RESTRICTION OF DISCRETE SERIES

JORGE VARGAS

Abstract

Let $G=K A N$ be a connected linear semisimple Lie group. Let π be a Discrete Series representation for G. Let $H=L A_{1} N_{1}$ be a connected semisimple subgroup of G. 1- We provide a continuous immersion into π of a Discrete Series representation for H, whose lowest L-type occurs in the lowest K-type of π. 2 - Tensor product has admissible diagonal decomposition then holomorphic 3- in continuous factor integral along whole $a_{P} 4$ - Irreducible H-subrepresentation cuts smooth vectors, then π is admissible.

Introduction

For any Lie group we will denote its Lie algebra by the corresponding German lower case letter. Let G be a connected matrix semisimple Lie group. We fix an Iwasawa decomposition for $G, G=K A N$. Let H be a connected semisimple subgroup of G. Henceforth, we choose an Iwasawa decomposition $H=L A_{1} N_{1}$ such that $L \subset K, A_{1} \subset A$ and $N_{1} \subset N$.

1. Explicit immersion

We also assume that the Discrete Series for G is nonempty. Let (π, V) be a Discrete Series representation for G. Let (τ, W) be the lowest K-type for (π, V). Let (σ, Z) be an irreducible L-component of the restriction of τ to L. Finally, we assume that there exists a Discrete Series representation (ρ, V_{1}) for H such that its lowest L-type is σ. In [?] we have shown

Proposition 1. $\left(\rho, V_{1}\right)$ is contained in the restriction of (π, V) to H.
We now construct an explicit intertwining linear map from ρ into π.
The main steps of the proof of the above proposition were:
a) For K-finite vectors v, w of (π, V), the restriction to H of a matrix coefficient $(\pi(?) v, w)$ is in $L^{p}(H)$, for p in an interval $\left(p_{0}, 2\right]$ with $p_{0}<2$.
b) An explicit formula for the spherical trace functions attached to the lowest K-type of irreducible square integrable representation. The formula is proved in Proposition 7.4 of $[\mathrm{F}-\mathrm{J}]$ and it is:

As before (π, V) (resp. $\left.\left(\rho, V_{1}\right)\right)$ is a Discrete Series representation for G, (H) and $(\tau, W)((\sigma, Z))$ its lowest K-type (L-type) respectively. Let P_{τ}

[^0](resp. P_{σ}) be the orthogonal projection of V (resp. V_{1}) onto $W(Z)$. Then the respective spherical trace functions are:
$\phi_{G}(x)=\operatorname{trace}\left(P_{\tau} \pi(x) P_{\tau}\right)(x \in G)$ and $\phi_{H}(x)=\operatorname{trace}\left(P_{\sigma} \rho(x) P_{\sigma}\right)(x \in H)$.
Let P (resp. Q) be the orthogonal projection from $W(Z)$ onto the line that contains the highest weight vector for $W(Z)$ respectively. The formula is:
\[

$$
\begin{gathered}
\phi_{G}\left(k_{1} a k_{2}\right)=\int_{K} \operatorname{trace}\left(\tau\left(k^{-1} k_{2} k_{1} k\right) P\right) C(a, k) d k \\
\text { for } a \in \exp \left(A_{i}^{+}\right), k_{1}, k_{2} \in K
\end{gathered}
$$
\]

where $C(a, k)$ is a continuous, nowhere vanishing and nonnegative real valued function, and $d k$ is Haar measure on K. Certainly, a similar formula holds for ϕ_{H}.

Let $w(z)$ be norm one highest weight vector for $W(Z)$ respectively. Then,

$$
\begin{gathered}
\left(\tau\left(k^{-1} k_{2} k_{1} k\right) w, w\right)=\operatorname{trace}\left(\tau\left(k^{-1} k_{2} k_{1} k\right) P\right) \\
\left(\sigma\left(r^{-1} k_{2} k_{1} r\right) z, z\right)=\operatorname{trace}\left(\sigma\left(r^{-1} k_{2} k_{1} r\right) Q\right)
\end{gathered}
$$

