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Abstract. Let G = KAN be a connected linear semisimple Lie group.
Let π be a Discrete Series representation for G. Let H = LA1N1 be a
connected semisimple subgroup of G. 1- We provide a continuous im-
mersion into π of a Discrete Series representation for H, whose lowest
L−type occurs in the lowest K−type of π. 2- Tensor product has admis-
sible diagonal decomposition then holomorphic 3- in continuous factor
integral along whole aP 4- Irreducible H−subrepresentation cuts smooth
vectors, then π is admissible.

Introduction
For any Lie group we will denote its Lie algebra by the corresponding

German lower case letter. Let G be a connected matrix semisimple Lie
group. We fix an Iwasawa decomposition for G, G = KAN . Let H be
a connected semisimple subgroup of G. Henceforth, we choose an Iwasawa
decomposition H = LA1N1 such that L ⊂ K, A1 ⊂ A and N1 ⊂ N.

1. Explicit immersion

We also assume that the Discrete Series for G is nonempty. Let (π, V )
be a Discrete Series representation for G. Let (τ, W ) be the lowest K−type
for (π, V ). Let (σ,Z) be an irreducible L−component of the restriction of τ
to L. Finally, we assume that there exists a Discrete Series representation
(ρ, V1) for H such that its lowest L−type is σ. In [?] we have shown

Proposition 1. (ρ, V1) is contained in the restriction of (π, V ) to H.

We now construct an explicit intertwining linear map from ρ into π.

The main steps of the proof of the above proposition were:
a) For K−finite vectors v, w of (π, V ), the restriction to H of a matrix

coefficient (π(?)v, w) is in Lp(H), for p in an interval (p0, 2] with p0 < 2.

b) An explicit formula for the spherical trace functions attached to the
lowest K−type of irreducible square integrable representation. The formula
is proved in Proposition 7.4 of [F-J] and it is:

As before (π, V ) (resp. (ρ, V1)) is a Discrete Series representation for G,
(H) and (τ, W ) ((σ,Z)) its lowest K−type (L−type ) respectively. Let Pτ
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(resp. Pσ) be the orthogonal projection of V (resp. V1) onto W (Z). Then
the respective spherical trace functions are:

φG(x) = trace(Pτπ(x)Pτ ) (x ∈ G) and φH(x) = trace(Pσρ(x)Pσ) (x ∈ H).

Let P (resp. Q) be the orthogonal projection from W (Z) onto the line that
contains the highest weight vector for W (Z ) respectively. The formula is:

φG(k1ak2) =
∫

K
trace(τ(k−1k2k1k)P ) C(a, k)dk

for a ∈ exp(A+
i ), k1, k2 ∈ K.

where C(a, k) is a continuous, nowhere vanishing and nonnegative real val-
ued function, and dk is Haar measure on K. Certainly, a similar formula
holds for φH .

Let w (z) be norm one highest weight vector for W (Z) respectively.
Then,

(τ(k−1k2k1k)w, w) = trace(τ(k−1k2k1k)P )

(σ(r−1k2k1r)z, z) = trace(σ(r−1k2k1r)Q)
Here (, ) denotes the inner product on W.

c)
∫
H φG(x)φH(x)dx is a positive number.

d) There exists w1 ∈ W, z1 ∈ Z so that∫

H
(π(h)w1, w1)(ρ(h)z1, z1)dh

is nonzero.
We now show

Proposition 2. For a K−finite vector w ∈ V and v ∈ V the function
(π(?)v, w) belongs to L2(H). Besides, the restriction map

r : V −→ L2(H)

V 3 v −→ (H 3 h → (π(h)v, w))
is Hilbert continuous.

Note that for each choice of w there is a map r. In order to avoid a
cumbersome notation we will write just r rather than a notation that also
involves w.

Proof: We consider the isometric immersion (‖w‖ = 1)

V −→ L2(G)

x → (π(?)x, w)
We have that if (π(?)xn, w) converges in L2−norm, then the sequence xn

converges in V. Therefore, the sequence (π(?)xn, w) converges pointwise.
In order to avoid a cumbersome notation, the image of the immersion will
again be denoted by V. Note that the elements of V are continuous functions.
Let VF be the subspace of K−finite vectors for V. Then, owing to a) the
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restriction map r : VF −→ L2(H) is a well defined linear map. Let D be the
subspace of the elements f in V such that the function r(f) is in L2(H). We
claim that r : D −→ L2(H) is a closed linear map. In fact, let fn ∈ D which
converges to f ∈ V so that r(fn) converges to g ∈ L2(H), want to show that
f ∈ D and r(f) = g. We already know that fn converges pointwise to f and
f is continuous. The Riesz-Fisher Theorem implies that r(fnj ) converges
almost everywhere to g in H. Thus, r(f) is equal to g almost everywhere,
and hence f ∈ D. For f in the domain of rr? we have,

rr?(f) = dπ(π(?)w, w) ?H f = dπ

∫

H
(π(xh−1w,w)f(h)dh.

