RESTRICTION OF DISCRETE SERIES

JORGE VARGAS

ABSTRACT. Let G = KAN be a connected linear semisimple Lie group. Let π be a Discrete Series representation for G. Let $H = LA_1N_1$ be a connected semisimple subgroup of G. 1- We provide a continuous immersion into π of a Discrete Series representation for H, whose lowest L-type occurs in the lowest K-type of π . 2- Tensor product has admissible diagonal decomposition then holomorphic 3- in continuous factor integral along whole a_P 4- Irreducible H-subrepresentation cuts smooth vectors, then π is admissible.

Introduction

For any Lie group we will denote its Lie algebra by the corresponding German lower case letter. Let G be a connected matrix semisimple Lie group. We fix an Iwasawa decomposition for G, G = KAN. Let H be a connected semisimple subgroup of G. Henceforth, we choose an Iwasawa decomposition $H = LA_1N_1$ such that $L \subset K, A_1 \subset A$ and $N_1 \subset N$.

1. EXPLICIT IMMERSION

We also assume that the Discrete Series for G is nonempty. Let (π, V) be a Discrete Series representation for G. Let (τ, W) be the lowest K-type for (π, V) . Let (σ, Z) be an irreducible L-component of the restriction of τ to L. Finally, we assume that there exists a Discrete Series representation (ρ, V_1) for H such that its lowest L-type is σ . In [?] we have shown

Proposition 1. (ρ, V_1) is contained in the restriction of (π, V) to H.

We now construct an explicit intertwining linear map from ρ into π .

The main steps of the proof of the above proposition were:

a) For K-finite vectors v, w of (π, V) , the restriction to H of a matrix coefficient $(\pi(?)v, w)$ is in $L^p(H)$, for p in an interval $(p_0, 2]$ with $p_0 < 2$.

b) An explicit formula for the spherical trace functions attached to the lowest K-type of irreducible square integrable representation. The formula is proved in Proposition 7.4 of [F-J] and it is:

As before (π, V) (resp. (ρ, V_1)) is a Discrete Series representation for G, (H) and (τ, W) $((\sigma, Z))$ its lowest K-type (L-type) respectively. Let P_{τ}

Partially supported by CONICET, FONCYT, SECYTUNC (Argentina), ICTP (Trieste).

Keywords Discrete Series representations, Branching laws subjclass 1991 Primary 22E46.

(resp. P_{σ}) be the orthogonal projection of V (resp. V_1) onto W (Z). Then the respective spherical trace functions are:

 $\phi_G(x) = trace(P_{\tau}\pi(x)P_{\tau}) \ (x \in G) \ \text{and} \ \phi_H(x) = trace(P_{\sigma}\rho(x)P_{\sigma}) \ (x \in H).$ Let P (resp. Q) be the orthogonal projection from W(Z) onto the line that contains the highest weight vector for W(Z) respectively. The formula is:

$$\phi_G(k_1ak_2) = \int_K trace(\tau(k^{-1}k_2k_1k)P) C(a,k)dk$$

for $a \in exp(A_i^+), k_1, k_2 \in K.$

where C(a, k) is a continuous, nowhere vanishing and nonnegative real valued function, and dk is Haar measure on K. Certainly, a similar formula holds for ϕ_H .

Let w(z) be norm one highest weight vector for W(Z) respectively. Then,

$$(\tau(k^{-1}k_2k_1k)w, w) = trace(\tau(k^{-1}k_2k_1k)P) (\sigma(r^{-1}k_2k_1r)z, z) = trace(\sigma(r^{-1}k_2k_1r)Q)$$

Here (,) denotes the inner product on W.

- c) $\int_H \overline{\phi_G(x)} \phi_H(x) dx$ is a positive number.
- d) There exists $w_1 \in W, z_1 \in Z$ so that

$$\int_{H} \overline{(\pi(h)w_1, w_1)}(\rho(h)z_1, z_1)dh$$

is nonzero.

We now show

Proposition 2. For a K-finite vector $w \in V$ and $v \in V$ the function $(\pi(?)v, w)$ belongs to $L^2(H)$. Besides, the restriction map

$$\begin{split} r:V \longrightarrow L^2(H) \\ V \ni v \longrightarrow (H \ni h \to (\pi(h)v,w)) \end{split}$$

is Hilbert continuous.

Note that for each choice of w there is a map r. In order to avoid a cumbersome notation we will write just r rather than a notation that also involves w.

