p(X)).

b) If moreover p|C(X) is proper, we have

(61) p(C(X)) = C(p(X)).

Proof. a) It follows from the continuity of p.
b) We use the notations of the proof of lemma 5. Let w ∈ C(p(X)). If w = 0, then

we have w ∈ p(C(X)).
Suppose that w 6= 0. We write w = lim εnwn with εn > 0, lim εn = 0, and vn = wn +

un ∈ X. For n large enough, we have (from the proof of lemma 5) that ||wn|| ≥ c′||un||.
It follows that the sequence εnun is bounded. By extracting a subsequence, we can
assume that the limit lim εnun exists. Then the limit v = lim εn(wn + un) exists. We
have v ∈ C(X) and p(v) = w. �

The example in remark 8 shows that it is not sufficient, in the lemma b) above, to
assume that p|X is proper. The purpose of the next subsection is to make sure that in
the situations of interest for this paper, this kind of parabolic behavior do not occur.
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3.5. Asymptotic cones : restriction to k. LetX be a coadjoint orbit in g∗. Then (see
[?]) C(X) is contained in the nilpotent cone N ⊂ g∗, which implies that the projection
pk|C(X) is proper. It follows from lemma 7 that

(62) p(C(X)) = C(p(X)).

Recall that a polyedron in a finite dimensional real vector space V is a finite intersection
of closed half affine subspaces. A subset P ⊂ V is polyhedral if it is a polyhedron.

Let X be a closed coadjoint orbit in ig∗. Since the projection pk|X is proper (see [?]),
it follows from [?], theorem XXX, that pk(X)∩ cl(Ck) ⊂ it∗ is a closed convex set, locally
polyhedral. Consider now an elliptic regular coadjoint orbit Gλ with λ ∈ Cg

k . It follows
from formula (55) that pk(Gλ)∩it∗ is a finite union of polyhedrons (in which the measure
Mk(pk(βGλ)) has a non zero polynomial density with respect to an invariant measure on
the affine hull). This implies the following lemma :

Lemma 8. Let λ ∈ Cg
k . Then pk(Gλ) ∩ cl(Ck) ⊂ it∗ is a polyhedron.

Remark 9. Let λ ∈ Cg
k . Then λ is a vertex of pk(Gλ) ∩ cl(Ck), and it follows from (55)

that λ+R≥0Ψn(λ) is the local cone at λ. It follows that the affine hull of pk(Gλ)∩ cl(Ck)
is λ+ RΨn(λ), and that

(63) pk(Gλ) ∩ cl(Ck) ⊂ (λ+ R≥0Ψn(λ)) ∩ cl(Ck).
This is of course well known to experts : the local structure of pk(Gλ) ∩ cl(Ck) can be
computed from local data on Gλ (see [?]).

Recall (see [?], 1.5) that to a polyhedron P ⊂ V is associated a polyhedral cone
Rec(P) ⊂ V , the recession cone. It has the property that there exists a compact
polyhedron Q such that P is the Minkowski’s sum P = Q + Rec(P). It follows that
Rec(P) = C(P), the asymptotic cone, and that x+ Rec(P) ⊂ P for any x ∈ P .

Lemma 9. Let λ ∈ Cg
k . Then pk(C(Gλ)) ∩ cl(Ck) is equal to the the polyhedral cone

C(pk(Gλ) ∩ cl(Ck)).
Proof. From (62) we obtain the equality pk(C(Gλ)) = C(pk(Gλ)). Let X = pk(Gλ). It is
a K-invariant closed subset of ik∗. We want to prove that C(X)∩cl(Ck) = C(X∩cl(Ck)).
We prove that it is true for any invariant closed subset X ⊂ ik∗.

Let X be an invariant closed subset X ⊂ ik∗. It is obvious that C(X ∩ cl(Ck)) ⊂
C(X) ∩ cl(Ck). Conversely, let µ ∈ C(X) ∩ cl(Ck). We write µ = lim εnknµn with εn > 0,
lim εn = 0, kn ∈ K, µn ∈ X ∩ cl(Ck). By extracting a subsequence, we can assume that
the limit k = lim kn exists. Then the limit ν = lim εnµn exists and is equal to k−1µ.
Since ν and µ are in cl(Ck), we obtain that µ = ν. We have µ = ν ∈ C(X ∩ cl(Ck)). �

Lemma 10. Let λ ∈ Cg
k . Let B = −Kλ ⊂ ik∗. Then we have C(pk(Gλ)) ⊂ B + pk(Gλ).

Proof. We have λ + C(pk(Gλ) ∩ cl(Ck)) ⊂ pk(Gλ) ∩ cl(Ck), so C(pk(Gλ) ∩ cl(Ck)) ⊂
−λ+ pk(Gλ) ∩ cl(Ck). The result follows. �

QUESTIONS.
1) Everything there should be true for any closed coadjoint orbit.
2) Everything there should be true for the closure of a coadjoint orbit, in particular

the closure of a nilpotent orbit.
3) In general, for a closed coadjoint orbit X, C(X) is not the closure of a coadjoint

orbit (for example, for hyperbolic regular orbits of SL(2,R), C(X) is the nilpotent cone,
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the closure of the union of two nilpotent orbits. The projection on k∗ = t∗ of the closure
of each one of these orbits is half a line. The union is a line (still a polyhedral cone !).

4) Is C(Gλ) for λ ∈ Cg
k the closure of a nilpotent orbit X? I think yes. Moreover, the

image of βX can be computed (see Barbasch, Fourier transform of nilpotent orbits) by
applying a suitable differential operator in λ to the corresponding image of βGλ.

5) There is a finite number of nilpotent orbits X. For each of them, one should
compute pk(X) and the corresponding measure.

3.6. Asymptotic cones: restriction to l. Let L be a connected closed subgroup of
K. We choose a Cartan subgroup U of L. We assume that T contains U . Let λ ∈ Cg

k .
We consider the projection pl on l∗.

Proposition 2. Let λ ∈ Cg
k . Then pl|Gλ is proper if and only if pl|C(Gλ) is proper.

Proof. Recall the notation pk,l for the projection from k to l, and recall that we used the
simplified notations pl = pg,l, pk = pg,k. Since pl = pk,lpk, then, for any closed subset
E ⊂ ig∗ such that pk|E is proper, pl|E is proper if and only if pk,l|pk(E) is proper. Thus
we have to prove that pk,l is proper on pk(Gλ) if and only if it is proper on pk(C(Gλ)).

Since pk(C(Gλ)) = C(pk(Gλ)) by (62), it follows from lemma 7 that pk,l is proper on
pk(Gλ) if it is proper on pk(C(Gλ)).

Assume conversely that pk,l is proper on pk(Gλ). Then it is proper on pk(C(Gλ)) by
lemmas 6 and 10. �

Proposition 2 is very useful, because numbers of results are available about C(Gλ),
notably in [?]. For instance, C(Gλ) is a finite union of nilpotent coadjoint orbits, so
there is a finite number of possibilities for C(Gλ) when λ varies. We give two corollaries.

Corollary 1. Let λ ∈ Cg
k and λ′ ∈ Cg

k . Suppose that Ψn(λ) = Ψn(λ
′). Then pl is proper

on Gλ if and only if it is proper on Gλ′.

Proof. It is known ([?], Proposition 3.7) that C(Gλ) = C(Gλ′).
I AM AFRAID THAT IT PROVIDES A PROOF ONLY FOR parameters of discrete

series, ie for “integral” λ.
Even if we are not able to prove (or to find a reference) that C(Gλ) = C(Gλ′), then

DHV formula should prove the weaker result that C(pk(Gλ)) = C(pk(Gλ
′)) ? �

Corollary 2. Let λ ∈ Cg
k . Let C = C(pk(Gλ) ∩ cl(Ck)) ⊂ cl(Ck) be the recession cone of

pk(Gλ) ∩ cl(Ck). Let l⊥ be the orthogonal of l in k. Then pl is proper on Gλ if and only
if KC ∩ l⊥ = {0}.

4. Restriction from K to T .

Let µ ∈ Pk ∩ Ck. Recall that we fixed a positive system Ψk for Φk. Pick another
(possibly the same) positive system Ψ′

k for Φk. Kostant’s formula for the restriction
πK(µ)|T can be written:

(64) mT (πK(µ)|T ) = (−1)#Ψk∪Ψ′
k

( ∑
w∈WK

ε(w)δwµ

)
∗ yΨ′

k
.
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We obtain (see [?])

dΨ′
k
∗mT (πK(µ))|T ) = (−1)#Ψk∪Ψ′

k

( ∑
w∈WK

ε(w)δwµ

)
(65)

= (−1)#Ψk∪Ψ′
kmK(πK(µ))(66)

Decomposing a finite dimensional representation R of K in irreducible components, we
obtain:

Lemma 11. Let R be a finite dimensional representation of K. Then :

dΨ′
k
∗mT (R|T ) = (−1)#Ψk∪Ψ′

kmK(R)(67)

mT (R|T ) = (−1)#Ψk∪Ψ′
kmK(R) ∗ yΨ′

k
.(68)

Similarly (see [?]), let µ ∈ Ck. Then

(69) MT (pt(βKµ)) = (−1)#Ψk∪Ψ′
k

( ∑
w∈WK

ε(w)δwµ

)
∗ YΨ′

k

and

DΨ”k
∗MT (pt(βKµ)) = (−1)#Ψk∪Ψ′

k

( ∑
w∈WK

ε(w)δwµ

)
(70)

= (−1)#Ψk∪Ψ′
kMK(βKµ).(71)

5. Restriction from K to U .

Let U be a closed connected subgroup of T . We consider the centralizer Z = ZK(U)
of U in K and its Lie algebra z. Then T is a Cartan subgroup of Z. We denote by q the
projection pt,u. We denote by Q ⊂ iu∗ the subgroup of differentials of characters of U .
We have Q = q(P ). We have Φz = Φk ∩ ker(q).

Let Ψ′
k ⊂ Φk be a positive system. Then Ψ′

z := Ψ′
k∩Φz is a positive system for Φz. We

write Ψ′
k/z = Ψ′

k\Ψ′
z. A positive system Ψ′

k of Φk is said to be u-admissible if the image

q(Ψ′
k/z) is strict in iu∗. Recall that we consider the Φ’s as multisets, so that we take into

account the multiplicities in q(Ψ′
k/z) if several roots have the same restriction to u.

Lemma 12. a) A positive system Ψ′
k of Φk is u-admissible if and only if the simple roots

of Ψ′
z are simple in Ψ′

k.
b) Let Ψ′

k ⊂ Φk be a positive u-admissible system. Then ρΨ′
k
(hα) = ρΨ′

z
(hα) for all

α ∈ Φz.

Proof. a) Suppose that Ψ′
k is u-admissible. Let α ∈ Ψ′

z. Suppose that α = β + γ
with β and γ in Ψ′

k. Then 0 = q(β) + q(γ). Since q(Ψ′
k\Φz) is strict, this implies that

q(β) = q(γ) = 0, that is β and γ are in Ψ′
z.

Conversely, let α ∈ Ψ′
z a root which is simple in Ψ′

z, but not in Ψ′
k. We write α = β+γ

with β and γ in Ψ′
k\Ψ′

z. Then 0 = q(β) + q(γ), and q(Ψ′
k\Φz) is not strict.

b) It is sufficient to verify the formula for the simple roots of Ψ′
z. Then it follows from

a) that they are also simple in Ψ′
k. So both sides of the formula are equal to 1. �
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There exists at least one positive u-admissible system. In this paper, g, k, t, u are
given. The choice of the positive system Ψk is not important : its main use is to provide
a specific parametrization of the set of elliptic coadjoint orbits in ig∗.

For convenience, in the rest of this paper, we choose Ψk u-admissible. We
have now at our disposal Ψz, Cz, ρψz , WZ , etc...

However, there may exist other positive u-admissible systems which are not conjugate
to Ψk under natural automorphisms of this setting. We shall need all of them in the
sequel.

We consider Weyl’s dimension polynomial for Z. It is given for µ in it∗ by

(72) $(µ) =

∏
α∈Ψz

µ(hα)∏
α∈Ψz

ρΨz(hα)
.

We recall two well known formulas.
Let µ ∈ Cz. Then (see (74) and (22) :

(73) vol(Zµ) = $(µ).

Let Z̃ be the simply connected covering group of Z. Denote by P̃ the differential of
characters of the subgroup T̃ of Z̃ with Lie algebra t. Then P̃ is the set of µ ∈ it∗ which
take integer values on the hα for α ∈ Φz. It contains ρΨz , so that P̃z = P̃ . Let µ ∈ P̃

be z-regular. We defined the (finite dimensional) irreducible representation πZ̃(µ) of Z̃.

For µ ∈ P Z̃ ∩ Cz, Weyl’s dimension formula reeds :

(74) dim πZ̃(µ) = $(µ).

Let µ ∈ Pk ∩ Ck. Following [?], we give formulas for the restriction πK(µ)|U which are
half way between Kostant’s formula (64) for U = T , and Weyl’s dimension formula (73)
for U = {1}. We give such a formula for each choice of a positive u-admissible system
of Φk. Let Ψ′

k be such a system.
We denote by WZ\WK the subset of w ∈ WK such that wCk ⊂ Cz. Every element

of WK can be written in a unique manner as vw with v ∈ WZ and w ∈ WZ\WK . So
WZ\WK is a set of representatives (depending on Ψk) for the quotient also denoted by
WZ\WK .

Lemma 13. Let µ ∈ Pk ∩ Ck. We have

(75) mU(πK(µ)|U) = (−1)#Ψk\z∪Ψ′
k\z

 ∑
w∈WZ\WK

ε(w)$(wµ)δq(wµ)

 ∗ yq(Ψ′
k/z

).

Proof. Since T and U are commutative, the measure mU(πK(µ)|U) is the projection on
iu∗ of the measure mT (πK(µ)|T ), that is mU(πK(µ)|U) = q(mT (πK(µ)|T ). However, we
cannot directly use formula (64) because q is not proper on the support of yΨ′

k
if Φz is

not empty.
We rewrite (64) as

(76) mT (πK(µ)|T ) = (−1)#Ψk∪Ψ′
k

( ∑
w∈WK

ε(w)δwµ

)
∗ yΨ′

z
∗ yΨ′

k/z
.
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Since q is proper on the support of Ψ′
k/z, we can consider the measure q(yΨ′

k/z
). Is is equal

to yq(Ψ′
k/z

). So it remains to prove :

(77) q

(
(
∑
w∈WK

ε(w)δwµ) ∗ yΨ′
z

)
= (−1)#Ψz∪Ψ′

z

∑
w∈WZ\WK

ε(w)$(wµ)δq(wµ).

For a fix w ∈ WZ\WK , we consider the measure

(78) (
∑
v∈WZ

ε(vw)δvwµ) ∗ yΨ′
z
.

Remark that, thanks to lemma 12, wµ is in P̃ ∩Cz and that WZ = WZ̃ . By formula (64)

applied to Z̃, this is (up to the sign (−1)#Ψz∪Ψ′
zε(w)) the measure mT (πZ̃(wµ)|T ). Since

u is central in z, the restriction of πZ̃(wµ) to the subgroup with Lie algebra u is a multiple

of the character with differential wµ − ρΨz . The multiplicity is dim πZ̃(wµ) = $(wµ).
Since ρΨz vanishes on u, we obtain :

(79) q

(
(
∑
v∈WZ

ε(vw)δvwµ) ∗ yΨ′
z

)
= (−1)#Ψz∪Ψ′

zε(w)$(wµ)δq(wµ).

Summing this over WZ\WK completes the proof of the lemma. �

Similarly, using the fact that the volume of Zµ is given also by Weyl’s polynomial
$(u) for µ ∈ Cz, one proves (see [?]) the following lemma:

Lemma 14. Let µ ∈ Ck. We have

(80) MU(pu(βKµ)) = (−1)#Ψk\z∪Ψ′
k\z

 ∑
w∈WZ\WK

ε(w)$(wµ)δq(wµ)

 ∗ Yq(Ψ′
k/z

).

Comparing lemmas 13 and 14, we obtain :

Lemma 15. Let µ ∈ Pk ∩ Ck. We have

(81) MU(pu(βKµ)) = rq(Φk/z) ∗mU(πK(µ)|U).

6. Restriction from K to L.

Let L be a connected closed subgroup of K. We choose a Cartan subgroup U of L.
We assume that T contains U . We use the notations (Z, etc...) introduced in section 4.
In particular, we fixed a positive u-admissible system Ψk ⊂ Φk.