Indeed, firs of all we recall the identity [?] Cor. 4.5.9.4∫

G
(gw, w)(g−1hv, w)dg =

1
dπ

(π(h)v, w)(w,w)

and let f̃ = (π(?)v, w) ∈ D, f ∈ L2(H) then

(r(f̃), f)L2(H) =
∫

H
(π(h)v, w)f(h)dh

= dπ

∫

H

∫

G
(gw,w)(g−1hv, w)dgf(h)dh

= dπ

∫

G

∫

H
f(h)(ghv, w)(g−1w, w)dhdg

= dπ

∫

G

∫

H
f(h)(gh−1w, w)dhf̃(g)dg

Hence, rr?(f) = dπ(π(?)w,w) ?H f

We now apply the Kunze-Stein phenomenon and obtain that rr? extends
to a bounded linear operator in L2(H). Thus, r? = V (rr?)

1
2 is continuous

and hence r is continuous and D = V. ¤
Corollary 1. For each w ∈ W, the adjoint map r? : L2(H) −→ V is given
by

r?(f)(x) = dπ

∫

H
(π(xh−1)w,w)f(h)dh, x ∈ G, f ∈ L2(H).

Corollary 2. Let w1, z1 as in c), fix the immersion of V1 associated to z1

and consider the map r corresponding to w1. Then r? restricted to V1 is an
injective map.

In fact,
(r(?)w1, z1) = (w1, r

?(z1))
and because of c) the right hand side is nonzero. Hence, Schur’s lemma
concludes the corollary.

Next, we construct an explicit non zero linear intertwining map T from
V1 into V when we consider the realization of V given by Hota. To start
with we fix w1, z1 as in c) and complete w1 to an orthonormal basis wj of W.
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We realize V as the kernel in L2(G×K W ) of the homogeneous differential
operator Ω − [(λ, λ) − (ρ, ρ)]. That is, V is an eigenspace of the Casimir
operator. We fix the realization of V1 in L2(H) provided by z1 and we
consider the linear map T defined by convolution in H by the spherical
function attached to the lowest K−type of π evaluated at w1. Thus, for
f ∈ V1, x ∈ G,

T (f)(x) =
∑

j

[(π(?)w1, wj) ?H f ](x)wj

=
∑

j

[
∫

H
(π(xh−1w1, wj)f(h)dh]wj

Hence

T (f)(kx) =
∑

j

[
∫

H
(π(kxh−1w1, k

−1wj)f(h)dh]wj

=
∑

j

[
∫

H
((xh−1w1, k

−1wj)f(h)dh]wj

Since k−1wj =
∑

r(k
−1wj , wr) we obtain

T (f)(kx) =
∑

j

[
∫

H
(π(xh−1w1, wr)f(h)dh](k−1wj , wr)wj = τ(k)T (f)(x)

By hypothesis, π has infinitesimal character λ and wj ∈ V hence we have
that the function T (f) belongs to the eigenspace of the Casimir operator for
the eigenvalue (λ, λ)− (ρ, ρ). When we apply T to the function (ρ(?)z1, z1)
the first component of T (f)(x) is nonzero, hence T is a nontrivial map. It is
clear that T commutes with the action of H. The Lemma of Schur implies
the statement.

Note: Since wj are K−finite vectors it is possible to give a direct proof
of the fact that the integral which defines T (f) converges and that T (f)
belongs to L2(G×K W ).

2. Admissible Tensor products

Let G a connected semisimple Lie group having a compact Cartan sub-
group T. Fix a maximal compact subgroup K containing T. Let Φc, Φn

denote the set of compact (noncompact) roots in Φg the root system of the
pair (g, t). Once and for all we fix

∆ system of positive roots in Φc.
We consider Ψ, Ψ̃ system of positive roots in Φg both of them contain ∆.
Let λ a Ψ− dominant a Harish-Chandra parameter of a discrete series

representation πλ of G.
Similarly, let µ, a Ψ̃− dominant ...
wk denotes the involution in Φc which carries ∆ onto −∆.
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Proposition 3. If πλ £ πµ is admissible under the diagonal action of G,

then Ψ = Ψ̃ and Ψ is a holomorphic system. The converse statement is also
true.

Proof: In Kobayashi Inv. Math 1994 page 188 it is proven that the
hypothesis implies

R+Ψn ∩ R−wkΨ̃n = ∅
Hence

Ψn ∩ −wkΨ̃n = ∅
Since −wkΨ̃ is another system of positive roots containing ∆ we have that

Ψn = wkΨ̃n

Thus
−wkΨ̃ = ∆ ∪ −Ψn

Hence,
∆ ∪ −Ψn and ∆ ∪Ψn

are systems of positive roots. Therefore if the sum of two roots in Ψn

were a root we would have that a root and its negative belonged to ∆ a
contradiction. ¤

3. Structure of the continuous spectrum

Let (π, V ) an square integrable irreducible representation of G. As usual
(τ, W ) denotes the lowest K−type of π. Assume that the restriction of π
to H is not discretely decomposable. Since π is tempered, the continuous
spectrum is Hilbert sum of direct integrals of unitary principal series induced
by discrete or limit of discrete series. Hence, a typical piece of the restricction
looks like ∫

S
IndH

MAN (σ × exp(iν)× 1)m(σ, ν)dν.