Here (,) denotes the inner product on W.
c) $\int_{H} \overline{\phi_{G}(x)} \phi_{H}(x) d x$ is a positive number.
d) There exists $w_{1} \in W, z_{1} \in Z$ so that

$$
\int_{H} \overline{\left(\pi(h) w_{1}, w_{1}\right)}\left(\rho(h) z_{1}, z_{1}\right) d h
$$

is nonzero.
We now show
Proposition 2. For a K-finite vector $w \in V$ and $v \in V$ the function $(\pi(?) v, w)$ belongs to $L^{2}(H)$. Besides, the restriction map

$$
\begin{gathered}
r: V \longrightarrow L^{2}(H) \\
V \ni v \longrightarrow(H \ni h \rightarrow(\pi(h) v, w))
\end{gathered}
$$

is Hilbert continuous.
Note that for each choice of w there is a map r. In order to avoid a cumbersome notation we will write just r rather than a notation that also involves w.

Proof: We consider the isometric immersion $(\|w\|=1)$

$$
\begin{gathered}
V \longrightarrow L^{2}(G) \\
x \rightarrow(\pi(?) x, w)
\end{gathered}
$$

We have that if $\left(\pi(?) x_{n}, w\right)$ converges in L^{2}-norm, then the sequence x_{n} converges in V. Therefore, the sequence $\left(\pi(?) x_{n}, w\right)$ converges pointwise. In order to avoid a cumbersome notation, the image of the immersion will again be denoted by V. Note that the elements of V are continuous functions. Let V_{F} be the subspace of K-finite vectors for V. Then, owing to a) the
restriction map $r: V_{F} \longrightarrow L^{2}(H)$ is a well defined linear map. Let D be the subspace of the elements f in V such that the function $r(f)$ is in $L^{2}(H)$. We claim that $r: D \longrightarrow L^{2}(H)$ is a closed linear map. In fact, let $f_{n} \in D$ which converges to $f \in V$ so that $r\left(f_{n}\right)$ converges to $g \in L^{2}(H)$, want to show that $f \in D$ and $r(f)=g$. We already know that f_{n} converges pointwise to f and f is continuous. The Riesz-Fisher Theorem implies that $r\left(f_{n_{j}}\right)$ converges almost everywhere to g in H. Thus, $r(f)$ is equal to g almost everywhere, and hence $f \in D$. For f in the domain of $r r^{\star}$ we have,

$$
r r^{\star}(f)=d_{\pi}(\pi(?) w, w) \star_{H} f=d_{\pi} \int_{H}\left(\pi\left(x h^{-1} w, w\right) f(h) d h\right.
$$

Indeed, firs of all we recall the identity [?] Cor. 4.5.9.4

$$
\int_{G}(g w, w)\left(g^{-1} h v, w\right) d g=\frac{1}{d_{\pi}}(\pi(h) v, w)(w, w)
$$

and let $\tilde{f}=(\pi(?) v, w) \in D, f \in L^{2}(H)$ then

$$
\begin{aligned}
& (r(\tilde{f}), f)_{L^{2}(H)}=\int_{H}(\pi(h) v, w) \overline{f(h)} d h \\
= & d_{\pi} \int_{H} \int_{G}(g w, w)\left(g^{-1} h v, w\right) d g \overline{f(h)} d h \\
= & d_{\pi} \int_{G} \int_{H} \overline{f(h)}(g h v, w)\left(g^{-1} w, w\right) d h d g \\
= & d_{\pi} \int_{G} \int_{H} \overline{f(h)\left(g h^{-1} w, w\right)} d h \tilde{f}(g) d g
\end{aligned}
$$

Hence, $r r^{\star}(f)=d_{\pi}(\pi(?) w, w) \star_{H} f$
We now apply the Kunze-Stein phenomenon and obtain that $r r^{\star}$ extends to a bounded linear operator in $L^{2}(H)$. Thus, $r^{\star}=V\left(r r^{\star}\right)^{\frac{1}{2}}$ is continuous and hence r is continuous and $D=V$.