Proof: We consider the isometric immersion (||w|| = 1)

$$V \longrightarrow L^2(G)$$
$$x \longrightarrow (\pi(?)x, w)$$

We have that if $(\pi(?)x_n, w)$ converges in L^2 -norm, then the sequence x_n converges in V. Therefore, the sequence $(\pi(?)x_n, w)$ converges pointwise. In order to avoid a cumbersome notation, the image of the immersion will again be denoted by V. Note that the elements of V are continuous functions. Let V_F be the subspace of K-finite vectors for V. Then, owing to a) the restriction map $r: V_F \longrightarrow L^2(H)$ is a well defined linear map. Let D be the subspace of the elements f in V such that the function r(f) is in $L^2(H)$. We claim that $r: D \longrightarrow L^2(H)$ is a closed linear map. In fact, let $f_n \in D$ which converges to $f \in V$ so that $r(f_n)$ converges to $g \in L^2(H)$, want to show that $f \in D$ and r(f) = g. We already know that f_n converges pointwise to f and f is continuous. The Riesz-Fisher Theorem implies that $r(f_{n_j})$ converges almost everywhere to g in H. Thus, r(f) is equal to g almost everywhere, and hence $f \in D$. For f in the domain of rr^* we have,

$$rr^{\star}(f) = d_{\pi}(\pi(?)w, w) \star_{H} f = d_{\pi} \int_{H} (\pi(xh^{-1}w, w)f(h)dh.$$

Indeed, firs of all we recall the identity [?] Cor. 4.5.9.4

$$\int_{G} (gw, w)(g^{-1}hv, w)dg = \frac{1}{d_{\pi}}(\pi(h)v, w)(w, w)$$

and let $\tilde{f}=(\pi(?)v,w)\in D, f\in L^2(H)$ then

$$(r(\tilde{f}), f)_{L^{2}(H)} = \int_{H} (\pi(h)v, w)\overline{f(h)}dh$$
$$= d_{\pi} \int_{H} \int_{G} (gw, w)(g^{-1}hv, w)dg\overline{f(h)}dh$$
$$= d_{\pi} \int_{G} \int_{H} \overline{f(h)}(ghv, w)(g^{-1}w, w)dhdg$$
$$= d_{\pi} \int_{G} \int_{H} \overline{f(h)}(gh^{-1}w, w)dh\tilde{f}(g)dg$$

Hence, $rr^{\star}(f) = d_{\pi}(\pi(?)w, w) \star_H f$

We now apply the Kunze-Stein phenomenon and obtain that rr^* extends to a bounded linear operator in $L^2(H)$. Thus, $r^* = V(rr^*)^{\frac{1}{2}}$ is continuous and hence r is continuous and D = V.

Corollary 1. For each $w \in W$, the adjoint map $r^* : L^2(H) \longrightarrow V$ is given by

$$r^{\star}(f)(x) = d_{\pi} \int_{H} (\pi(xh^{-1})w, w)f(h)dh, \ x \in G, f \in L^{2}(H).$$

Corollary 2. Let w_1, z_1 as in c), fix the immersion of V_1 associated to z_1 and consider the map r corresponding to w_1 . Then r^* restricted to V_1 is an injective map.

In fact,

$$(r(?)w_1, z_1) = (w_1, r^{\star}(z_1))$$

and because of c) the right hand side is nonzero. Hence, Schur's lemma concludes the corollary.

Next, we construct an explicit non zero linear intertwining map T from V_1 into V when we consider the realization of V given by Hota. To start with we fix w_1, z_1 as in c) and complete w_1 to an orthonormal basis w_j of W.

JORGE VARGAS

We realize V as the kernel in $L^2(G \times_K W)$ of the homogeneous differential operator $\Omega - [(\lambda, \lambda) - (\rho, \rho)]$. That is, V is an eigenspace of the Casimir operator. We fix the realization of V_1 in $L^2(H)$ provided by z_1 and we consider the linear map T defined by convolution in H by the spherical function attached to the lowest K-type of π evaluated at w_1 . Thus, for $f \in V_1, x \in G$,

$$T(f)(x) = \sum_{j} [(\pi(?)w_1, w_j) \star_H f](x)w_j$$
$$= \sum_{j} [\int_H (\pi(xh^{-1}w_1, w_j)f(h)dh]w_j$$

Hence

$$T(f)(kx) = \sum_{j} \left[\int_{H} (\pi(kxh^{-1}w_{1}, k^{-1}w_{j})f(h)dh] w_{j} \right]$$
$$= \sum_{j} \left[\int_{H} ((xh^{-1}w_{1}, k^{-1}w_{j})f(h)dh] w_{j} \right]$$

Since $k^{-1}w_j = \sum_r (k^{-1}w_j, w_r)$ we obtain

$$T(f)(kx) = \sum_{j} \left[\int_{H} (\pi(xh^{-1}w_1, w_r)f(h)dh] \overline{(k^{-1}w_j, w_r)} w_j = \tau(k)T(f)(x) \right]$$

By hypothesis, π has infinitesimal character λ and $w_j \in V$ hence we have that the function T(f) belongs to the eigenspace of the Casimir operator for the eigenvalue $(\lambda, \lambda) - (\rho, \rho)$. When we apply T to the function $(\rho(?)z_1, z_1)$ the first component of T(f)(x) is nonzero, hence T is a nontrivial map. It is clear that T commutes with the action of H. The Lemma of Schur implies the statement.