Let Ψ′
k ⊂ Φk be another positive u-admissible system. Then q(Ψ′

k/z) contains a positive

system of roots, denoted by Ψ′
l, of Φl. We denote by Ψ′

k/l(u) the multiset q(Ψ′
k/l)\Ψ′

l : it

is a positive set of roots for the non zero roots of u in k/l, counted with multiplicities.
We recall Heckman’s formula for the measure mL(πK(µ)).

Lemma 16. Let µ ∈ Pk ∩ Ck. We have

(82) mL(πK(µ)|L) = (−1)#Ψk\l(u)∪Ψ′
k\l

(u)

 ∑
w∈WZ\WK

ε(w) $(q(wµ)) δq(wµ)

 ∗ yΨ′
k/l

(u).
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Proof. We apply the operator of convolution by dΨ′
l
to equation (74). The left hand side

gives, by formula (68) applied to the pair (L,U)

dΨ′
l
∗mU(πK(µ)|U) = (−1)#Ψl∪Ψ′

lmL(πK(µ)|L).

The right hand side gives

(−1)#Ψk\z∪Ψ′
k\z

 ∑
w∈WZ\WK

ε(w) $(q(wµ)) δq(wµ)

 ∗ yΨ′
k/l

(u).

�

Similarly :

Lemma 17. Let µ ∈ Pk ∩ Ck. We have

(83) ML(pl(βKµ)) = (−1)#Ψk\l(u)∪Ψ′
k\l

(u)

 ∑
w∈WZ\WK

ε(w) $(q(wµ)) δq(wµ)

 ∗ YΨ′
k/l

(u).

(84) ML(pl(βKµ)) = rΦk/l(u) ∗mL(πK(µ)|L).

7. Restriction from G to L.

Let λ ∈ Pg ∩ Cg
k be an Harish-Chandra’s parameter. We show that the admissibility

of πG(λ)|L is equivalent to the fact that pl is proper on Gλ. In this case, we prove the
formula. WE DEFINE rg/l, and prove again :

(85) rg/l ∗mL(πG(λ)|L) = ML(pl(βGλ)).

8. Restriction from G to H (equal rank).

9. Restriction from G to H (general case).

This is where we need something on non compact roots ....

10. vargas

11. Conditions for admissibility

11.1. Admissibility is equivalent to properness. Let G be a connected reductive
Lie group with compact center. We fix a maximal compact subgroup K for G. Let L be
a connected subgroup of K, as usual, we denote by π(λ) the discrete series attached to
the coadjoint orbit Ω.

Proposition 3. π(λ) has admissible restriction to L if and only if the projection pl :
Ω → ıl∗ is a proper map.

Proof: We first show that properness implies admissibility. We are indebted to E.
Paradan for this proof. Let τµ be an irreducible representation of L having infinitesimal
character µ so that τµ is contained in the restriction of π(λ) to L. Thus, there exists
an irreducible representation φν of K, whose infinitesimal character is ν, so that τµ is
equivalent to a subrepresentation of φν restricted to L. In [?], Proposition 5.2 Paradan
shows that

ν ∈ pk(Ω).
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In [?] Paradan proves that
µ ∈ pl(K · ν).

Thus, µ ∈ pl(Ω). Next, we denote by φν1 , · · · , φνR
inequivalent K−irreducible submod-

ules of π(λ) so that a copy of τµ is contained in φνj
for j = 1, · · · , R. We are to show that

R is a finite number. For every j, we choose yj ∈ p−1
k,l (µ) ∩K · νj. Since pl restricted to

Ω is a proper map, pk,l : pk(Ω) → l∗ is a proper map. Thus, p−1
k,l (µ) ∩ pk(Ω) is a compact

set. Since K · νr ∩K · νs = ∅ for r 6= s, {y1, · · · , yR} is a discrete set. Therefore R is a
finite number and the multiplicity of τµ in the restriction of π(λ) to L is finite.

For the converse statement we notice that L−admissibility implies that the subspace of
L−finite vector is equal to subspace of K−finite vectors, [?], also, for each L−type of
π(λ) we have that there exists finitely many K−types whose restriction to L contains
the given L−type, hence we have a well defined proper map from the set of K−types of
π(λ) into the set of L−types in such a way that fiber over a point is finite and contained
in the K−types whose restriction to L contains the point. Because of prop ...this map
gives rise to a proper map from ASK(π(λ)) into l∗. In ??? we showed that there exists a
compact convex set Dλ so that pk(Gλ) = Ad(K)(Dλ+ASK(π(λ))). Thus, the restriction
map from pk(Gλ) into l∗ is proper and hence pl restricted to Gλ is proper. 2

Another proof of the converse statement
Since π(λ) has an admissible restriction to L, it follows that a L−type is contained in

finitely many K−types. Otherwise, the restriction to L would not be admissible. Let
Aso(π) ⊆ pC be the associated variety of π. In [?] we find a proof that Aso(π) is an
irreducible variety and connected in the Euclidean topology. Huang-Vogan has shown
[?]

C[Aso(π)] ⊆ π(λ)|K ⊗W0

here,W0 is a finite dimensionalK−module. Hence, C[Aso(π)] is an admissible L−module.
It follows from Vergne [?] the moment map µl : Aso(π) → l? is a proper map. Next,
Vergne [?] has shown there exists a K− equivariant diffeomorphism between the real
associated variety AsoR(π) and Aso(π) and the diagram

space
commutes. Hence, pl : AsoR(π) → l is a proper map. Barbash-Vogan [?] has shown

AsoR(π(λ)) = C(G · λ). Proposition 2 yields pl : G · λ→ l is a proper map. 2

Corollary 3. ph : Ω → h∗ is a proper map if and only if π(λ) has an admissible
restriction to H.

The corollary follows from Corollary ... and Proposition ....

11.2. Sufficient conditions for admissibility and properness. In this subsection
we point out quite general pairs (G,L) and positive root system Ψ in t∗ in order to
obtain sufficient conditions for properness of the moment map Gλ→ l∗. Let Ψ a system
of positive root in Φ(g, t) such that ∆ = Ψk. Let pΨ be the linear space spanned by the
root vectors corresponding to the roots in Ψn, and let

k1 := k1(Ψ) :=< [pΨ, pΨ] >

denote the ideal in kC spanned by [pΨ, pΨ]. It readily follows that k1 is the complexification
of an ideal k1 of k. Let k2 := k2(Ψ) be the orthogonal complement of k1 in k with respect
to the Killing form. Hence, k2 is an ideal in k so that k = k1 ⊕ k2 and t = t1 ⊕ t2, with
tj ⊂ kj, j = 1, 2. Note that either t2 or k2 depends on Ψ.
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Lemma 18. Every simple root for Ψ ∩ Φ(k2, t) is simple for Ψ.

Proof: Let α be a simple root for Ψ ∩ Φ(k2, t). If α were not simple for Ψ, then
α = β1 + β2, β1, β2 ∈ Ψ. It follows that β1, β2 are noncompact roots. Hence, the root
vector of α lies in [pΨ, pΨ] ⊆ k1, a contradiction. 2

Now, it readily follows that k2(Ψ) is the largest ideal of k contained in the Lie subalgebra
spanned by the roots system generated by the compact simple roots in Ψ. This subalgebra
has been defined by [?]. More precisely, [?] define a parabolic subalgebra l+u as follows:
l is the subalgebra of k spanned by t and the root vectors corresponding to compact
roots which are linear combination of compact simple roots in Ψ, u is generated by root
vectors in Ψ outside of l. Thus, u = pΨ.

Lemma 19.

(86) k1(Ψ) = [u ∩ p, u ∩ p] + [ū ∩ p, ū ∩ p] + [[u ∩ p, u ∩ p], [ū ∩ p, ū ∩ p]].

Proof: We first verify that

(87) u ∩ k = [u ∩ p, u ∩ p]

We show u ∩ k ⊂ [u ∩ p, u ∩ p] by induction on the length of the root γ such that its
root space gγ is contained in u ∩ k. Let ` denote the length function for the root system
∆. If `(γ) = 1, then γ = β1 + β2 with roots βj ∈ u ∩ p, otherwise, γ ∈ Φl ∩ Ψu. When
`(γ) > 1 there exists a simple root α ∈ ∆ so that γ − α ∈ ∆. Since γ ∈ Φu∩k then either
γ − α ∈ Φu∩k or α ∈ Φu∩k, hence γ = β1 + β2 + α or γ = β1 + β2 + γ − α with βj ∈ Φu∩p.
Jacobi identity implies that either β1 + α or β2 + α is a root. Thus, γ is the sum of two
noncompact roots.

The equality (87) yields the inclusions u ∩ k ⊂ k1(Ψ), ū ∩ k ⊂ k1(Ψ). Hence the right
hand side of the equality we are to show is contained in k1(Ψ). Next, we show the right
hand side is an ideal in k. Indeed, if Xγ ∈ l, since l + u is a parabolic subalgebra and l is
a subalgebra of k we obtain Xγ normalizes the right hand side. When Xγ lies in u ∩ k,
for Yj root vectors in u∩ k, it readily follows [Xγ, [Y1, Ȳ2]] belongs to the right hand side.
The definition of k1 concludes the proof of the lemma. 2

Corollary 4. [pΨ, pΨ] contains root spaces corresponding to roots of both lengths in each
simple factor of k1(Ψ).

The decomposition (86) yields the subalgebra [pΨ, pΨ]+[[pΨ, pΨ], [p̄Ψ, p̄Ψ]] is a parabolic
subalgebra of k1(Ψ). For a simple Lie algebra either root vectors for the maximal root
or for the short largest root belong to the nilpotent radical of any parabolic subalgebra
and the corollary follows.

It follows from Lemma .... and its corollary the following

Corollary 5. a) Any root in k1(Ψ) is up to sign either the sum of two noncompact roots
or the difference of two roots which are the sum of two noncompact roots.

b) Any root in k1(Ψ) is conjugated to a root in Ψu∩k.

Lemma 20. Let V be a finite dimensional inner product space. Assume V = V1⊕V2 is a
nontrivial orthogonal decomposition of V. Let C be a strict cone in V so that C ∩V2 = 0.
Then the image of C by the orthogonal projection of V onto V1 is a strict cone.
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Proof: Let us recall that a cone C is strict if there exists a nonzero vector v in V so
that (v, C − {0}) > 0. Equivalently, C is a strict cone iff C does not contain a line ([?],
Lemma A.5). Let p : V → V1 be the orthogonal projection. Hence, p(C) is a cone and
if p(z) = 0 with z ∈ C then the hypothesis implies z = 0. Thus, if p(C) contained a line
there would be w 6= 0, w and −w in p(C). Hence, w = p(x), x ∈ C,−w = p(y), y ∈ C.
Thus, 0 = p(x+y), with x+y ∈ C∩V2. This contradicts that C is strict unless x = y = 0.
2

It obviously follows that if p(C) is a strict cone and C ∩ V2 = 0, then C is a strict cone.

Remark 10. Let W0 be the subgroup of W spanned by the reflections about some
compact simple roots {α1, . . . , αr} in Ψ. Let C ⊂ it∗ be a W0−invariant strict cone.
Then C ∩

∑
j Rαj = {0}. In fact, if X ∈ C ∩

∑
j Rαj the convex hull of {wX,w ∈ W0} is

contained in C∩
∑
Rαj. Hence, unless X = 0, there is a non zero vector and its opposite

in C.

As before, for a reductive Lie algebra g, let gss denote its semisimple factor and zg its
center. Hence, a Cartan subalgebra b of g splits as b = zg⊕bss with bss contained in gss.

Corollary 6. R+Ψn ∩ i(t∗2)ss = 0.

Corollary 7. R+Ψn ∩ it∗2 = 0 is equivalent to R+Ψn ∩ iz∗k = 0.

In fact, for X ∈ R+Ψn ∩ it∗2, we write X = X1 + X2, X1 ∈ iz∗k , X2 ∈ i(t∗2)ss. We now
proceed as in Remark ..... and recall that for w ∈ Wk2 , wΨn = Ψn.

Corollary 8. Assume zk 6= 0.

If 0 6= k1(Ψ) 6= kss, then R+Ψn ∩ it∗2 = 0.

According to the classification of symmetric spaces the hypothesis forces g is isomor-
phic to either su(p, q) or so(2, 4) ≡ su(2, 2). We dealt with these cases in §2.3 iv)su(p, q)
and Table 1.

Corollary 9. Whenever K is a semisimple group, for any positive root system Ψ, we
have R+Ψn ∩ it∗2 = {0}.

Remark 11. Example 2.13 in Kobayashi, [?] implies that for K a semisimple group
or when R+Ψn ∩ it∗2 = 0, then a discrete series representation whose Harish-Chandra
parameter is dominant with respect to Ψ, restricted to k1(Ψ) is admissible.

We now present a simple direct proof of the statement in Remark ... when we restrict
to either k1(Ψ) or k1(Ψ) + zk. For this, we write

k = l1 ⊕ l2

as a sum of ideals, we denote the corresponding splitting for t = b1 ⊕ b2.

Proposition 4. Let π(λ) be a discrete series representation of G whose Harish-Chandra
parameter Λ is dominant with respect to Ψ so that R+Ψn ∩ ib∗2 = 0. Then the restriction
of π(λ) to L1 is an admissible representation.

Proof: Since R+Ψn is a strict cone in it∗ and R+Ψn ∩ ib∗2 = 0 lemma ...., implies
that there exists a nonzero vector v ∈ ib∗1 so that (v,R+Ψn − {0}) > 0. We choose
v so that its inner product with any root in Ψn is bigger or equal to one. Schmid in
[?] express the highest weight µ of a K−type of π(λ), computed with respect to ∆, as
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µ = Λ + ρn− ρc + β1 + · · ·+ βS with β1, · · · , βS roots in Ψn. The splitting it∗ = ib∗1 + ib∗2
yields µ = µ1 + µ2 with µ1 ∈ ib∗1 and µ2 ∈ ib∗2. Hence, (µ, v) = (µ1 + µ2, v) = (µ1, v) =
(Λ + ρn− ρc, v) + (β1 + · · ·+ βS, v) ≥ (Λ + ρn− ρc, v) + S. Therefore, for a fixed µ1, S is
bounded and hence µ2 has finite many possibilities. Thus, the multiplicity of µ1 in π(λ)
is finite. 2

Corollary 10. Assume the Harish-Chandra parameter for π(λ) is dominant with respect
to Ψ. Then, π(λ) has an admissible restriction to K1(Ψ)Zk. Besides, if R+Ψn∩iz?k = {0},
then π(λ) has an admissible restriction to K1(Ψ).

Remark 12. When zk 6= 0 admissible restriction to K1(Ψ) may be false. We now analyze
this question.

It is known that π(λ) has an admissible restriction to Zk if and only if Ψ is holomorphic.
For a reference cf [?].

It follows that R+Ψn ∩ iz∗k = 0 is equivalent to there exist v ∈ it∗1 so that (v, β) > 0,
for all noncompact roots in Ψ. Gross-Wallach in [?] have shown for Ψ is small and non
holomorphic, then π(λ) has an admissible restriction to K1(Ψ). They construct v ∈ it∗1
as above

Second, we have shown that whenever R+Ψn ∩ iz∗k = 0, then π(λ) restricted to K1(Ψ).
We the converse is not true. In Example 4 we show: a holomorphic discrete series has
an admissible restriction to the semisimple factor of K if and only if G/K is not a tube
domain. For a holomorphic chamber we have R+Ψn∩izk = izk. For G = SU(p, 2) in.... we
obtain non holomorphic discrete series with admissible restriction toK1 = SU(p)×SU(2)
and such that R+Ψn ∩ izk 6= {0}.

Fourth, in subsection...... for G locally isomorphic to SO(2, 2q + 1) we show no dis-
crete series admits admissible restriction to K1(Ψ). Here, R+Ψn ∩ izk 6= {0} For G
locally isomorphic to SO(2n, 2) admissible restriction toK1(Ψ) = SO(2n) is equivalent
to R+Ψn ∩ iz∗k = 0. In this case there are two systems of positive roots Ψ±q so that the
discrete series has admissible restriction to Kss.

In order to show the strictness of the set pt1(Ψn) the following is useful,

Lemma 21. If g is simple, not locally isomorphic to so(2, 2q+1) and k1(Ψ) is nontrivial,
then every noncompact root has a nonzero restriction to t1. For so(2, 2q+1) and a short
noncompact root the projection to t1 is zero.