Corollary 1. For each $w \in W$, the adjoint map $r^{\star}: L^{2}(H) \longrightarrow V$ is given by

$$
r^{\star}(f)(x)=d_{\pi} \int_{H}\left(\pi\left(x h^{-1}\right) w, w\right) f(h) d h, x \in G, f \in L^{2}(H) .
$$

Corollary 2. Let w_{1}, z_{1} as in c), fix the immersion of V_{1} associated to z_{1} and consider the map r corresponding to w_{1}. Then r^{\star} restricted to V_{1} is an injective map.

In fact,

$$
\left(r(?) w_{1}, z_{1}\right)=\left(w_{1}, r^{\star}\left(z_{1}\right)\right)
$$

and because of c) the right hand side is nonzero. Hence, Schur's lemma concludes the corollary.

Next, we construct an explicit non zero linear intertwining map T from V_{1} into V when we consider the realization of V given by Hota. To start with we fix w_{1}, z_{1} as in c) and complete w_{1} to an orthonormal basis w_{j} of W.

We realize V as the kernel in $L^{2}\left(G \times_{K} W\right)$ of the homogeneous differential operator $\Omega-[(\lambda, \lambda)-(\rho, \rho)]$. That is, V is an eigenspace of the Casimir operator. We fix the realization of V_{1} in $L^{2}(H)$ provided by z_{1} and we consider the linear map T defined by convolution in H by the spherical function attached to the lowest K-type of π evaluated at w_{1}. Thus, for $f \in V_{1}, x \in G$,

$$
\begin{gathered}
T(f)(x)=\sum_{j}\left[\left(\pi(?) w_{1}, w_{j}\right) \star_{H} f\right](x) w_{j} \\
=\sum_{j}\left[\int_{H}\left(\pi\left(x h^{-1} w_{1}, w_{j}\right) f(h) d h\right] w_{j}\right.
\end{gathered}
$$

Hence

$$
\begin{gathered}
T(f)(k x)=\sum_{j}\left[\int_{H}\left(\pi\left(k x h^{-1} w_{1}, k^{-1} w_{j}\right) f(h) d h\right] w_{j}\right. \\
=\sum_{j}\left[\int_{H}\left(\left(x h^{-1} w_{1}, k^{-1} w_{j}\right) f(h) d h\right] w_{j}\right.
\end{gathered}
$$

Since $k^{-1} w_{j}=\sum_{r}\left(k^{-1} w_{j}, w_{r}\right)$ we obtain

$$
T(f)(k x)=\sum_{j}\left[\int_{H}\left(\pi\left(x h^{-1} w_{1}, w_{r}\right) f(h) d h\right] \overline{\left(k^{-1} w_{j}, w_{r}\right)} w_{j}=\tau(k) T(f)(x)\right.
$$

By hypothesis, π has infinitesimal character λ and $w_{j} \in V$ hence we have that the function $T(f)$ belongs to the eigenspace of the Casimir operator for the eigenvalue $(\lambda, \lambda)-(\rho, \rho)$. When we apply T to the function $\left(\rho(?) z_{1}, z_{1}\right)$ the first component of $T(f)(x)$ is nonzero, hence T is a nontrivial map. It is clear that T commutes with the action of H. The Lemma of Schur implies the statement.

Note: Since w_{j} are K-finite vectors it is possible to give a direct proof of the fact that the integral which defines $T(f)$ converges and that $T(f)$ belongs to $L^{2}\left(G \times_{K} W\right)$.

2. Admissible Tensor products

Let G a connected semisimple Lie group having a compact Cartan subgroup T. Fix a maximal compact subgroup K containing T. Let Φ_{c}, Φ_{n} denote the set of compact (noncompact) roots in $\Phi_{\mathfrak{g}}$ the root system of the pair $(\mathfrak{g}, \mathfrak{t})$. Once and for all we fix
Δ system of positive roots in Φ_{c}.
We consider $\Psi, \tilde{\Psi}$ system of positive roots in $\Phi_{\mathfrak{g}}$ both of them contain Δ.
Let λ a Ψ - dominant a Harish-Chandra parameter of a discrete series representation π_{λ} of G.

Similarly, let μ, a $\tilde{\Psi}-$ dominant ...
w_{k} denotes the involution in Φ_{c} which carries Δ onto $-\Delta$.