Note: Since w_j are K-finite vectors it is possible to give a direct proof of the fact that the integral which defines T(f) converges and that T(f) belongs to $L^2(G \times_K W)$.

2. Admissible Tensor products

Let G a connected semisimple Lie group having a compact Cartan subgroup T. Fix a maximal compact subgroup K containing T. Let Φ_c, Φ_n denote the set of compact (noncompact) roots in $\Phi_{\mathfrak{g}}$ the root system of the pair $(\mathfrak{g}, \mathfrak{t})$. Once and for all we fix

 Δ system of positive roots in Φ_c .

We consider $\Psi, \tilde{\Psi}$ system of positive roots in $\Phi_{\mathfrak{g}}$ both of them contain Δ . Let $\lambda \neq \Psi$ dominant a Harish-Chandra parameter of a discrete series representation π_{λ} of G.

Similarly, let μ , a Ψ - dominant ...

 w_k denotes the involution in Φ_c which carries Δ onto $-\Delta$.

Proposition 3. If $\pi_{\lambda} \boxtimes \pi_{\mu}$ is admissible under the diagonal action of G, then $\Psi = \tilde{\Psi}$ and Ψ is a holomorphic system. The converse statement is also true.

Proof: In Kobayashi Inv. Math 1994 page 188 it is proven that the hypothesis implies

$$\mathbb{R}^+\Psi_n \cap \mathbb{R}^- w_k \tilde{\Psi}_n = \emptyset$$

Hence

$$\Psi_n \cap -w_k \Psi_n = \emptyset$$

Since $-w_k \tilde{\Psi}$ is another system of positive roots containing Δ we have that

$$\Psi_n = w_k \Psi_n$$

Thus

$$-w_k\Psi = \Delta \cup -\Psi_n$$

Hence,

 $\Delta \cup -\Psi_n$ and $\Delta \cup \Psi_n$

are systems of positive roots. Therefore if the sum of two roots in Ψ_n were a root we would have that a root and its negative belonged to Δ a contradiction.

3. Structure of the continuous spectrum

Let (π, V) an square integrable irreducible representation of G. As usual (τ, W) denotes the lowest K-type of π . Assume that the restriction of π to H is not discretely decomposable. Since π is tempered, the continuous spectrum is Hilbert sum of direct integrals of unitary principal series induced by discrete or limit of discrete series. Hence, a typical piece of the restriction looks like

$$\int_{S} Ind_{MAN}^{H}(\sigma \times exp(i\nu) \times 1)m(\sigma,\nu)d\nu.$$

Here MAN is a cuspidal parabolic subgroup of H, σ a discrete series of M, $S \subset \mathfrak{a}$ and $m(\sigma, \nu)$ is nonzero and nonnegative on S. We claim

 $S = \mathfrak{a}.$

We now write down in detail the statement for the case H is a real rank one group. For this we need to recall a result of [?]

Let $H = LAN_1$ with dimA = 1, and MAN_1 denote the minimal parabolic of H which contains AN_1 . Fix a finite dimensional representation (γ, Z) of L. Thus, $(\gamma_{|_M}, Z) = \sum_j (\sigma_j, Z_j)$ as a sum of irreducible representations. Let P_j denote the orthogonal projection onto Z_j .

Then for $f \in Ind_L^H(\gamma) = L^2(H \times_L Z)$ who also belongs to the Schwartz space, the Helgason-Fourier transform

$$P_{\sigma_j,\nu}(f) \in Ind_{MAN_1}^H(\sigma_j \otimes e^{i\nu} \otimes 1)$$

JORGE VARGAS

in the direction $\sigma_j, \nu \in \mathfrak{a}^*$ for f is given by the formula

$$P_{\sigma_j,\nu}(f)(s) = \int_H P_j(\gamma(k(h^{-1}s)^{-1})f(h))e^{i\nu - \rho_H(H(h^{-1}s))}dx \ (s \in L).$$

Here, y = k(y)exp(H(y))n(y) is the Iwasawa decomposition of y.