Proof: We show that if g is a simple real Lie algebra which is not isomorphic to
so(2, 2q+1), then any root γ orthogonal to t1(Ψ) lies in Φ(k2(Ψ)). In fact, if γ is compact
we have nothing to verify. If γ were noncompact, and k semisimple, since γ is orthogonal
to t1(Ψ) Lemma ... implies that γ is a linear combination of compact simple roots lying
in Ψ(k2). Thus, γ lies in Φ(k2). When k has a nontrivial center and g is isomorphic to
su(p, q) the implication follows by inspection on the roots. We are left the case k has a
nontrivial center, real rank of g bigger or equal than two, and kss is simple. Thus, γ lies
in the center of k. Hence, (γ, β) is a positive number for every noncompact root β lying
in a fixed holomorphic system. Since, g is not isomorphic to so(2, 2q + 1), there is at
least one noncompact root which is orthogonal to γ. Contradiction, hence γ is compact.
For so(2, 2q + 1) the noncompact short root is not orthogonal to any other noncompact
root. 2

Example 1: For G such that k is a semisimple algebra the inclusion k1(Ψ) ⊆ l is sufficient
to assure for Λ Ψ−dominant that π(λ) has an admissible restriction to l. For G/K is
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a Hermitian symmetric space, k1(Ψ) ⊆ l is not sufficient to assure that π(λ) has an
admissible restriction to l. In fact, the group SO(2, 4) has six families of discrete series
representation [?]. Among these six families, two of them restricts to an admissible
representation of SO(4) and the other four do not have an admissible restriction to
SO(4). However, for any of these six positive root systems Ψ, the subgroup k1(Ψ) is
contained in SO(4). More precisely, for g = so(2, 4) ≡ su(2, 2) in a toroidal Cartan
subalgebra we have a basis {ε, δ1, δ2} so that a system of positive compact roots is
∆ = {δ1 ± δ2} and Φn = {±ε± δj}. When we identify, via the Killing form, the toroidal
Cartan subalgebra with its dual space, the center of k is equal to Cε. For each of six
systems of positive roots containing ∆, in the first column we list the positive noncompact
roots, the second column gives k1(Ψ), the third column exhibits R+Ψn∩it∗2(Ψ), the fourth
column indicates whether or not discrete series with dominant parameters with respect
to Ψ restricts discretely to k1(Ψ), it turns out of the computation that for this case a
discrete has admissible restriction to K1 if and only if has admissible restriction to so(4).
A proof of the last statement can be found in [?]. The fifth colum shows when pu(Ψn) is
strict. The sixth column computes the number m(Ψ), c.f. §2.3 iv).

Ψn k1(Ψ) R+Ψn ∩ it∗2(Ψ) Ad R Str m(Ψ)
δ1 ± ε,±ε− δ2 su2(δ1 − δ2) 0 Y Y 2

±ε+ δi su2(δ1 + δ2) 0 Y Y 2
±ε+ δ1, ε± δ2 so(4) iz∗k N N 3
±ε+ δ1,−ε± δ2 so(4) iz∗k N N 3

ε± δi 0 R+Ψn N N 1
−ε± δi 0 R+Ψn N N 1

Table 1

The first two root systems are small.

Example 3: Whenever K is a semisimple Lie group and L is a closed subgroup of K so
that π(λ) restricted to L is admissible, we would like to show that K1(Ψ) is a subgroup
of L. We now show that this is not true, although, later on, we will show this fact holds
if L is a maximal compact subgroup of H for (G,H) a reductive symmetric pair. The
example is G = Sp(p, 1), p ≥ 1 Here, we consider as in ..... Ψ0 = {δ > ε1 > · · · εp} Then,
K1 = Sp(1), K2 = Sp(p). In [?] they show that such a discrete series has an admissible
restriction to both, Sp(p) and Sp(1). Berger’s classification of reductive symmetric pairs
cf. [?] shows that neither Sp(n) nor Sp(1) are maximal compact subgroups for H so
that (Sp(n, 1), H) is a reductive symmetric pair.

Example 4: We fix (G,K) an Hermitian Symmetric pair and let Kss denote the semisim-
ple factor of K. Let Ψ denote a holomorphic chamber in Φ and λ a discrete series
parameter dominant with respect to Ψ. Then,

• R+Ψn ∩ iz∗k = iz∗k .
• π(λ) restricted to Kss is admissible if and only if G/K is not of tube type.

The first assertion follows from that ρn(Ψ) is orthogonal to all the compact simple roots
in Ψ and that for a holomorphic chamber the simple roots in ∆ are the compact simple
roots for Ψ. Before we justify the second assertion we recall a few facts. Since Ψ is a
holomorphic system of positive roots, that is, the sum of two noncompact roots in Ψ
never is a root, there exists a set of strongly orthogonal noncompact roots, γ1, . . . , γr so
that
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i)
∑r

j=1 γj is in iz∗k if and only if
∑

j R+γj ∩ iz∗k 6= {0} if and only if G/K is a domain
of tube type∑

j R+γj ∩ iz∗k = 0 is equivalent to the second statement. In fact,
∑

j cjγj ∈ iz∗k , lead us

to (
∑

j cjγj, γ1) = · · · = (
∑

j cjγj, γr), the orthogonality of the γj yields c1 = · · · = cr,

hence c1 = ... = cr = 0. For a proof of the second equivalence [?]. Let p− := pΨn and
consider the symmetric algebra S(p−) of p−. Then in [?] we find a proof of
ii) The ∆ highest weight of an irreducible K−submodule is equal to −n1γ1−· · ·−nrγr,

with n1 ≥ · · · ≥ nr ≥ 0, and it occurs in degree
∑

j nj.

We claim: G/K is of tube type if and only if some irreducible representation of Kss has
infinite multiplicity in S(p−).
Indeed, in [?] it is shown S(p−)Kss = C if and only if the multiplicity of each Kss−type
is finite. Since the trivial representation has finite multiplicity in S(p−) if and only if∑

j γj lies in the center of k the claim follows.

Let Vµ be the lowest K−type of π(λ). Thus, the space of K−finite vectors of π(λ) is
equivalent to S(p−) ⊗ Vµ. Assume that πΛ restricted to Kss is admissible, if G/K were
a tube domain, we would have that

∑
j γj ∈ iz∗k and hence the Kss−irreducible repre-

sentation of highest weight µ− n
∑

j γj would had infinite multiplicity, a contradiction.
For the converse of the first statement if some Kss−submodule had infinite multiplicity
in π(λ) then some Kss highest weight of S(p−) would had infinite multiplicity and hence
G/K would be of tube type. A contradiction.

Another way of showing the first statement is by mean of a Theorem of Kobayashi [?],
[?] . Because, the asymptotic cone of π(λ) is ASK(π(λ)) := −

∑r
j=1R+γj and the cone

for G′ := Kss is cone(G′) = it∗ ∩ (Ad(K)k⊥ss = iz∗k . The Theorem of Kobayashi asserts
that π(λ) restricted to Kss is admissible if and only if AsK(π(λ))∩ cone(G′) = 0, hence,
we conclude π(λ) restricted to Kss is admissible if and only if

∑
j R+γj ∩ iz∗k = 0.

We would like to notice that the unique Hermitian symmetric pair (G,K) so that
there exists a reductive symmetric pair (G,H) in such a way that Kss = H ∩K = L is
G = SO(n, 2) and H = SO(n, 1). In this very particular case we may apply [?] and [?]
in order to obtain both equivalences.

We also notice that this example shows that the sufficient condition for admissibility,
R+Ψn ∩ it∗− = 0, may not be necessary when (G,H) is not a reductive symmetric pair.
Compare with [?].

Example ... For g isomorphic to su(p, q), k1(Ψ) a proper subalgebra of kss and Λ
dominant with respect to Ψ. Then, π(λ) has an admissible restriction to k1(Ψ). Indeed, we
construct a non zero vector v in it∗1 so that v has a positive inner product with every non
compact roots in Ψ. For unexplained notation c.f. subsection 2.3 iv) paragraph su(p, q).

For Ψa, set v0 = p(
∑a

j=1 εj) + a(
∑q

k=1 δk). For Ψ′
b, set v0 = b(

∑p
j=1 εj) + q(

∑b
k=1 δk)

and let v = pt1(v0). We now apply Corollary 6. It is straightforward to verify that all
this systems satisfy condition (C). This example, also follows from [?]. For the group
SU(p, 1), p ≥ 1 any discrete series representation has an admissible restriction to SU(p).

11.3. Condition C versus K1. We now show a relation between condition (C) and the
subalgebra k1(Ψ). Henceforth, for this subsection G is simple. Let L denote a compact
connected subgroup of K. We choose a maximal torus U for L contained in T. As before,
Φz denotes the roots in Φk that vanishes on u. We fix a system of positive roots Ψ in Φg

containing ∆.
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Definition 1. We say that condition (C) holds for Ψ and L if there exists a system of
positive roots ∆1 in Φk so that qu(∆1−Φz) is strict, and for each w in the compact Weyl
group of G the multiset

qu(wΨn) ∪ qu(∆1 − Φz)− Φl

is strict.

Proposition 5. Assume k1(Ψ)+ zk is contained in l, then condition (C) holds for Ψ and
L and for any system ∆1 so that qu(∆1 − Φz) is strict.

For the converse we assume Condition (C) holds. Then, k1(Ψ) is contained in l.

Proof: First statement. Since t1 + z ⊆ u we have the equality ∆1 − Φz = (∆1 ∩
Φk1) ∪ (∆1 ∩ Φk2 − Φz). The hypothesis pu(∆1 − Φz) is strict implies there exists v1 in
iu so that α(v1) > 0 for every α ∈ ∆1 − Φz. We fix an upper bound C for the numbers
|γ(v1)|, γ ∈ Φg. For w ∈ Wk, R+wΨn is a strick cone. It follows from Remark ....
R+wΨn ∩ i(t2)?ss = {0}. Therefore, Lemma 3 let us obtain that qt1+zk

(R+wΨn) is a strict
cone in it∗1 + iz∗k . Hence, we may choose v0 ∈ it1 + iz so that γ(v0) ≥ 2C for every root
in wΨn. We define v = v0 + v1. Thus, for either γ ∈ qu(∆1 − Φz) − Φl or γ ∈ wΨn

we have that γ(v) is a positive number. Since k1 + zk is contained in u, the multiset
qu(wΨn) ∪ qu(∆1 − Φz)− Φl is strict. This concludes the proof of the first statement.

Next, we show the second statement. We first verify that qu(γ) is nonzero for every
root in Ψn∪∆1∩Φk1 . From the hypothesis we have qu(β) 6= O for β ∈ Ψn. Choose β ∈ Ψn,
we show that qu(β) is not equal to qu(α) for every α ∈ ∆k1 . Indeed, assume qu(β) = qu(α),
since K1(Ψ) 6= 0 the chamber Ψ is non holomorphic, thus, there exists w ∈ Wk so that
wβ = −β. Hence ±qu(α) belong to the strict multiset associated to w, a contradiction.
For α ∈ ∆1 ∩ Φk1 , qu(α) is nonzero. Indeed, corollary ....implies that there exists non
compact roots β1, β2 in Ψ and w in the Weyl group of K1(Ψ) so that α = w(β1 + β2).
Thus, qu(α) lies in qu(wR+Ψn), the hypothesis that the multiset associated to w is strict
implies that qu(α) is non zero. We now verify: each α ∈ ∆1 ∩ Φk1 , qu(α) is root for the
pair (l, u). We already have that qu(α) belongs to either Φ(l, u) or Φ(k/l, u). If qu(α) does
not belong to Φ(l, u), then lies in Φ(k/l, u). Because of corollary.... there exist w in the
Weyl group of k1 so that −α = w(β1 + β2). Hence, ±qu(α) belongs to the strict multiset
qu(wΨn) ∪ qu(∆1 − Φz) − Φl, contradiction and we have shown that qu(α) is a root for
(l, u).
We show: if γ ∈ ∆1 and α ∈ ∆1 ∩ Φk1 have the same restriction to u, then they are
equal. Indeed, we choose w in the Weyl group of K1(Ψ) so that −α ∈ wΨn. Then,
−qu(α) belongs to the cone spanned by the multiset associated to w, besides if γ were
different from α, qu(α) would had at least multiplicity two in the multiset qu(∆1 − Φz).
Hence, ±qu(α) belongs to the strict cone spanned by the multiset associated to w, a
contradiction. It readily follows that k1 is an ideal of l. 2

Corollary 11. Assume zk is contained in l and K1 is not the trivial group. Then, if the
second statement of the proposition holds for a system ∆0 the first statement holds for
arbitrary ∆1.

Corollary 12. Let l be an ideal of k which contains zk. Then, k1(Ψ) ⊂ l if and only if
pu(Ψn) is strict.

Since l is an ideal, pu is Wk− map. Hence, the corollary follows from the Proposition.
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Remark 13. The hypothesis zk contained in l is not redundant. In fact, G = SU(2, 2) ≡
SO(4, 2) and L = SO(4), Table 1 rows 1,2 show example of k1 contained in l and
pu(wΨn) ∪ pu(∆−Ψz)−Ψl = pu(wΨn) is strict for every w ∈ Wk.
For SO(4, 2), Table 1 rows 3,4 show example of k1 contained in l so that pu(Ψn) is not
strict. In example ......we verify for SU(p, q) condition C holds for Ψ andK1(Ψ) whenever
K1 is a proper subgroup of Kss.

With minor modifications on the proof of the previous proposition it follows,

Proposition 6. Assume L is normalized by the compact Cartan subgroup T. Then,

l ⊇ k1(Ψ) if and only if wΨn ∪Ψ(k/l)

is strict for each w ∈ Wk.

We note that if replace in the Proposition wΨn... strict for pu(wΨn)... strict, the
statement is false as Remark ...shows.

11.4. Reductive symmetric pairs. Let H be a connected reductive subgroup of G
so that (G,H) is a reductive symmetric pair. That is, H is the fixed points of an
involution σ of G. Kobayashi, in [?], [?] has shown different criterions to assure π(λ) has
an admissible restriction to H. The aim of this subsection is to show the equivalence of
his criterion and condition (C). To begin with, we show Kobayashi condition implies k1

is contained in l. For this we recall notation to formulate the condition of Kobayashi.
As before we assume L := H ∩K is a maximal compact subgroup of H. Let g = k + s

be the Cartan decomposition associated to K. We assume that G has a compact Cartan
subgroup B ⊂ K ⊂ G. We choose B as follows:

σ(b) = b
b− := {X ∈ b : σX = −X} is a maximal Cartan subspace for the symmetric pair

(K,L).
As usual, b+ := {X ∈ b : σX = X}.

Henceforth, we fix compatible systems of positive roots ∆ ⊂ Φ(k, b) and Σ ⊂ Φ(k, b−).
We fix a system of positive roots Ψ in Φ(g, b) which contains ∆,
Let

R+Ψn :=
∑
β∈Ψn

R+β = {
∑
β∈Ψn

nββ : nβ ≥ 0} ⊂ ib∗.

Lemma 22. Assume Kobayashi condition holds for Ψ and H, that is, R+Ψn∩ib∗− = {0}.
Then K1(Ψ) is a subgroup of L.

The data (SO(2n, 2), SO(2n, 1), Psi ={ ε1 > · · · > εn > δ} shows that the condition
of Kobayashi for Psi and H does not implies the center of K is contained in L.

Proof: We show k1 is a subalgebra of l. For this we first prove that if α, β are in Ψn

and α + β is a root, then α + β vanishes on b−. In fact, the hypothesis together with
Lemma.... imply that pb+(R+Ψn) is a strict cone. Hence, there exists v ∈ b+ so that
β(v) > 0 for every β ∈ Ψn. Thus, if β ∈ Ψn, then σ(β) ∈ Ψn. Hence, σ(α + β) ∈ ∆.
Thus, if pb−(α+β) were non zero, we would have pb−σ(α+β) = −pb−(α+β) is nonzero
negative root, a contradiction. Since b− is a Cartan subspace of the symmetric pair
(K,L) we obtain that the root vectors of α + β belong to l. From lemma .... it follows
that k1(Ψ) is an ideal in l. 2
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Remark 14. A consequence of the above Lemma is: for (G,H) a reductive symmetric
pair, with H a noncompact group, such that there exists a discrete series of G with
admissible restriction to H, then K is not a simple Lie group. However, any irreducible
representation for SO(2n, 1) has an admissible restriction to U(n).