Here MAN is a cuspidal parabolic subgroup of H, σ a discrete series of M,
S ⊂ a and m(σ, ν) is nonzero and nonnegative on S. We claim

S = a.

We now write down in detail the statement for the case H is a real rank one
group. For this we need to recall a result of [?]

Let H = LAN1 with dimA = 1, and MAN1 denote the minimal parabolic
of H which contains AN1. Fix a finite dimensional representation (γ, Z) of
L. Thus, (γ|M , Z) =

∑
j(σj , Zj) as a sum of irreducible representations. Let

Pj denote the orthogonal projection onto Zj .
Then for f ∈ IndH

L (γ) = L2(H ×L Z) who also belongs to the Schwartz
space, the Helgason-Fourier transform

Pσj ,ν(f) ∈ IndH
MAN1

(σj ⊗ eiν ⊗ 1)
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in the direction σj , ν ∈ a? for f is given by the formula

Pσj ,ν(f)(s) =
∫

H
Pj(γ(k(h−1s)−1)f(h))eiν−ρH(H(h−1s))dx (s ∈ L).

Here, y = k(y)exp(H(y))n(y) is the Iwasawa decomposition of y.
Following Hota, we realize (π, V ) as an eigenspace of the Casimir operator.

Let v ∈ V − {0}, then in [?] it is shown that some normal derivate of v
restricted to H is nonzero. Because of the L2−continuity of the normal
derivate, some K−component of v enjoys the same property. Thus there
exists some K−finite element of v so that has a nontrivial component on
the continuous spectrum. Now by means of some normal derivate, we may
assume f lies in L2(H×L Z) for a finite dimensional representation (γ, Z) of
L. We claim that if π is an integrable representation, then Pσj ,ν(f) is a real
analytic function of ν. Indeed, for ν ∈ aC we write ν = <(ν) + i=(ν) Hence,

‖Pσj ,ν(f)(s)‖

≤
∫

h+

∆(Y )
∫

L
‖(f(k2expY )‖

∫

L
e(<ν−ρH)(H(exp(−Y )k1)dk1dk2dY.

Since π is an integrable representation in [?] it is shown that

‖(f(k2expY )‖ << e−(2+ε)ρH(Y )(1 + ‖Y ‖)q

Therefore,
‖Pσj ,ν(f)(s)‖

≤
∫

h+

(1 + ‖Y ‖)qe−ερH(Y )

∫

L
e(<ν−ρH)(H(exp(−Y )k1)dk1dY.

In [?] we find a proof of a theorem of Helgason-Osborne which shows that the
spherical function

∫
L e(<ν−ρH)(H(exp(−Y )k1)dk1 is a bounded function of <ν

in an open interval containing zero. Thus, the integral defining Pσj ,ν(f)(s)
converges absolutely in a band near a. Hence, it defines a holomorphic func-
tion near a. Therefore Pσj ,ν(f)(s) is real analytic function in ν ∈ a.

Therefore, if π is an integrable representation, ν → Pσj ,ν(f) is nonzero in
the complement of a numerable set and hence the direct integral must be
supported in the whole a. When π is not an integrable representation we
choose a finite dimensional representation F and an integrable representa-
tion π̃ of G so that π is the result of applying the Zuckerman functor to π̃.
Since, to apply the Zuckerman functor amounts to perform tensor product
for a finite dimensional representation F we get the support of the continu-
ous spectrum of π is the whole a. For arbitrary π i can prove ν → Pσj ,ν(f)
is real analytic by means of helgason-johnson, to be typed later on.

4. Discrete factors of restriction of unitary representations

Proposition 4. Let (π, V ) a unitary irreducible representation of G. As-
sume that there exists an irreducible H−subrepresentation V1 of π so that
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H−smooth vectors of V1 are smooth vectors of V. Then π is Hilbert discrete
decomposable as a representation of H.

In order to justify the statement we recall several important facts.
i) Let S (H) denotes the space of rapidly decreasing functions on H de-

fined by Wallach in Vol 1. page 230. Then Wallach shows in Vol II that the
space of smooth vectors of a unitary representation is an S (H)−module,
and that the representation is irreducible if and only if the S (H)−module
of smooth vectors is algebraically irreducible. Thus, the subspace of H−smooth
vectors of V1 is contained in the subspace of smooth vectors of V.

ii) If V1 is a finite length representation and F is a finite dimensional
representation of H. Then V1 £ F is a representation of finite length.

We write g = h + q so that q is an Ad(H)−invariant complement.
We denote the smooth vectors of a representation by adding a subscript∞

to the vector space. Hence, for nonnegative integer n, (V1)∞£Sn(q) is a rep-
resentation of finite length of U (H). Thus, V∞ has the U (H)−invariant
filtration

∑
1≤n≤N π(Sn(q))(V1)∞, N = 1, · · · ,∞. Since

∞⋃

N=1

∑

0≤n≤N

π(Sn(q))(V1)∞

is a U (G)−invariant subspace and π is irreducible this union is a dense
subspace of V∞. The fact that π is unitary forces π|H to be discretely de-
composable. Compare with Kobayashi Inv. Math.
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