Following Hota, we realize (π, V) as an eigenspace of the Casimir operator. Let $v \in V - \{0\}$, then in [?] it is shown that some normal derivate of v restricted to H is nonzero. Because of the L^2 -continuity of the normal derivate, some K-component of v enjoys the same property. Thus there exists some K-finite element of v so that has a nontrivial component on the continuous spectrum. Now by means of some normal derivate, we may assume f lies in $L^2(H \times_L Z)$ for a finite dimensional representation (γ, Z) of L. We claim that if π is an integrable representation, then $P_{\sigma_j,\nu}(f)$ is a real analytic function of ν . Indeed, for $\nu \in \mathfrak{a}_{\mathbb{C}}$ we write $\nu = \Re(\nu) + i\Im(\nu)$ Hence,

$$\|P_{\sigma_{j},\nu}(f)(s)\| \leq \int_{\mathbb{H}^{+}} \Delta(Y) \int_{L} \|(f(k_{2}expY)\| \int_{L} e^{(\Re\nu - \rho_{H})(H(exp(-Y)k_{1})} dk_{1}dk_{2}dY.$$

(a) ())

Since π is an integrable representation in [?] it is shown that

$$\|(f(k_2 expY)\| \ll e^{-(2+\epsilon)\rho_H(Y)}(1+\|Y\|)^q$$

Therefore,

$$\|P_{\sigma_{j},\nu}(f)(s)\| \le \int_{\mathfrak{h}^{+}} (1+\|Y\|)^{q} e^{-\epsilon\rho_{H}(Y)} \int_{L} e^{(\Re\nu-\rho_{H})(H(exp(-Y)k_{1}))} dk_{1} dY.$$

In [?] we find a proof of a theorem of Helgason-Osborne which shows that the spherical function $\int_L e^{(\Re\nu-\rho_H)(H(exp(-Y)k_1)}dk_1$ is a bounded function of $\Re\nu$ in an open interval containing zero. Thus, the integral defining $P_{\sigma_j,\nu}(f)(s)$ converges absolutely in a band near \mathfrak{a} . Hence, it defines a holomorphic function near \mathfrak{a} . Therefore $P_{\sigma_j,\nu}(f)(s)$ is real analytic function in $\nu \in \mathfrak{a}$.

Therefore, if π is an integrable representation, $\nu \to P_{\sigma_j,\nu}(f)$ is nonzero in the complement of a numerable set and hence the direct integral must be supported in the whole \mathfrak{a} . When π is not an integrable representation we choose a finite dimensional representation F and an integrable representation $\tilde{\pi}$ of G so that π is the result of applying the Zuckerman functor to $\tilde{\pi}$. Since, to apply the Zuckerman functor amounts to perform tensor product for a finite dimensional representation F we get the support of the continuous spectrum of π is the whole \mathfrak{a} . For arbitrary π i can prove $\nu \to P_{\sigma_j,\nu}(f)$ is real analytic by means of helgason-johnson, to be typed later on.

4. DISCRETE FACTORS OF RESTRICTION OF UNITARY REPRESENTATIONS

Proposition 4. Let (π, V) a unitary irreducible representation of G. Assume that there exists an irreducible H-subrepresentation V_1 of π so that

H-smooth vectors of V_1 are smooth vectors of V. Then π is Hilbert discrete decomposable as a representation of H.

In order to justify the statement we recall several important facts.

i) Let $\mathscr{S}(H)$ denotes the space of rapidly decreasing functions on H defined by Wallach in Vol 1. page 230. Then Wallach shows in Vol II that the space of smooth vectors of a unitary representation is an $\mathscr{S}(H)$ -module, and that the representation is irreducible if and only if the $\mathscr{S}(H)$ -module of smooth vectors is algebraically irreducible. Thus, the subspace of H-smooth vectors of V_1 is contained in the subspace of smooth vectors of V.

ii) If V_1 is a finite length representation and F is a finite dimensional representation of H. Then $V_1 \boxtimes F$ is a representation of finite length.

We write $\mathfrak{g} = \mathfrak{h} + \mathfrak{q}$ so that \mathfrak{q} is an Ad(H)-invariant complement.

We denote the smooth vectors of a representation by adding a subscript ∞ to the vector space. Hence, for nonnegative integer n, $(V_1)_{\infty} \boxtimes S^n(\mathfrak{q})$ is a representation of finite length of $\mathscr{U}(H)$. Thus, V_{∞} has the $\mathscr{U}(H)$ -invariant filtration $\sum_{1 \le n \le N} \pi(S^n(\mathfrak{q}))(V_1)_{\infty}$, $N = 1, \cdots, \infty$. Since

$$\bigcup_{N=1}^{\infty} \sum_{0 \le n \le N} \pi(S^n(\mathfrak{q}))(V_1)_{\infty}$$

is a $\mathscr{U}(G)$ -invariant subspace and π is irreducible this union is a dense subspace of V_{∞} . The fact that π is unitary forces $\pi_{|_H}$ to be discretely decomposable. Compare with Kobayashi Inv. Math.

FAMAF-CIEM, Universidad Nacional de Córdoba, 5000 Córdoba, Argentine, e-mail: vargas@famaf.unc.edu.ar