The next proposition involves two Cartan subgroups for the pair (K,L), to avoid
cumbersome notation in its formulation, we state it in words. In the course of the proof
we set up the required mathematical language.

Proposition 7. Assume (G,H) is a reductive symmetric pair. Then, condition (C)
holds if and only if Kobayashi’s condition holds.

Proof: We first assume Condition (C) holds and show that the statement of Kobayashi
holds. Condition (C) is stated in a compact Cartan subgroup T so that U = L ∩ T is
a Cartan subgroup for L. Whereas Kobayashi’s condition is stated on a σ−invariant
Cartan subgroup B so that b− is a Cartan subspace for the symmetric pair (K,L). By
means of Cayley transform c ∈ K associated to a set of strongly orthogonal roots S
in Φk we may arrange that c(t) = b. Here, we write c for Ad(c). Because of Lemma
...., k1(Ψ) is contained in l, and t1 ⊂ u. Hence, S ⊂ Φk2/l and we have the orthog-
onal decomposition u = t1+ < S > +V. Since, t = u ⊕ zk/l(u) we have that b+ =
t1 +V, b− = zk/l(u)+ c(< S >). Also c acts like the identity on the subspaces V, t1, zk/l(u).
Lemma....implies the equality R+Ψn ∩ i(t2)∗ss = {0}. Hence, whenever zk ⊂ u we have
that Kobayashi condition R+(Ψ1)n ∩ ib∗− = {0}, holds for the system Ψ1 := (ct)−1(Ψ).
In order to arrange that the restriction to b− of the set of compact roots in Ψ1 is
strict we replace Ψ by convenient wΨ with w ∈ Wk2 , owing to Lemma ... such a
w stabilizes the set Ψn. When, zk is non trivial and is not contained u, the classifi-
cation due to Berger of reductive symmetric pairs, cf [?], implies that (g, h) is one
of the pairs (SU(2p, 2q), Sp(p, q)); (e6(−14), f4(−20)), (SO(n, 2), SO(n, 1)). The fact that
k1 ⊂ l together with Proposition.... implies that the only pair we must consider is
(SO(n, 2), SO(n, 1). For n odd in ...we compute that condition (C) never holds, and for
n even in ...we determine those systems Ψ where conditions (C) holds. For this systems
we check that R+Ψn ∩ iz∗k = {0}, since in this case b− = zk we conclude the proof.

Conversely, Assume Kobayashi’s condition holds. Hence, Lemma .... implies k1 ⊂ l. If
zk is contained in l then Proposition .... let us obtain that condition (C) holds. Whenever
zk is nontrivial and is not contained in l, as in the proof of the direct affirmation we are
left to consider the case (SO(2n, 2), SO(2n, 1)). In this case, notation as in....., only the
systems Ψ±q satisfy Kobayashi’s condition, and also they satisfies condition (C). Hence
we conclude the proof. 2

Corollary 13. For (G,H) reductive symmetric pair, condition (C) for Ψ and L implies
condition (C) for K1(Ψ). Thus, we have admissible restriction to K1.

Remark 15. Proper do not imply condition c for non symmetric, so(4,1), restriction to
k-2.

Sp(p,1),delta > epsilon− 1 > ....,here pi restricted to k-2 is admisible (gross...) k-2T
is the set of fixed points of an involution of K, we claim: this involution cannot extend
to an involution of G, otherwise we would have sp-1(delta) contained in k-2T . Also
G.lambda.....> k-2 proper and condition C is not satisfied.

for holomorphic chamber, condition c never holds on k-ss, however sometimes there is
admissible restriction, sometimes not.
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11.5. Sufficient condition for proper projection. As before, let G be a connected
simple Lie group and T a Cartan subgroup of K. We fix a system of positive roots Ψ in
Φ(g, t) Let k1 := k1(Ψ), k2 be as usual. Let Λ be the differential of a character of T. We
now show,

Lemma 23. Assume Λ is regular and dominant for Ψ. Let Ω denote the coadjoint orbit
of λ := (−i)Λ ∈ g∗. Then, the map

pk1+zk
: Ω → k∗1 + z∗k

is proper. Moreover, if condition (C) holds for k1(Ψn), then

pk1 : Ω → k∗1

is proper.

Proof: We now recall two theorems due to [?] which show,

pk is a proper map.
pk(Ω) ⊆ Ad∗(K)(λ+ (−i)R+Ψn)

Set t− equal to the orthogonal complement of t1+zk. Hence t− is a Cartan subalgebra of
the semisimple factor of k2. Because of lemma.... R+Ψn ∩ t− = 0. Thus, pk,l : R+Ψn → l∗

is a proper map. Hence, pk,l : Ad(K)(λ+R+Ψn) −→ l∗ is also a proper map. If condition
C holds, then we have that R+Ψn ∩ t2 = 0, now the proof follows as before. 2

Proposition 8. Assume (G,H) is a reductive symmetric pair. Then Kobayashi’s con-
dition holds for Ψ if and only if pl : Ω → l∗ is proper.

Since (G,H) is a reductive symmetric pair , the hypothesis forces that condition (C)
holds for K1(Ψn), hence the map is proper.

for the other implication.....

Corollary 14. Assume (G,H) is a reductive symmetric pair and Kobayashi’s condition
holds for Ψ. Then a discrete series whose Harish-Chandra parameter is dominant with
respect to Ψ has an admissible restriction to H.

11.6. Computing k1(Ψ). In this subsection we determine the ideals k1(Ψ) for each sim-
ple real Lie algebra g who has a compact Cartan subalgebra. The final result is,

Proposition 9. The zero ideal is equal to a k1(Ψ) if and only if G/K is Hermitian.
Any non zero, semisimple ideal in k is equal to an ideal k1(Ψ) except for: four ideals in
so(4)× so(4) ⊂ so(4, 4); so(2q + 1) in so(2p, 2q + 1), p ≥ 2; so(4) in so(4, n), (n 6= 2).

i) We have that k1(Ψ) = 0 if and only if Ψ is either a holomorphic or a nonholomorphic
system. Hence, for any other system of positive roots k1(Ψ) is not equal to to zero. Thus,
the first claim is proved. It follows from Cartan classification of Symmetric Spaces, that
forG/K Hermitian, kss has more than one simple factor only whenG is locally isomorphic
to SU(p, q) or SO(4, 2) ≡ SU(2, 2). We dealt with this case in iv).

ii) We now show for an exceptional simple Lie group G whose symmetric space is not
Hermitian, that any nonzero ideal in k is equal to an ideal k1(Ψ) for a convenient choice
of Ψ. It follows from the table in [?] page 518 that either k is simple or k = su2 + k′ with
k′ simple, and su2 corresponds to a long compact root. Thus, when k is not simple, then
G/K is a quaternionic symmetric space, [?]. Therefore, our claim follows from

Proposition 10. Let G be so that k = su2(α) + k′, with k′ a simple ideal and G/K is a
quaternionic symmetric space. Then the ideals su2(α), k′, k are k1(Ψ).
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In the course of the proof we explicitly write down the ideal that corresponds to each Ψ.
Proof: Fix a Borel de Siebenthal system of positive roots Ψ in Φ(g, t) so that the maximal
root α is compact, simple for Ψc, and corresponds to the su2 factor. That is, in Ψ all
simple roots but one are compact and the noncompact simple has multiplicity two in the
highest root. For a proof of the existence of such a system c.f. [?]. For this system, all
the simple roots for ∆ different from α are simple for Ψ. Hence, [uΨ, uΨ] ⊆ su2. Thus,
k1(Ψ) = su2. Any other system of positive roots is equal to wΨ with w in the complex
Weyl group. We now show that if k1(wΨ) = su2, then wΨ is a Borel de Siebenthal
system of positive roots. In fact, k2(wΨ) = k′. Hence, Lemma 2 let us conclude that all
the simple roots for wΨ ∩ Φ(k′) are simple for wΨ. Thus, wΨ has rank(k)− 1 compact
simple roots and one noncompact simple root β. Owing to the hypothesis that k′ is an
ideal in k we obtain that the root associated to the su2 factor is orthogonal to every
compact simple root for wΨ, hence, this root is, up to a scalar, equal to the fundamental
weight associated to β. It follows from the extended Dynkin diagrams as in [?] page 77
that wΨ is a Borel de Siebenthal system.

We claim that k1(wΨ) = k′ if and only if w−1α is a simple root for Ψ. Indeed, let w
be so that w−1α is a simple root for Ψ. Hence, α = ww−1α is simple for wΨ. Therefore,
the sum of two noncompact roots in wΨ can never be α and hence [uwΨ, uwΨ] ⊆ k′. The
fact that k′ is a simple ideal let us conclude that k1(wΨ) = k′. Conversely, if k1(wΨ) = k′,
then Lemma 2 implies that α is a simple root for wΨ. We are left to show that there is a
system of positive roots whose k1 is equal to k. For this, we count the number of systems
whose k1(Ψ) is either su2 or k′. We note that the following holds:

A) If Ψ1,Ψ2 are systems of positive roots so that ∆ ⊂ Ψj, α is a simple root for both of
them and the bond for α in the respective Dynkin diagram is the same. Then Ψ1 = Ψ2.
This follows from: a) k′ is simple, b) the simple roots adjacent to α are noncompact, c)
Any simple root not adjacent to α is compact.

B) Two Borel de Siebenthal systems containing ∆ so that its k1 ideal is su2 are equal.
Therefore, the number of positive roots systems containing ∆ and whose k1 is equal

to k is equal to card[W (Φ)/W (Φc)]−(1 + number of long simple roots in Ψ). One can
check that this number is positive and we have concluded the proof of Proposition 6 2

Note 2: When G/K is quaternionic and k′ is semisimple but not simple then there are
systems wΨ containing ∆ so that α is simple for wΨ and k1(wΨ) 6= k′. From the tables
in [?] we need to consider so(4, n), n ≥ 3. For so(4, 2q) = su(e1 + e2) ⊕ k′, q ≥ 3. For
the systems wΨ = Ψ±q (c.f. ....) e1 ± e2 are simple for wΨ and k1(wΨ) = so(2q). For
so(4, 2q + 1) there is not system Ψ so that K1(Ψ) = SO(2q + 1).

Next for each quaternionic exceptional Symmetric Space we compute m(wΨ) :=sum of
the coefficients of the noncompact simple roots in the highest root for wΨ for each system
of positive roots wΨ such that α is simple for wΨ. For this, we write the simple roots as
in [?] page 478, for E6 ⊂ E7 ⊂ E8 as α1, α3, α4, ..., α8, α2, where α1, α3, α4, ..., α8 is the
A7 sub diagram and α2 has a non zero inner product only with α4. For F4, the simple
roots are denoted by αj, αj, j = 3, 4 are the long roots and α2 is adjacent to α3. For G2,
α1 is the long root.
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α E6(−2) E7(−5) E8(−24) F4(4) G2(2)

α1 2 3 4 3
α2 3 4 6
α3 4 6 8 3
α4 6 8 12 6
α5 4 6 10
α6 2 4 8
α7 2 6
α8 3

iii) g = g2. Here, Φ = {±(rα + sβ), 1 ≤ r ≤ 3, 1 ≤ s ≤ 2}. ∆ = {α, 2β + 3α}.
There are three systems of positive roots containing ∆. We list each of them and the
corresponding k1. Ψ = {(rα + sβ), 1 ≤ r ≤ 3, 1 ≤ s ≤ 2} , k1(Ψ) = su(2β + 3α);
k1(SβΨ) = su(2β + 3α) + su(α); k1(Sβ+αSβΨ) = su(α). We not that Ψ is a small and
that Sβ+αSβΨ is not small, m(Sβ+αSβΨ) = 3.
Thus, every non zero ideal of k is equal to an ideal k1(Ψ).

iv) We are left to determine the ideals k1(Ψ) for g a classical algebra and kss is semisimple
but not simple. For all these particular cases we may choose a basis {ε1, . . . , εp, δ1, . . . , δq}
for it∗ and describe the roots system by means of this basis. For each case, we fix a system
of positive roots ∆ for Φ(k, t) and describe the roots in Φn. The number m(Ψ) := sum
of multiplicity of each noncompact simple root in the highest root, is computed.

g = su(p, q), p ≥ 1, q ≥ 1 we fix

∆ = {εi − εj, δr − δs, 1 ≤ i < j ≤ p, 1 ≤ r < s ≤ q, }.

Here, Φn = {±εi ± δj, 1 ≤ i ≤ p, 1 ≤ j ≤ q}. There are (p+q)!
p!q!

positive root systems

containing ∆. They are given by shuffling the delta’s and the epsilon’s. For example,

ε1 > . . . εa > δ1 > . . . > δb > εa+1 > . . . > εa+c > δb+1 > . . . > δb+d . . .

The positive root systems ε1 > · · · > εp > δ1 > · · · > δq, or δ1 > · · · > δq > ε1 > · · · > εp
gives k1(Ψ) = 0.
A situation εi > δj > εk forces εi − εj ∈ k1(Ψ), hence su(p) ⊆ k1(Ψ), and δj > εi > δk
implies that su(q) ⊆ k1(Ψ).
Thus, the unique way of obtaining su(p) = k1(Ψ) is by a system

Ψ′
a := {ε1 > · · · > εa > δ1 > · · · > δq > εa+1 > · · · > εp}, 1 ≤ a < p,

and the unique way of obtaining su(q) = k1(Ψ) is by means of

Ψb := {δ1 > · · · > δb > ε1 > · · · > εp > δb+1 > · · · δq}, 1 ≤ b < q.

Any of this systems, is small. For any other nonholomorphic system k1(Ψ) is equal the
semisimple factor of k.
Thus, for su(p, q) every ideal of kss is equal to an ideal k1(Ψ).

g = so(2p, 2q + 1), p ≥ 3, q ≥ 0 we fix

∆ = {εi ± εj, δr ± δs, δt, 1 ≤ i < j ≤ p, 1 ≤ r < s ≤ q, 1 ≤ t ≤ q}.
Here, Φn = {±εi ± δj,±εi, 1 ≤ i ≤ p, 1 ≤ j ≤ q}. Hence for any system of positive roots
Ψ one of ±ε1 and one of ±ε2 are in Ψn. Thus, one of the four ±ε1± ε2 is a root for k1(Ψ).
Hence, so(2p), (p ≥ 3) is contained in k1(Ψ) and so(2q+1) cannot be equal to any k1(Ψ).
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In total, there are 2 (p+q)!
p!q!

positive root systems in Φ(g, t) containing ∆. They are given

by shuffling the delta’s and the epsilon’s or applying the Weyl group element Sεp to a
shuffling . For example,

ε1 > . . . εa > δ1 > . . . > δb > εa+1 > . . . εa+c > δb+1 > . . . > δb+d . . .

We observe
εi > δj > εk implies εi − δj + δj − εk = εi − εk ∈ k1(Ψ)

δi > εj > δk implies δi − εj + εj − δk = δi − δk ∈ k1(Ψ)

δi > εi implies δi − εi + εi = δi ∈ k1(Ψ)

Hence, the unique possibility of obtaining for Ψ that k1(Ψ) = so(2p) is when do not
hold the last two situations. That is, when Ψn = {εj ± δk} or Ψn = {εj ± δk, 1 ≤ j <
p,−εp ± δk}. Both of these systems are small.
Here, every ideal of k is equal to k1(Ψ) but zero or so(2q + 1).

g = so(4, 2q + 1), q ≥ 0 we fix

∆ = {ε1 ± ε2, δr ± δs, δt, 1 ≤ r < s ≤ q, 1 ≤ t ≤ q}.
Here, Φn = {±εi ± δj,±εi, 1 ≤ i ≤ 2, 1 ≤ j ≤ q}. One of the four roots ±ε1 ± ε2
is a root for k1(Ψ). Thus, either su2(ε1 + ε2) or su2(ε1 − ε2) is contained in k1(Ψ). For
Ψ0 = {ε1 > ε2 > δ1 > · · · > δq} we obtain that ε1 + ε2 ∈ k1(Ψ0) and

k1(Ψ0) = su2(ε1 + ε2), m(Ψ0) = 2.

For Sε2Ψ0 we obtain that ε1 − ε2 ∈ k1(Sε2Ψ0) and

k1(Sε2Ψ0) = su2(ε1 − ε2), m(Sε2Ψ0) = 2.

There are two cases left, first there is no δ on the right of the epsilon’s, that is, Ψ±q =
{δ1 > · · · > δq > ε1 > σε2}, σ ∈ {±1}, i.e Ψ−q = Sε2Ψq, we have

k1(Ψ±q) = su2(ε1 + (±1)ε2)⊕ so(2q + 1), m(Ψ±q) = 4, q ≥ 2.

k1(Ψ±1) = su2(ε1 + (±1)ε2)⊕ so(3), m(Ψ±1) = 3, q = 1.

The second case is when at least one δ is on the left of the ε′s. These are the systems

Ψ±a := {δ1 > · · · > δa > ε1 > ±ε2 > δa+1 > · · · > δq}, 1 ≤ a ≤ q.

Then,
k1(Ψ±a) = su2(ε1 ± ε2)⊕ so(2q + 1), m(Ψ±a) = 4, 1 < |a| ≤ q

k1(Ψ±1) = su2(ε1 ± ε2)⊕ so(2q + 1), m(Ψ±1) = 3,

Whenever, the system is of the type, ε1 > δj > ±ε2 then k1(Ψ) is equal to k.
The ideals {0}, so(4), so(2q + 1) are not equal to a k1(Ψ). We point out that no discrete
series of G has an admissible restriction to so(2q + 1). Otherwise, the discrete series of
so(1, 2q + 1) would be non empty.

g = so(2, 2q + 1) Here
∆ = {ε1 ± δk, δk, k = 1, · · · , q}

Φn = {±ε1,±ε1 ± δj, 1 ≤ j ≤ q}.
Obviously, for Ψ a non holomorphic system of positive roots we have k1Ψ = so(2q + 1).
The center of k is Cε1. We now show that for every system of positive roots Ψ, then
R+Ψn ∩ iz∗ 6= {0}. In fact, for any system of positive roots system Ψ in Φ(g, t), we have
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that ±ε1 belongs to Ψ. Thus, ±ε1 +
∑

0(ε1± δi) ∈ R+Ψn and R+Ψn∩ iz∗k 6= 0. We would
like to point out that no discrete series for SO(2, 2q + 1) restricts discretely either to
SO(1, 2q+1) or to SO(2q+1). Indeed, SO(1, 2q+1) has no discrete series representation,
so if discrete series had an admissible restriction to any of the subgroups in question, we
would have that SO(1, 2q + 1) had a non empty discrete series. This shows of K1(Ψ) so
that the discrete series attached to Ψ has no admissible restriction to K1(Ψ).

g = sp(p, q), p ≥ 1, q ≥ 1, we fix

∆ = {εi ± εj, 2εk, δr ± δs, 2δt, 1 ≤ i < j ≤ p, 1 ≤ r < s ≤ q, 1 ≤ t ≤ q}.

Here, Φn = {±εi ± δj, 1 ≤ i ≤ p, 1 ≤ j ≤ q}. In total there are (p+q)!
p!q!

systems of positive

root in Φ(g, t) containing ∆. They are given by shuffling the delta’s and the epsilon’s.
We observe

εi > δj > εk implies εi − δj + δj ± εk = εi ± εk ∈ k1(Ψ)

δj > εk implies δj − εk + δj + εk = 2δj ∈ k1(Ψ)

εi > δj implies εi − δj + δj ± εi = 2εi ∈ k1(Ψ)

δi > εj > δk implies δi − εj + εj ± δk = δi ± δk ∈ k1(Ψ)

Hence, the unique possibility of obtaining for Ψ that k1(Ψ) = sp(p) is for Ψ0 := {ε1 >
· · · > εp > δ1 > · · · δq}, and the unique way of obtaining sp(q) = k1(Ψ) is by means of
Ψq := {δ1 > · · · > δq > ε1 > · · · > εp}. For any other system k1(Ψ) is equal to k. Ψq,Ψ0

are small.
The trivial ideal is the unique ideal not equal to a k1(Ψ).

g = so(2, 2q), q ≥ 2, we fix

∆ = {δr ± δs, 1 ≤ r < s ≤ q}.
Here, Φn = {±ε1 ± δj, 1 ≤ j ≤ q}. The center of k is equal to Cε1. There are 2(q + 1)
systems of positive roots that contain ∆. They are:

Ψa := {δ1 > · · · > δa > ε1 > δa+1 > · · · > δq > 0},
Ψ−a := Sε1−δqSε1+δqΨa, 0 ≤ a ≤ q.

Ψ0,Ψ−0 are the holomorphic and antiholomorphic systems. For q ≥ 3, 1 ≤ a ≤ q, we
obtain that k1(Ψa) = k1(Ψ−a) = so(2q).
For q = 2, so(4) has three non zero ideals, they are so(δ1± δ2) and so(4), all of them are
equal to a k1(Ψ) as Table 1 shows. Hence, all the ideals of kss are equal to a k1Ψ.
For any q ≥ 2, we have that

R+(Ψq)n ∩ iz∗k = R+(Ψ−q)n ∩ iz∗k = 0.

In fact, (
∑

j aj(δj − ε1 + bj(δj + ε1)) ∈ Cε1, aj ≥ 0, bj ≥ 0 forces aj = bj = 0, for all j.
For any other systems Ψ,

R+Ψn ∩ iz∗k 6= 0.

Because, (ε1 − δq) + (ε1 + δq) ∈ R+Ψn ∩ iz∗k .
We have that

m(Ψ1) = m(Sε1+δqSε1−δqΨ1) = 3

m(Ψa) = m(Sε1+δqSε1−δqΨa) = 4, 1 < a < q.

m(Ψq) = m(Ψ−q) = 2.

Corollary ... implies that a discrete series with dominant parameter with respect to either
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Ψq or Ψ−q have an admissible restriction to SO(2q). The other discrete series have no ad-
missible restriction to K1(Ψ) = SO(2q). One way of showing this last statement is to ob-
serve that SO(2q) = SO(1, 2q)∩SO(2q). Thus, SO(2q) is the maximal compact subgroup
of the fixed point subgroup for the reductive symmetric pair (SO(2, 2q), SO(1, 2q)) and zk

is a maximal Cartan subspace for the symmetric pair (SO(2)×SO(2q), SO(1)×SO(2q))
so that R+Ψn ∩ iz∗k 6= {0}. Then, we apply Theorem 4.2 in [?] . We would like to notice
that it follows from Cartan’s classification of bounded symmetric domains G/K and from
Berger’s classification of the reductive symmetric pairs (G,H) that the unique G/K such
that Kss is a maximal compact subgroup of H, for a suitable H, is G = SO(p, 2) and
H = SO(p, 1).

g = so(4, 4), we fix

∆ = {ε1 ± ε2, δ1 ± δ2, }.
Here, Φn = {±εi ± δj, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2}. For this algebra there are twelve systems
of positive roots containing ∆. For each system the first column shows the positive
noncompact roots, the second column k1(Ψ) and the third computes the numberm(Ψ) :=
sum of multiplicity of each noncompact simple roots in the highest root.

Ψn k1(Ψ) m
εi ± δj su(ε1 + ε2) 2
ε1 ± δj,−ε2 ± δj su(ε1 − ε2) 2
±εi + δj su(δ1 + δ2) 2
±εj + δ1,±εj − δ2 su(δ1 − δ2) 2
±εj + δ1, (−1)j+1εj ± δ2 su(ε1 − ε2) + su(δ1 − δ2) + su(δ1 + δ2) 3
±εj + δ1, εj ± δ2 su(ε1 + ε2) + su(δ1 − δ2) + su(δ1 + δ2) 3
ε1 ± δj,±ε2 + (−1)j+1δj su(ε1 − ε2) + su(ε1 + ε2) + su(δ1 − δ2) 3
ε1 + δj,±ε2 + δj su(ε1 − ε2) + su(ε1 + ε2) + su(δ1 + δ2) 3

Table 2

The other systems of positive roots gives k1(Ψ) = k.
The ideals {0}, su2(ε1 + σε2) + su2(δ1 + τδ2), σ, τ ∈ {±1}, so(4) × {0} = su2(ε1 + ε2) +
su2(ε1 − ε2), {0} × so(4) = su2(δ1 + δ2) + su2(δ1 − δ2) are not a k1(Ψ).

g = so(4, 2q), q ≥ 3, we fix

∆ = {ε1 ± ε2, δr ± δs, 1 ≤ r < s ≤ q}.
Here, Φn = {±εi ± δj, 1 ≤ i ≤ 2, 1 ≤ j ≤ q}. For Ψ0 = {ε1 > ε2 > δ1 > · · · > δq > 0} we
obtain that ε1 + ε2 ∈ k1(Ψ) and then su2(ε1 + ε2) = k1(Ψ). For Sε2+δqSε2−δqΨ0 we obtain
that ε1 − ε2 ∈ k1(Ψ) and then su2(ε1 − ε2) = k1(Ψ). Both systems are small.
For Ψa = {δ1 > · · · > δa > ε1 > ε2 > δa+1 > · · · > δq}, 1 ≤ a ≤ q, we have for 1 ≤ a < q

k1(Ψa) = su2(ε1 + ε2)⊕ so(2q)

and

k1(Sε2+δqSε2−δqΨa) = su2(ε1 − ε2)⊕ so(2q).

It follows that

m(Ψ1) = m(Sε2+δqSε2−δqΨ1) = 3

m(Ψa) = m(Sε2+δqSε2−δqΨa) = 4 for 1 < a < q

For q ≥ 3 we have k1(Ψq) = so(2q) as well as k1(Ψ−q := Sε2+δqSε2−δqΨq) = so(2q). The
systems Ψq, Sε2+δqSε2−δqΨq are small. For the system ε1 > δ1 > · · · > δq > ε2, since
q ≥ 3 we have that k1(Ψ) = k. Any other system of positive roots must contain both
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δj > εi > δk and εi > δj > εk and for them k1(Ψ) is equal to k.
Every ideal is equal to a k1(Ψ) but {0}, so(4).
g = so(2p, 2q), p ≥ 3, q ≥ 3, we fix

∆ = {εi ± εj, δr ± δs, 1 ≤ i < j ≤ p, 1 ≤ r < s ≤ q, }.
Here, Φn = {±εi±δj, 1 ≤ i ≤ p, 1 ≤ j ≤ q}. As before, let Ψ that contains ∆, a situation
εi > δj > εk forces εi − εj ∈ k1(Ψ), hence so(2p) ⊆ k1(Ψ), and δj > εi > δk implies that
so(2q) ⊆ k1(Ψ). Thus, the unique way of obtaining so(2p) = k1(Ψ) is for the system

Ψ0 := {ε1 > · · · > εp > δ1 > · · · > δq},
and Ψ−0 := Sεp+δqSεp−δqΨ0. The unique way of obtaining so(2q) = k1(Ψ) is by means of

Ψq := {δ1 > · · · > δq > ε1 > · · · > εp}
and Ψ−q := Sεp+δqSεp−δqΨq. For any other system k1(Ψ) = k. We have that

m(Ψ0) = m(Ψ−0) = m(Ψq) = m(Ψ−q) = 2,

Every ideal but zero is equal to a k1(Ψ).

11.7. Strongly elliptic elements. Let us recall that an element of a semisimple Lie
algebra h is called strongly elliptic (resp. elliptic ) in h if its centralizer in the Adjoint
group of h is a compact subgroup (resp. is a compact Cartan subgroup). In [?] we find
a characterization of the strongly elliptic elements in g by means of the action of G on
the symmetric space G/K. We also find a proof that strongly elliptic elements in g do
exists if and only if rank k = rankg. We have:

Proposition 11. Let Ω = G · λ be a coadjoint orbit in g∗. If λ is strongly elliptic and
ph : Ω → h is a proper map. Then, ph(Ω) is contained in the set of strongly elliptic
elements of h∗.

Proof: Let γ ∈ Ω and µ := ph(γ), then the centralizer, CH(µ), of µ in H acts on the
fiber p−1

h (µ)∩Ω. Since CH(µ) is an algebraic group one of its orbits in p−1
h (µ)∩Ω is closed.

Thus, the hypothesis that ph is a proper map gives us that Ad∗(CH(µ))γ0 is compact
for some γ0 ∈ p−1

h (µ). Now, since γ0 is Ad∗(G)−conjugate to λ we have that CG(γ0) is
a compact subgroup of G. Thus, CH(µ)/(CH(µ) ∩ CG(γ0)) is a compact homogeneous
space. Hence, CH(µ) is compact. This proves the proposition. 2

Corollary 15. Assume H has at least one noncompact factor, then, ph(λ) 6= 0

This is due to the fact that under the above hypothesis, ph(λ) is a strongly elliptic
element of h∗.

We now show an example so that properness does not imply ph(λ) is h−regular. In
fact, we consider g = so(4, 3) and h equal to the normal real form of g2 immersed in
the usual way. A reference for this is [?]. Hence, it∗ admits an orthogonal basis and a
system of positive roots Ψ so that Ψn = {ε1± δ,−ε2± δ, ε1,−ε2}, Ψk = {ε1± ε2, δ}. Here,
k1(Ψ) = su(ε1 − ε2). The torus u is the orthogonal to ε1 + ε2 + δ. The roots of u in h
are: ±(ε1 − δ),±(ε2 − δ),±(ε1 − ε2) and (1, 1,−2) together with its change of signs and
permutations. It follows that a vector in pu(C(Ψ) ∩ {λ1 + λ2 = 2λ3}) is orthogonal to
the compact root (1, 1,−2).

Corollary 16. Let Ω = G·λ be a strongly elliptic coadjoint orbit and assume ph : Ω → h∗

is a proper map. Then, pl : Ω → l∗ is a proper map.
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Proof: The decompositions g = k⊕ s = h⊕ q and the fact that the Cartan involution
associated to k leaves invariant h and q imply that we may write in a unique manner
each x ∈ g, x = xl + xhs + xqk + xqs with xl ∈ l, xhs ∈ h ∩ s, xqk ∈ q ∩ k, xqs ∈ q ∩ s.
This decomposition is orthogonal with respect to the Killing form. For the purpose of
this proof, we denote the Killing form evaluated in (v, v) by ±‖v‖2 according to that the
Killing form in (v, v) is positive or negative. Thus, we have for x ∈ G · λ that

−‖λ‖2 = −‖xl‖2 − ‖xqk‖2 + ‖xhs‖2 + ‖xqs‖2.

The hypothesis implies that whenever xl, xhs runs in a bounded set then xqk, xqs varies
on a suitable bounded set. On the other hand, Proposition 7 implies that −‖xl‖2 +
‖xhs‖2 ≤ 0 for every point xl + xhs in ph(Ω). Therefore, whenever xl runs in a compact
set, xhs runs on a bounded set. Since Ω is closed in g∗, we have that pl is a proper map.
2

In order to state the next Proposition we set up some notation, we fix U ⊂ T maximal
tori of L and K respectively, and consider λ ∈ t∗ g−regular so that the map ph : Ω → h∗

is proper. Next, we choose, Cl,λ,+, a closed Weyl chamber for Φ(l, u) in u∗ so that ph(iλ)
is dominant. Whenever ph(λ) is h−regular the chamber is unique.

Proposition 12. There exists a unique open Weyl chamber Ch,λ,+ for Φ(h, u) contained
in Cl,λ,+ such that ph(iΩ) ∩ Cl,λ,+ is contained in the closure of Ch,λ,+ relative to Cl,λ,+.

Proof: We write
Cl,λ,+ − ∪β∈Φn(h,u)Ker(β)

as a union of disjoint, convex sets C1, · · · , Cr. Each of this convex sets is the relative
closure in Cl,λ,+ of an open Weyl chambers for Φ(h, u) contained in Cl,λ,+. Since, the
centralizer of any strongly elliptic element is a compact Lie algebra, we have that the
set of strongly elliptic elements of h∗ is equal to the set D := ∪rj=1Ad

∗(H)Cj. Next, we

show that Ad(H)Cj is both a closed and an open relative set in D. In fact, let Ĉj denote

the interior of Cj. Thus, Ĉj is an open Weyl chamber for Φ(h, u). We will show:

Ad(H)Cj = relative closure inD of Ad(H)Ĉj.

For this, we verify that if j 6= k then the relative closure of Ad(H)Ĉj does not intersects

the relative closure of Ad(H)Ĉk. In fact, let Xn ∈ Ĉj, Yn ∈ Ĉk, xn, yn ∈ H, h ∈ H, z ∈
∪sCs so that Ad(xn)Xn and Ad(yn)Yn converge to Ad(h−1)z. Replacing xn by hxn and
yn by hyn we may and will assume that h = 1. Since the eigenvalues of Xn (resp. Yn) are
the same as of Ad(xn)Xn (resp. Ad(yn)Yn) and Xn, Yn are semisimple matrices, there
exist a subsequence of Xn (resp. Yn) which converges, for a proof cf [?], for simplicity, we

denote such subsequences by Xn, Yn. Let β be a noncompact root such that β(Ĉj) > 0

and β(Ĉk) < 0. Thus, we have that β(z) is non zero, it is the limit of a sequence of
positive numbers (β(Xn)) and it is the limit of a sequence of negative numbers (β(Yn)),
a contradiction. Since,

Ad(H)Cj j relative closure of Ad(H)Ĉj inD,
and the set of strongly elliptic elements equal to the disjoint unions ∪jAd(H)Cj, we have
the equality that were looking for. Now the hypothesis, H is connected, leads us that
Ad(H)Cj, j = 1, · · · , r are the connected components of D.

Finally, ph(iΩ) is a closed connected subset of the set of strongly elliptic elements, and
each Ad(H)Cj is closed and open relative set in D. Thus, ph(iΩ) is contained in one of
the Ad(H)Cj. 2
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The convexity Theorem showed by Weinstein in [?] together with Proposition 7 and
Proposition 8, applied to (Weinstein notation) U = Ad(H)Cj lead us to:

Corollary 17. ph(iΩ) ∩ Cl,λ,+ is a closed convex, locally polyhedral subset of Cl,λ,+ −
∪βKerβ, and p−1

h (µ) is connected for every µ ∈ ph(Ω).

In order to apply the Theorem of Weinstein, we need to verify that Ad(H)Cj ∩ Cl,λ,+

is a convex set. Actually, Ad(H)Cj ∩ Cl,λ,+ = Cj. This follows from i) U is a compact
Cartan subgroup, ii) Since H is connected, the normalizer of U in H is equal to the
normalizer of U in L, iii) Two elements of a closed Weyl chamber in compact Lie algebra
which are conjugated by an inner automorphism are equal.

Remark 16. Theorem 1 together with Proposition 8,9 and their Corollaries reflects the
Theorem which shows (cf. Kobayashi, [?]) that whenever a discrete series representa-
tion of G restricts discretely to a subgroup H, then the irreducible factors are discrete
series for H, and the Theorem that if a discrete series representation has an admissible
restriction to H, then it has an admissible restriction to L (c.f. 3.1). Corollaries 9,
10 represent the fact that whenever π(λ) restricts discretely to H, the Harish-Chandra
parameters of the H−irreducible factors belong to a unique Weyl chamber of h∗ in u∗.
This generalizes the result that when a holomorphic discrete series restricts discretely,
then the irreducible factors are again holomorphic discrete series and similar results [?]
and Loke on quaternionic representations. In [?], we find examples of discrete series for
SO(4, 1) whose restriction to SO(2, 1) contains both holomorphic and antiholomorphic
discrete series as discrete factors.

Proposition 13. Assume that π(λ) has an admissible restriction to H. Then, the set of
Harish-Chandra parameters for each irreducible factor of the restriction of π(λ) to H is
contained in a unique Weyl chamber for Φ(h, u).

Proof:

To talk about 1. For large rank groups, for example, Sp(2n,R), n > 11, there are
chambers and µ so that µ + ρn(µ) does not lie in the chamber of µ. Pick up any sys-
tem of positive roots and fix β a noncompact simple root for Ψ and define Ψ′ := SβΨ.
Then, ρn(Ψ

′) = ρn(Ψ)− β. Now −β is a simple root for Ψ′ and 2(ρn(Ψ
′),−β)/(β, β) =

−2(ρn(Ψ), β)/(β, β)+2. For the usual chamber ρn = n
2
(e1 + · · ·+en), and β = 2en hence,

2(ρn(Ψ
′),−β)/(β, β) = −n

2
+ 2 and thus ρ(Ψ′) and ρ(Ψ′) + ρn(Ψ

′) do not lie in the same
Weyl chamber for n large.

For the Borel de Siebenthal chamber Ψ, ρn is dominant wrt Ψ . For a proof Hecht-
Schmid,

For rank 2 groups as well as for so(2n, 1) ρn is dominant.
For a chamber Ψ such that m(Ψ) is smaller or equal than 2, ρn is not always dominant

wrt Ψ . For example, in su(p, 1) for the chamber

Ψa := {e1 > · · · > ea > δ > ea+1 > · · · > ep}, 0 ≤ a ≤ p,

ρn(Ψa) = 1
2
(e1 + · · ·+ ea− ea+1−· · ·− ep+(p−2a)δ) Hence, 2(ρn, δ− ea)) = (p−2a)−1

and 2(ρn, ea+1 − δ) = (2a − p) − 1 Thus, whenever p − 2a has absolute value not equal
to 0 or 1, ρn(Ψa) is not dominant for Ψa. The table bellow shows the systems of positive
roots Ψb such that ρn(Ψa) is dominant with respect to Ψb.
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p− 2a > 1 Ψ0

p− 2a = 1 Ψb, 0 ≤ b ≤ a
p− 2a = 0 Ψa

p− 2a = −1 Ψb, a ≤ b ≤ p
p− 2a < −1 Ψp

MI-JO so we must look for examples in su(n,2) restricted to su(n,1)
Kobyashi has examples of Aq(λ) lambda singular so that the restriction to H has Aq(λ)

components for different parabolic His examples are nonunitary principal series coming
from a maximal parabolic q,

Wallach proves the proposition when he restricts to K1(Ψ) BY MEANS of the Aq(λ).

11.8. Comparing K1 of Gross-Wallach and K1(Ψ). We note that if Ψ is a holomor-
phic system of positive roots. That is, the sum of two roots in Ψn never is a root, then
k1(Ψ) = {0}. Whereas for this case Gross-Wallach in [?], Proposition 1 have defined k1

equal to the center of k. We claim that when Ψ is small, and is a non holomorphic system,
then the Lie algebra k1 defined by Gross-Wallach agree with ours. In fact, Ψ small and
nonholomorphic is equivalent to either Ψ has a unique non compact simple root β with
multiplicity two in the highest root α or Ψ has exactly two noncompact simple roots,
β1, β2 with multiplicity one in the highest root. We recall Gross-Wallach defined K1 to
be the simple ideal of k that contains the su2(α) spanned by the highest root. In the
first case the simple roots for Ψc are the compact simple roots for Ψ, {α1, · · · , αs}, and
γ = 2β +

∑
niαi. Let Cγ be the roots in {α1, · · · , αs, γ} which belong to the connected

component of γ in the Dynkin diagram for Ψc. Hence, if β, σ are in Ψn whose sum is a
root, then β+σ lies in the subroot system spanned by Cγ. Therefore, k1(Ψ) is contained
in the simple ideal of k whose root system is < Cγ > . Hence, k1 = k1(Ψ). For the other
case Gross-Wallach in [?] Proposition 1, have shown that k has a one dimensional center
and that the simple roots for Ψc are {α1, · · · , αs, γ} with γ = β1 +β2 +

∑
niαi. Now the

proof follows as before.
Besides, [?] show that when (G,H) is a reductive symmetric pair and K1(Ψ)ZK is

contained in L, then the Harish-Chandra parameter of the irreducible factors of the
restriction of π(λ) to H lie in a unique Weyl chamber C(Ψh) constructed as follows. Let
Ψ be the system of positive roots determinate by Λ. For a compact semisimple Lie group
L let SL denote the element of the Weyl group that transform each system of positive
roots into its opposite. Under the hypothesis of Gross-Wallach we further assume that
T ⊂ L = H∩K ⊂ K,K1 := K1(Ψ) ⊂ L and recall their definition of PG := −sKΨ, PH :=
Φ(h) ∩ PG,ΨH = −sLPH . We would show ΨH = Ψ ∩ Φ(h). In fact, K = K1 ×K2, L =
K1×L2 Hence, sK = (sK1 × 1)(1× sK2). Since T ⊂ L, sL = (sK1 × 1)(1× sL2). It follows
from Lemma 2 that sK2 (resp. sL2) is a product of reflections about compact simple roots
in Ψ (resp. Ψc ∩ Φ(h)). Thus, (1 × sK2)Ψn = Ψn, (1 × sL2)(Ψ ∩ Φ(h))n = (Ψ ∩ Φ(h))n.
Since Ψ = Ψ(K1) ∪Ψ(K2) ∪Ψn, together with the observations of above lead us to

sKsLΨ = (1× sK2)(1× sL2)Ψ

Thus, ΨH = sKsLΨ ∩ sLΦ(h) = Ψ(K1) ∪Ψ(L2) ∪Ψn ∩ Φ(h).

12. Algorithms to compute multiplicities

12.1. Discrete methods. As before G denotes a connected matrix, semisimple Lie
group and K a maximal compact subgroup for G. Let H be a connected reductive
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subgroup of G. We choose K so that H ∩K = L is a maximal compact subgroup of H.
From now on, we assume that G, as well as H, has compact Cartan subgroups U ⊂ T.
Let PT denote the lattice of differentials at the identity of the characters of T. That is,
PT denotes the set of analytically integral forms on T. We choose Λ ∈ PT and for the
purpose of this section we assume that Λ is regular. That is, the inner product of Λ with
any root in Φ(g, t) is nonzero. Let

Ψ := {α ∈ Φ(g, t) : (Λ, α) > 0}.

and let ∆ (resp.Ψn) be the compact (resp. non compact) roots in Ψ. The set of ana-
lytically integral forms and dominant with respect to ∆ is denoted by CK . We also fix
a system of positive roots ∆L in Φ(l, u) which is compatible with ∆ and denote by CL
the set of analytically integral characters of U dominant with respect to ∆L. In order to
choose ∆L we might need to conjugate by an element of W to ∆ and Λ. Cr

L denotes the
subset of h−regular elements in CL. From now on, the highest weight or the infinites-
imal character of an irreducible representation of K (resp.L) is computed in CK (resp.
CL). Let ΘΛ be the Character of the discrete series representation of Harish-Chandra
parameter Λ. Thus

ΘΛ(X) = (−1)
1
2
dimG/K

∑
w∈W ε(w)ewΛ(X)∏

α∈Ψ(eα/2 − e−α/2)(X)

We further assume that the irreducible unitary representation (π(λ), VΛ) corresponding
to ΘΛ has a discrete and admissible restriction to H. We claim that the restriction of
π(λ) to L is of finite multiplicity. In fact,since, each irreducible discrete factor is a
discrete series for H and that each irreducible L−type is contained in at most finitely
many irreducible square integrable representations (Harish-Chandra) we have that the
restriction of π(λ) to L has finite multiplicity. Moreover, T. Kobayashi has shown that
the subspace of K−finite vector agrees with the subspace of L−finite vectors. In our
setting, T. Kobayashi [?] has proved that the wave front set for ΘΛ is transversal to H,
hence we may restrict ΘΛ to H and apply remark on page 22 in Duflo-Vergne [?], which
shows that the Character of the restriction of π(λ) to H is equal to the restriction of ΘΛ

to H. For each h−regular µ in CL we denote by σµ the character of the discrete series
representation associated to the Harish-Chandra parameter µ. If m(Λ, µ) denotes the
multiplicity of σµ in (VΛ)|H we may write

(ΘΛ)|H =
∑
µ∈Cr

L

m(Λ, µ)σµ. (3)

In [?] it is shown that m(Λ, µ) is at most of polynomial growth in µ. We define m(Λ, µ) =
0 for µ ∈ CL − Cr

L.
From now on, we parameterize an irreducible representation of L by its infinitesimal
character, ν ∈ CL. Thus, τν denotes the character of the irreducible representation of L
of highest weight ν − ρ(∆L). We write τν = 0 for those ν ∈ CL which are l−singular.
Since the restriction of VΛ to L has finite multiplicity we also may write

(ΘΛ)|L =
∑
ν∈CL

n(Λ, ν)τν . (4)

In [?] it is shown that n(Λ, ν) is of polynomial growth in ν. Because of a result of Harish-
Chandra, Hecht-Schmid (Blattner’s conjecture) we have that there exists nonnegative
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integers numbers b(µ, ν), ν ∈ CL with at most polynomial growth in ν or µ, so that

(σµ)|L =
∑
ν∈CL

b(µ, ν)τν .

Owing to the fact that we are considering discrete Hilbert direct sum of unitary irre-
ducible representations, the uniqueness theorem implies the identity∑

µ∈Cr
L

m(Λ, µ)b(µ, ν) = n(Λ, ν) (6)

For a linear functional γ ∈ iu?, let δγ denote the Dirac distribution concentrated at γ.
For each linear functional α on iu we define a distribution yα on iu? by the equality

yα =
∑
n≥0

δα/2+nα.

We fix µ ∈ Cr
L and let Ψn(µ) := {β1, · · · , βs} denote the noncompact roots in Φ(h, u) who

has a positive inner product with µ. We define, QΨn(µ), the twisted partition function
associated to Ψn(µ) by the formula∑

ν∈PL

QΨn(µ)(ν)δν = yβ1 ? · · · ? yβs

Hence, if ρn = 1
2

∑
1≤j≤s βj, then

QΨn(µ)(ν) = card{(nj)1≤j≤s : nj ≥ 0, ρn +
∑

1≤j≤s

njβj = ν}.

Since we parameterize the irreducible representations of L by their infinitesimal charac-
ter, ν ∈ CL, rather than by its highest weight ν − ρ(∆L). Blattner’s formula for σµ now
reads:

b(µ, ν) =
∑
w∈WL

ε(w)QΨn(µ)(wν − µ).

We extend the functions b(µ, ...),m(Λ, ...) to the weight lattice PL to be an antisymmetric
function for WL. Thus,

b(µ,wν) = ε(w)b(µ, ν), for w ∈ WL, ν ∈ PL
m(Λ, wµ) = ε(w)m(Λ, µ), for w ∈ WL, µ ∈ PL.

For each linear functional α on iu we define a linear operator dα on the linear space of
distributions, D′(iu?), by means of the convolution

dα(f) = (δ−α/2 − δα/2) ? f, f ∈ D′(iu?).

We also define

dn,h =
∏

α∈Ψn(µ)

dα

The following equalities hold in the space of distributions on iu?.

Proposition 14.
1.

∑
ν∈PL

b(µ, ν)δν =
∑

w∈WL
ε(w)δwµ ? w(Fα∈Ψn(µ) yα)

2. dn,h [
∑

ν∈PL
b(µ, ν)δν ] =

∑
w∈WL

ε(w)δwµ
3. dn,h [

∑
ν∈PL

n(Λ, ν) δν ] =
∑

µ∈PL
m(Λ, µ)δµ
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Proposition 10 together with the formulae of above allow us to compute theH−multiplicities
from the L−multiplicities and conversely.

Proof : Since all the series involved in the statement of the Proposition converge
absolutely in the topology of the space of distributions on iu?, we may proceed in a
formal manner. The left hand side of the equality in (1) is computed by means of
Blattner’s formulae. For the right hand side, since Ψn(µ) = {β1, · · · , βs}.

∑
w∈WL

ε(w)δwµ ? w( yβ1 ? · · · ? yβs)

=
∑
w

ε(w)δwµ ?
∑

n1,··· ,ns

δw(β1+···+βs)/2+w
∑

j njβj

=
∑
w

ε(w)δwµ ? (
∑
θ∈PL

QΨn(µ)(w
−1θ) δθ)

=
∑

w∈WL,ν∈PL

ε(w)QΨn(µ)(w(ν)− µ)δν

=
∑
ν∈PL

b(µ, ν)δν

In order to show (2) we notice that

dα(yα) = δ0, dαy−α = −δ0
and recall that for each w ∈ WL the number of elements in w(Ψn(µ)) ∩−Ψn(µ) is even.
Thus,

dn,h [
∑
ν∈PL

b(µ, ν)δν ] =
∑
w∈WL

ε(w)δwµF1≤j≤s((δ−βj/2 − δβj/2) ? ywβj
)

Now, dn,hw(yβ1 ? · · · ? yβs) = (−1)card(w(Ψn∩Φ(h,t))∩(−Ψn))δ0 and we have verified (2). We
finally show (3). The equality∑

µ∈Cr
L

m(Λ, µ)b(µ, ν) = n(Λ, ν)

implies that ∑
ν∈PL

∑
µ∈Cr

L

m(Λ, µ)b(µ, ν)δν =
∑
ν∈PL

n(Λ, ν)δν

Thus

dn,h[
∑
ν

n(Λ, ν)δν ] =
∑
µ

m(Λ, µ)(
∑
w∈WL

ε(w)δwµ)

=
∑

µ∈PL, w∈WL

ε(w)m(Λ, w−1µ)δµ =
∑
µ

m(Λ, µ)δµ.

2

THE FINAL RESULT ???
The hypothesis in the next theorem are sufficient conditions to assure that π(λ) re-

stricted to H is admissible and to be able to compute multiplicities by means of partition
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functions. Let G,H,L, T, U,Λ,Ψ, K1(Ψ),
ZK , π(λ), n(Λ, ν) as usual. For next theorem we assume K1(Ψ) is contained in L. Hence
if ZK , is contained in L, then Corollary 6 implies π(λ) has an admissible restriction to
L. The proof shows the theorem is also true whenever π(λ) has an admissible restriction
to K1(Ψ).

Theorem 1. Suppose that condition (C) holds and either π(λ) has admissible restriction
to K1 or K1(Ψ)ZK ⊂ L. Then,

∑
ν∈PL

n(Λ, ν)δν

=
∑
w∈W

ε(w)$(wλ) δpu(wΛ) ?Fβ∈pu(wΨn)∪(−1)pu(∆−Ψz)−∆L
yβ

Proof: The proof of the Theorem is done in several steps. We first work under the
assumption Φz is empty, then, we consider the case L is normalized by the maximal torus
T and finally we reduce the general case to these particular cases. To begin with we show
the right hand side of the equality in the theorem is a well defined distribution on iu?.
This follows from the hypothesis and Propositon ???. Also, the following equality holds

(pu)?(δΛ ?Fβ∈Ψnyβ) = δpu(Λ) ?Fβ∈Ψnypu(β) (11)

Here, (pu)? denotes push-forward of distributions. In order to show (11) we writeF
t = u ⊕ u⊥. The hypothesis K1(Ψ) ⊂ L implies u⊥ ⊂ t2 (resp. K1(Ψ)Z ⊂ L implies
u⊥ ⊂ t2ss) Therefore, our hypothesis, Corollary 3 and Corollary 5 imply that in any case

R+Ψn ∩ i(u⊥)? = 0 (12)

Hence, (12) and the proof of Theorem 1 let us conclude that for any compact subset R
of it? the map

pu : R + (∪w∈Ww(Λ + R+Ψn)) → iu? (13)

is proper. Thus, Lemma 3 let us obtain that pu(Λ + R+Ψn) is a proper cone in iu? and
therefore the convolution product

δpu(Λ) ?Fβ∈Ψnypu(β)

is well defined. On the other hand, (13) forces that pu(δΛ ? Fβ∈Ψnyβ) is well defined.
Now, general properties of the push-forward of distributions implies equality (11).
Next, we write a proof of the Theorem under the assumption Φz = ∅. According to
Heckman we have∑

ν∈PL

R(ξ, ν)δν =
∑
w∈W

ε(w)δpu(wξ) ? (Fα∈pu(∆)−∆L
y−α)

This equality justifies the last step in,
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∑
ν∈PL

n(Λ, ν)δν

=
∑

ξ∈PT ,ν∈PL

b(Λ, ξ)R(ξ, ν)δν

=
∑
ξ

b(Λ, ξ)
∑
ν

R(ξ, ν)δν

=
∑
ξ

b(Λ, ξ)
∑
w∈W

ε(w)δpu(wξ) ? (Fα∈pu(∆)−∆L
y−α)

Now, since b(Λ, wξ) = ε(w)b(Λ, ξ), PT is W−invariant and we are assuming Ψz = ∅ we
have that∑

ν∈PL

n(Λ, ν)δν

=
∑
ξ

b(Λ, ξ)δpu(ξ) ? (Fα∈pu(∆)−∆L
y−α)

= pu(
∑
ξ

b(Λ, ξ)δξ) ? (Fα∈pu(∆)−∆L
y−α)

= pu(
∑
w∈W

ε(w) δwΛFβ∈Ψnywβ) ? (Fα∈pu(∆)−∆L
y−α)

=
∑
w∈W

ε(w) δpu(wΛ) ?Fβ∈Ψnypu(wβ) ? (Fα∈pu(∆)−∆L
y−α)

For the last three equalities we have applied: that the support of the distribution∑
b(Λ, ξ) is contained ∪w∈Ww(Λ + R+Ψn), that push-forward of distributions is a con-

tinuous map when we consider a proper map as (13) , Duflo-Heckman-Vergne version of
Blattner’s formula, and (11). In this manner we obtain Theorem 3 when Φz = ∅. 2

In particular, we already know that the theorem is true when U = T.

Next we prove the theorem for the case L is normalized by T. Hence LT is a subgroup
of K of equal rank. Let n1(λ, µ) denote the multiplicity of the irreducible representation
of LT of infinitesimal character µ in π(λ). Thus, we may write∑

µ∈PT

n1(λ, µ)δµ =
∑
w∈W

ε(w) δwΛ ?Fβ∈Ψnywβ ? (Fα∈(∆)−∆L
y−α)

We recall the equality

(pu)?(
∑
µ∈PT

n1(λ, µ)δµ) =
∑
ν∈PL

n(λ, ν)δν

and formula ??? to obtain∑
µ∈PL

n(λ, ν)δν) =
∑
w∈W

ε(w) δpu(wΛ)$(wλ) ?Fβ∈Ψnypu(wβ) ? (Fα∈pu(∆−Ψz)−∆L
y−α)

In order to obtain the equality of the theorem for any L subject to our hypothesis we
need the following Proposition.
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Consider π(λ), G,H, L as before. Let L1 be a compact subgroup of L We fix maximal
torus T1 ⊂ L1, U ⊂ L so that T1 ⊂ U ⊂ T and assume that π(λ) restricted to L1 is
admissible. By a result of Kobayashi, π(λ) restricted to L is also admissible. We now
show how to compute L−multiplicities from L1−multiplicities. For this we make the
following assumption

U is maximal torus of both L and L1.

Hence both groups share the same system of roots Φz and have the same $ function.

We fix a system of positive roots ∆1 in Φ(l1, u) compatible with ∆L. For ν ∈ PL (resp.
ν1 ∈ CP1) let n(Λ, ν) (resp. n1(Λ, ν1)) denote the multiplicity of the representation of
L (resp L1) of infinitesimal character ν (resp. ν1) in π(λ). As before, we extend both
multiplicity functions to the weight lattice to be skew-symmetric functions.

We have,

Proposition 15.

Fα∈∆L−∆1dα(
∑

ν1∈PL1

n1(Λ, ν1)δν1) =
∑
ν∈PL

n(Λ, ν)δν

Proof: In [?] we find a proof of the following multiplicity formula. Let τ be a rep-
resentation of K of infinitesimal character ξ dominant with respect ∆. For ν ∈ PL
(resp. ν1 ∈ PL1) let R(ξ, ν) (resp. R1(ξ, ν1)) denote the multiplicity of the represen-
tation of L (resp. L1) of infinitesimal character ν (resp. ν1) in τ. For a finite multiset
Σ = {σ1, · · · , σr} of it?1, let QΣ denote the twisted partition function defined by∑

ν∈PT1

QΣ(ν) = yσ1 ? · · · ? yσr .

Thus, QΣ(ν) = card{(nj)rj=1 : ν =
∑

j(
1
2

+ nj)σj}.
Then, Heckman shows, in [?] Lemma 3.1, that

R(ξ, ν) =
∑
w∈W

ε(w)$(wξ) Qpu(∆)−∆L
(pu(wξ)− ν),

and
R1(ξ, ν1) =

∑
w∈W

ε(w)$(wξ) Qpu(∆)−∆1(pu(wξ)− ν1).

It follows from Lemma 3.1 in [?] that if we allow ξ ∈ PT , ν ∈ PL1 in the above formula,
then

R(wξ, vν) = ε(w)ε(v)R(ξ, ν), w ∈ W, v ∈ WL

Then, the following equalities hold in the space of distributions on iu?.∑
ν∈PL

R(ξ, ν)δν =
∑
w∈W

ε(w)$(wξ)δpmathfraku(wξ) ? (Fα∈pu(∆)−∆L
y−α)

and ∑
ν∈PL

R1(ξ, ν)δν =
∑
w∈W

ε(w)$(wξ)δpu(wξ) ? (Fα∈pu(∆)−∆1y−α).

Thus, we have

Fα∈∆L−∆1 dα(
∑

ν1∈CL1

R1(ξ, ν1)δν1) =
∑
ν∈CL

R(ξ, ν)δν .
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Now if b(Λ, ξ) denotes the multiplicity of the representation of infinitesimal character ξ
in π(λ) we have that

n1(Λ, ν1) =
∑
ξ

b(Λ, ξ)R1(ξ, ν1)

Therefore, we obtain,

Fα∈∆L−∆1dα(
∑

ν1∈PL1

n1(Λ, ν1)δν1)

= Fα∈∆L−∆1dα(
∑
ξ,ν1

b(Λ, ξ)R1(ξ, ν1)δν1)

=
∑
ξ

b(Λ, ξ)
∑
ν

R(ξ, ν)δν

=
∑
ν∈PL

n(Λ, ν)δν

Hence, we conclude the proof of Proposition ??? 2

This proposition could be stated in more generality?????, for example for the case T1  
U, and no compact root in Φ(g) has null restriction to t1. However it will require more
notation. What really matters is the proof and the technique to deduce L−multiplicities
from L1−multiplicities.

We are ready to conclude the proof of Theorem ???. Since condition (C) is satisfied
we have that K1(Ψ) is contained in L. The torus T splits as a product T = UU1. Let
L1 = K1(Ψ)U. Then, L1 is normalized by T and U is maximal torus of both L and L1.
Hence, we may apply the previous case and Proposition ??? and conclude the proof of
Theorem ???.

More details???

Corollary 18. We get H-multiplicities applying Proposition 12 item 3.

Note 4: The same proof will work for the dream hypothesis if we could show pu :
∪w∈Ww(Λ + R+Ψn) −→ iu? is a proper map. In turn, this is implied by (12).

12.2. Continuous methods. We now study multiplicity functions by means of the con-
tinuous methods introduced by Heckman and DHV. We also derive differential equations
which are satisfied by the continuous multiplicity function. LetG,H,K,Z, L, T, U, λ,Ψ, K1(Ψ),Ω, pu

have the same meaning as in the previous setting. For a coadjoint orbit G · λ let βG·λ
denote the Liouville measure on the coadjoint orbit computed with respect to the sym-
plectic form on Ω arising from the Killing form on g. The Liouville measure of the
coadjoint orbit G · λ evaluated on a test function ϕ is given by

βG·λ(ϕ) := AG(ϕ)(λ) = cG
∏
α∈Ψ

(α, λ)

∫
G

ϕ(Ad(u) · ν)du.

Here, du is convenient chosen Haar measure on G. For the constants involved and proofs
of the equalities we refer to [?], Chapter VII. From now on, for this subsection we assume
ph : Ω → h? is proper. Because of Proposition 4, the map pl : Ω → l? is also proper.
Moreover, in Heckman [?], Lemma 6.2 we find a proof that each of pl, pt is a submersion
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on an open dense whose complement has Lebesguian measure zero. For a more precise
statement cf. [?] Chapter 5. Therefore, there exists a function

ML : u? → R
so that the push-forward, (pl)?(βΩ) of the measure βΩ by pl is given by

(pl)?(βΩ)(ϕ) := (pl)?(βG·λ)(ϕ) =

∫
u?

ML(µ)AL(ϕ)(µ)dµ.

Here, dµ is a convenient Lebesgue measure on u? and ϕ a test function on u?. Besides,
ML is a smooth function on the set of regular values of pl and is a WL−skew-invariant
function. For each root β ∈ u? let Yβ the Heaviside generalized function on u? associated
to β. Thus,

Yβ(ϕ) =

∫ ∞

0

ϕ(tβ)dt.

For the next propositon we assume that

K1(Ψ)Z ⊂ L or K1(Ψ) ⊂ L and z?k ∩ u⊥ = {0}.
Any of this two hipothesis, oweing to Proposition 3, imply that pl is a proper map and
that for each w ∈ W, the convolution of the Heaviside functions

w(Y +
n ) := Fβ∈ΨnYpu(wβ), Y +

k,l = Fα∈pu(Ψk−Ψz)−Ψl
Y−α.

are defined, as well as the product w(Y +
n ) ? Yk,l. For a proof see [?]. We now show,

Proposition 16.

ML =
∑
w∈W

ε(w) $(wλ) δpu(wλ) ? w(Y +
n ) ? Y +

k,l .

Proof: We have two proofs of this Proposition. the first proof is recalling formuola
???? which shows that r ? mL = ML. For the second proof we follow the same frame
work as in the proof of Theorem ??. We first consider the case $ = 1, then the case L is
normalized by T and then the general case. The maps pk : g? → k?, pk,l : k? → l?. Thus,
pl = pk,l ◦ pk. In [?] we find a proof that pk restricted to Ω is a proper map. Since pl is a
proper map on Ω we have that pk,l is a proper map on pk(Ω). Hence,

(pl)?(βG·λ) = (pk,l)?(pk)?(βG·λ).

A Theorem of Duflo-Heckman-Vergne [?] affirms that for a test function ϕ on k? we have,

(pk)?(βΩ)(ϕ) =<
∑
w∈W

ε(w)δwλ ? w(Y +
n ), AK(ϕ) > .

A Theorem of Heckman [?] states that for a test function on l? we have

(pk,l)?(βK·ν)(ϕ) =<
∑

s∈WZ\WK

ε(s) δpu(sν) ? Y
+
k,l , AL(ϕ) > .

For a test function ϕ on l? we have,

(pl)?(βG·λ)(ϕ)

= (pk,l)?((pk)?(βG·λ))(ϕ) = (pk)?(βG·λ)(ϕ ◦ pk,l)

=<
∑
w∈W

ε(w)δwλ ? w(Y +
n ), AK(ϕ ◦ pk,l) > .
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Now

AK(ϕ ◦ pk,l)(ν) =

∫
K

(ϕ ◦ pk,l)βK·ν

= (pk,l)?(βK·ν)(ϕ)

Thus, Heckman’s Theorem implies the desired identity, when $ = 1. For the case L
normalized by T as in the discrete case we need lemma.....

2

More details???

Corollary 19. We further assume T ⊂ L, then

ML =
∑
w∈W

ε(w) ? w(Y +
n ) ? Y +

k,l .

The next Propositions are the continuous analogue to Proposition 10, item 3. In order
to state them, we just assume that ph : Ω → h? is a proper map. Thus, because of
Proposition ?? we have that pl : Ω → l? is a proper map. Hence, we may compute the
push-forward into h? of the Liouville measure on Ω. Once again, we have that ph is a
submersion on an open dense subset of Ω whose complement has Lebesguian measure
zero, besides Proposition 7 shows that ph(Ω) is contained in the set of strongly elliptic
elements in h?. Therefore there exists a function

MH : u? → R

which is smooth on the regular values of ph restricted to Ω so that

(ph)?(βG·λ)(ϕ) =

∫
u?

MH(µ) AH(ϕ)(µ) dµ.

Here, as before, dµ is a Lebesgue measure on u?. We now show,

Proposition 17. Assume ph : Ω → ih? is proper, then

MH = (
∏

α∈Ψn∩Φ(h,u)

∂

∂α
)(ML).

Proof: For every test function g on il? we have the equalities∫
iu?

ML(µ)AL(g)(µ)dµ

= (pl)?(βΩ)(g) = (ph,l)?(ph)?(βΩ)(g) = (ph)?(βΩ)(g ◦ ph,l)

=

∫
iu?

MH(µ)AH(g ◦ ph,l)(µ)dµ

We compute and apply the Theorem of Duflo-Heckman-Vergne to obtain

AH(g ◦ ph,l)(µ) = βH·µ(g ◦ ph,l) = (ph,l)?(βH·µ)(g)

=<
∑
w∈WL

ε(w)δwµ ? w(Y +
n,h), AL(g) >
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Therefore we have shown for every test function g on l? that∫
iu?

ML(µ)AL(g)(µ)dµ

=

∫
iu?

MH(µ) <
∑
w∈WL

ε(w)δwµ ? w(Y +
n,h), AL(g) > dµ

The differential operator,
∏

α∈Ψn∩Φ(h,u)(
∂
∂α

), on iu? is WL−invariant. Hence, Chevalley’s
restriction Theorem implies that there exists a constant coefficient L−invariant differ-
ential operator, D, on il? so that∏

α∈Ψn∩Φ(h,u)(
∂
∂α

) is the radial part of D. A formula of Harish-Chandra says that for every
test function f in l? we have

AL(Df) =
∏

α∈Ψn∩Φ(h,u)

∂

∂α
AL(f).

When we apply equality (7) to g = Df, Harish-Chandra equality yields,

∫
iu?

∏
α∈Ψn(h)

∂

∂α
ML(µ)AL(f)(µ)dµ

= (−1)q
∫
iu?

MH(µ) <
∑
w∈WL

ε(w)δwµ ? w(Y +
n,h),

∏
α∈Ψn(h)

∂

∂α
AL(f) > dµ

For each w ∈ WL we have that card(wΨn(h) ∩ (−Ψn(h)) is even, hence

<
∑
w∈WL

ε(w)δwµ ? w(Y +
n,h),

∏
α∈Ψn(h)

∂

∂α
AL(f) >

= (−1)q <
∑
w∈WL

ε(w)δwµ, AL(f) >

The fact that AL(f)(µ) is WL−skew invariant in µ gives us that∫
iu?

MH(µ) <
∑
w∈WL

ε(w)δwµ ? w(Y +
n,h),

∏
α∈Ψn(h)

∂

∂α
AL(f) > dµ

=

∫
iu?

MH(µ)AL(f)(µ)dµ.

Therefore, (7) and (8) conclud the proof of Proposition 13. 2

Let d(w) = (−1)card[wΨn∩Φ(g/h)].

Corollary 20. We further assume T = U ⊂ L. Then,

MH =
∑
w∈W

ε(w)d(w)δwλ ? [Fβ∈wΨn∩Φ(g/h)Yβ] ? Y
+
k/l

Next, we show an analogue to Lemma 6.1 [?]. That is, we show that ML,MH are
solution to certain differential equation.
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Corollary 21. Assume, T ⊂ L, then
i) ML is a solution to the differential equation∏

α∈Ψ(g/l)

∂

∂α
X =

∑
w∈W

ε(w)δwλ

ii) MH is a solution to the differential equation∏
α∈Ψ(g/h)

∂

∂α
X =

∑
w∈W

ε(w)d(w)δwλ

Both equations are in X ∈ D′(iu?).

To talk about 2. Since the support of
∑

ν∈CL
b(µ, ν)δν is contained in the cone µ +∑s

j=1R+βj the uniqueness statement of Holmgren’s theorem

For a proof of Holgrem’s Theorem we refer to the book [?] page 70.

12.3. Multiplicity formulae.

To talk about 3. mi-jo, kobayashi obtained this and better formula for sopq sppq. some
of them same type

In this subsection we apply the results obtained in the previous subsections to obtain
explicit multiplicity formulae in the spirit of Kostant or Blattner multiplicity formulae.
For this, we keep the notation of previous sections. We first compute multiplicities when
we restrict to the subgroup

L1 := K1(Ψ)T

and then we derive multiplicity formulae when we restrict to any reductive subgroup
containing K1(Ψ)T. We fix Λ dominant with respect to Ψ. Let ∆1 := Ψ∩Φ(l1, t). Then,
Corollary 6 assure us that π(λ) restricted to K1(Ψ)T is admissible. Therefore, there
exists non negative integers n(Λ, ν), ν ∈ CL1 , so that

ΘΛ|L1
=
∑

ν1∈CL1

n1(Λ, ν)τν1 .

As before, τν is the character of the irreducible representation of L1 of infinitesimal
character ν. Let Wj denote the Weyl group of Kj(Ψ), j = 1, 2. Thus, W = W1 ×W2. As
before, for a finite subset Σ = {σ1, · · · , σr} of it?, let QΣ denote the twisted partition
function defined by ∑

ν∈PT

QΣ(ν) = yσ1 ? · · · ? yσr .

Thus, QΣ(ν) = card{(nj)rj=1 : ν =
∑

j(
1
2

+ nj)σj}. In particular, we consider QΨ−∆1 the
twisted partition function associated to the set

Ψ−∆1 := {α1, · · · , αr, β1, · · · , βq}

Here the αj are compact roots and βk are noncompact roots.
We have,
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Lemma 24. Let Λ be dominant with respect to Ψ, then the representation of L1 whose
infinitesimal character is ν ∈ CL1 has multiplicity in the restriction of π(λ) to K1(Ψ)T
given by

n1(Λ, ν) =
∑

w∈W1,s∈W2

ε(ws)QΨ−∆1(w(ν)− sΛ)

If we parameterize representations of L1 by their highest weight rather than by its
infinitesimal character, and we use plain partition function Q̃ associated to Ψ−∆1 then
the multiplicity formula becomes∑

w∈W1,s∈W2

ε(ws)Q̃(w(ν̃ + ρL1)− s(Λ + ρG/L1))

Proof: From Proposition 12 we obtain for a test function g on l1
? the equality

(pl1)?(βG·λ)(g)

=<
∑
w∈W

ε(w)δwλ ? w(Y +
n ) ? Y +

k,l1
, AL1(g) > (7)

Now, W2 is spanned by reflection about compact simple roots for Ψ, thus, for w ∈ W2,
we have wΨn = Ψn and hence

w(Y−iβ1 ? · · · ? Y−iβq) = Y−iβ1 ? · · · ? Y−iβq

Moreover, since l1 = k1(Ψ) + t we have that Ψ(k2) = {α1, · · · , αr} Therefore, for all
γ ∈ Ψ(k2), w ∈ W1 we have wγ = γ. Thus, from the previous formula we obtain,

(8)
∑
w∈W

ε(w)δwλ ? w(Y +
n ) ? Y +

k,l1

=
∑

w∈W1,s∈W2

ε(ws)δwsλ ? w(Y−iβ1 ? · · · ? Y−iβq ? Y−α1 ? · · · ? Y−αr)

Now, βΩ as well as pl1(βΩ) are tempered distributions, so equality (7) holds for any tem-
pered test function. In particular, we may apply it for g equal to the Fourier transform
of a test function. In order to avoid a cumbersome notation we identify, via Killing form,
both g, l1, t with their dual vector spaces. For a Lie algebra v Fourier transform of a test
function is denoted by g∧V = ĝV . In [?], we find a proof of the equality

AL1(ĝ
L1 ) = ÂL1(g)

T

.

Combining this equality with (7) and (8), lead us to

(9) < ((pl1)?(βG·λ))
∧L1 , g >

=<
∑

w∈W1,s∈W2

ε(ws)δwsλ ? w(Y−iβ1 ? · · · ? Y−iβq ? Y−α1 ? · · · ? Y−αr), ÂL1(g)
T

> .

In [?] we find a proof of the following equalities in the space of distributions,

δ̂µ
T
(X) = eiµX , Ŷ−iβ

T

=
∑
n≥0

enβ
eβ − 1

β
.

Therefore, (9) implies
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(10) < ((pl1)?(βG·λ))
∧L1 , g >

=<
∑

w∈W1,s∈W2,nj≥0,mk≥0

ε(ws)ewsΛ+njwβj+mkwαk

∏
γ∈Ψ−∆1

ewγ − 1

wγ
,AL1(g) >

=<
∑

w∈W1,s∈W2,nj≥0,mk≥0

ε(ws)ewsΛ+njwβj+mkwαk+wρG/L1

×
∏

γ∈Ψ−∆1

eγ/2 − e−γ/2

γ
,AL1(g) > .

The last equality follows from the fact that
∏

γ∈Ψ−∆1

eγ/2−e−γ/2

γ
is invariant under the

group W1.
We now operate on < ((pl1)?(βG·λ))

∧L1 , g > . First of all we recall Proposition 5 in [?]
which shows,

(pl1 ?βG·λ)
∧L1 = pl1 ?(β̂G·λ

G

).

Let

JG(X) := det(
1− exp(−ad(X)

ad(X)
) =

∏
γ∈Ψ

(eγ/2 − e−γ/2)

γ
(X), for X ∈ t.

We also recall Rossman-Kirillov character formula which affirms

J
1
2
G(X)ΘΛ(expX) = β̂G·λ

G

(X)

and Harish-Chandra integration formula∫
l1

φ(µ)dµ = cL1

∫
t

∏
α∈∆1

< α, ν > AL1(φ)(ν)dν.

Combining these three equalities lead us to,

< (pl1, ?(βG·λ))
∧L1 , g >

=< pl1 ?(β̂G·λ
G

), g >

=< pl1 ?(J
1
2
G(X)ΘΛ(expX)), g >

=<
∏
γ∈Ψ

(eγ/2 − e−γ/2)

γ
(X)ΘΛ(expX),

∏
α∈∆1

α(X)AL1(g)(X) >

=<

∏
γ∈Ψ(eγ/2 − e−γ/2)∏

γ∈Ψ−∆1
γ

(X)ΘΛ(expX), AL1(g)(X) >
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Thus, (10) implies for X ∈ t which is G−regular

ΘΛ(expX)

=

∑
w∈W1,s∈W2,nj≥0,mk≥0 ε(ws)e

wsΛ+njwβj+mkwαk+wρG/L1∏
γ∈∆1

eγ/2 − e−γ/2

=
∑

w1∈W1s∈W2, ν∈CL1

ε(w1s)QΨ−∆1(w1(ν)− sΛ)

×
∑

w∈W1
ε(w)ewν∏

γ∈∆1
eγ/2 − e−γ/2

.

Since, on the set of regular elements of G which lie in L1, the character of π(λ)
restricted to L1 agrees with the restriction of the character of π(λ) we have shown
Lemma 4 2

Next, we derive a multiplicity formulae for groups G,H so that K1(Ψ)T is contained
in H. As before, we fix Λ dominant with respect to Ψ. Then, the hypothesis K1(Ψ)T
is contained in H let us conclude that π(λ) restricted to H is admissible. Let L be a
maximal compact subgroup of H which contains K1(Ψ)T. Let C,CL, CL1 , σµ have the
same meaning as before. Therefore, there exists non negative integers m(Λ, µ) such that

(ΘΛ)|H =
∑
µ∈Cr

L

m(Λ, µ)σµ

Let QΨ−Φ(h) be the twisted partition function associated to the set Ψ− Φ(h).

Theorem 2. Under the above hypothesis, for µ ∈ CL, we have

m(Λ, µ) =
∑

w∈W1, s∈W2

ε(ws)QΨ−Φ(h)(w(µ)− sΛ).

For the proof we apply Proposition 10 item 3 and Lemma 4. As before, let n(Λ, ν)
denote the multiplicity in π(λ) of the representation of L whose infinitesimal character
is ν ∈ CL.

Lemma 25. ∑
ν∈PT

n(Λ, ν)δν =
∑

w∈W1, s∈W2

ε(ws)δwsΛ ? w(Fγ∈Ψ−∆L
yγ)

Proof: Because of Lemma 4 we have∑
ν1∈PT

n1(Λ, ν1)δν1

=
∑

w∈W1, s∈W2,ν∈PT

ε(ws)QΨ−∆1(wν − sΛ)δν

=
∑

w∈W1, s∈W2, ν∈PT

ε(ws)δwsΛ ? w(Fγ∈Ψ−∆1yγ)
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Proposition 11 gives us the equality∑
n(Λ, ν)δν

= Fα∈∆L−∆1dα(
∑

n1(Λ, ν1)δν1)

=
∑

w∈W1, s∈W2

ε(ws)δwsΛ ? w(Fγ∈Ψ−∆L
yγ).

and hence we have shown Lemma 5 2

We continue with the proof of Theorem 2.
From Proposition 11 we have∑

µ∈PT

m(Λ, µ)δµ = dn,h(
∑
ν∈PT

n(Λ, ν)δν)

so we must compute

Fα∈Ψn∩Φ(h)(δ−α/2 − δα/2) ? w(Fγ∈Ψ−∆L
yγ)

Since K1(Ψ)T is contained in L we have that W1 ⊂ WL, hence for w ∈ W1 we have that∏
γ∈Ψ−∆L

wγ =
∏

γ∈Ψ−∆L
γ, and we conclude that card{γ ∈ Ψ−∆L : wγ < 0} is an even

number. For α, γ ∈ Ψn ∩Φ(h) so that wγ = ±α we have that (δ−α/2− δα/2) ? ywγ = ±δ0.
Therefore,

Fα∈Ψn∩Φ(h)(δ−α/2 − δα/2) ? w(Fγ∈Ψ−∆L
yγ)

= Fγ∈Ψ−Φ(h)w · yγ
Combining the last formulaes, we obtain

dn,h(
∑
ν∈PT

n(Λ, ν)δν)

=
∑

w∈W1, s∈W2

ε(ws)δwsΛ ? w(Fγ∈Ψ−Φ(h) yγ)

=
∑
µ∈PT

∑
w∈W1,s∈W2

ε(ws)QΨ−Φ(h)(wµ− sΛ)δµ.

This concludes the proof of Theorem 2 2

We now show a formula for the multiplicities for restriction to the subgroup K1(Ψ)Z.
As before, Z is the identity connected component of the center of K. For other unex-
plained notation we refer to previous subsections. We define t1,z := t1(Ψ) ⊕ z. Thus,
t1,z is a Cartan subalgebra of K1(Ψ)Z. We write ν = ν1 + ν2 with ν1 ∈ t1,z, ν2 ∈ t2ss.
For the irreducible representation of K2(Ψ) of highest weight Λ2 let m(Λ2, θ) denote the
multiplicity of the weight θ ∈ it?2ss and d2 its dimension.

Proposition 18. Suppose that Λ is dominant with respect to Ψ. Then the multiplicity,
nK1Z(Λ, ν), of an irreducible representation of K1(Ψ)Z of highest weight ν in π(λ) is
given by the equality

nK1Z(Λ, ν) = d2

∑
w∈W1,ν2∈PT2 ss

ε(w)QΨn(w(ν + ν2)− Λ1)
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Proof: From Lemma 4 we have the equalities∑
ν∈PT

n(Λ, ν)δν

=
∑

w∈W1, s∈W2, ν∈PT

ε(ws)QΨ−∆1(wν − sΛ)δν

=
∑

w∈W1, s∈W2, ν∈PT

ε(ws)δwsΛ ? w(Fγ∈Ψ−∆1yγ)

Since Ψ−∆1 = (Φ(k2) ∩Ψ) ∪Ψn and w ∈ W1 we have that

w(Fγ∈Ψ−∆L
yγ) = Fα∈Ψ(k2)yα ? w(Fβ∈Ψnyβ).

Let s0 denote the longest element in the Weyl group of Φ(k2) Then, we have the identity∑
s∈W2

ε(s)δsΛ2Fα∈Ψ(k2)yα

= ε(s0)
∑
s∈W2

ε(s)δss0Λ2Fα∈−s0Ψ(k2)yα

= ε(s0)
∑
θ∈PT2

m(s0Λ2, θ)δθ

We also have that∑
ν∈PT

∑
w∈W1

ε(w)QΨn(wν − Λ1)δν =
∑
w∈W1

ε(w)δwΛ1Fβ∈Ψnyβ

Therefore,∑
ν∈PT

n1(Λ, ν)δν

=
∑

ν1∈PT1,z

[
∑

ν2,θ∈PT2

m(s0Λ2, θ)QΨn(w(ν1, ν2)− Λ1)δν2+θ] ? δν1

=
∑

ν1∈PT1,z

(
∑

ν2∈PT2

n1(Λ, ν1, ν2)δν2) ? δν1

Let A be the subalgebra of finite linear combinations of {δν , ν ∈ PT2}. It readily
follows that the set {δν , ν ∈ PT1,z} is linearly independent over A. This, leads to the
equality

∑
ν2∈PT2

n1(Λ, ν1, ν2)δν2

=
∑
ν2

[
∑

θ, ν3 : θ+ν3=ν2, w∈W1

ε(w)m(s0Λ2, θ)

×QΨn(w(ν1, ν3)− Λ1)] ? δν2

Thus, we obtain

n1(Λ, ν1, ν2) =
∑

θ, ν3 : θ+ν3=ν2,w∈W1

ε(w)m(s0Λ2, θ)QΨn(w(ν1, ν3)− Λ1)
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Finally, since nK1Z(Λ, ν1) =
∑

ν2∈PT2
n1(Λ, ν1, ν2) we have shown that

nK1Z(Λ, ν1) = d2

∑
ν2,w

ε(w)QΨn(w(ν1, ν2)− Λ1).

2
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