Proposition 3. If $\pi_{\lambda} \boxtimes \pi_{\mu}$ is admissible under the diagonal action of G, then $\Psi=\tilde{\Psi}$ and Ψ is a holomorphic system. The converse statement is also true.

Proof: In Kobayashi Inv. Math 1994 page 188 it is proven that the hypothesis implies

$$
\mathbb{R}^{+} \Psi_{n} \cap \mathbb{R}^{-} w_{k} \tilde{\Psi}_{n}=\emptyset
$$

Hence

$$
\Psi_{n} \cap-w_{k} \tilde{\Psi}_{n}=\emptyset
$$

Since $-w_{k} \tilde{\Psi}$ is another system of positive roots containing Δ we have that

$$
\Psi_{n}=w_{k} \tilde{\Psi}_{n}
$$

Thus

$$
-w_{k} \tilde{\Psi}=\Delta \cup-\Psi_{n}
$$

Hence,

$$
\Delta \cup-\Psi_{n} \text { and } \Delta \cup \Psi_{n}
$$

are systems of positive roots. Therefore if the sum of two roots in Ψ_{n} were a root we would have that a root and its negative belonged to Δ a contradiction.

3. Structure of the continuous spectrum

Let (π, V) an square integrable irreducible representation of G. As usual (τ, W) denotes the lowest K-type of π. Assume that the restriction of π to H is not discretely decomposable. Since π is tempered, the continuous spectrum is Hilbert sum of direct integrals of unitary principal series induced by discrete or limit of discrete series. Hence, a typical piece of the restricction looks like

$$
\int_{S} \operatorname{In} d_{M A N}^{H}(\sigma \times \exp (i \nu) \times 1) m(\sigma, \nu) d \nu
$$

Here $M A N$ is a cuspidal parabolic subgroup of H, σ a discrete series of M, $S \subset \mathfrak{a}$ and $m(\sigma, \nu)$ is nonzero and nonnegative on S. We claim

$$
S=\mathfrak{a}
$$

We now write down in detail the statement for the case H is a real rank one group. For this we need to recall a result of [?]

Let $H=L A N_{1}$ with $\operatorname{dim} A=1$, and $M A N_{1}$ denote the minimal parabolic of H which contains $A N_{1}$. Fix a finite dimensional representation (γ, Z) of L. Thus, $\left(\gamma_{\left.\right|_{M}}, Z\right)=\sum_{j}\left(\sigma_{j}, Z_{j}\right)$ as a sum of irreducible representations. Let P_{j} denote the orthogonal projection onto Z_{j}.

Then for $f \in \operatorname{Ind}_{L}^{H}(\gamma)=L^{2}\left(H \times_{L} Z\right)$ who also belongs to the Schwartz space, the Helgason-Fourier transform

$$
P_{\sigma_{j}, \nu}(f) \in \operatorname{Ind}_{M A N_{1}}^{H}\left(\sigma_{j} \otimes e^{i \nu} \otimes 1\right)
$$

in the direction $\sigma_{j}, \nu \in \mathfrak{a}^{\star}$ for f is given by the formula

$$
P_{\sigma_{j}, \nu}(f)(s)=\int_{H} P_{j}\left(\gamma\left(k\left(h^{-1} s\right)^{-1}\right) f(h)\right) e^{i \nu-\rho_{H}\left(H\left(h^{-1} s\right)\right)} d x(s \in L) .
$$

Here, $y=k(y) \exp (H(y)) n(y)$ is the Iwasawa decomposition of y.
Following Hota, we realize (π, V) as an eigenspace of the Casimir operator. Let $v \in V-\{0\}$, then in [?] it is shown that some normal derivate of v restricted to H is nonzero. Because of the L^{2}-continuity of the normal derivate, some K-component of v enjoys the same property. Thus there exists some K-finite element of v so that has a nontrivial component on the continuous spectrum. Now by means of some normal derivate, we may assume f lies in $L^{2}\left(H \times_{L} Z\right)$ for a finite dimensional representation (γ, Z) of L. We claim that if π is an integrable representation, then $P_{\sigma_{j}, \nu}(f)$ is a real analytic function of ν. Indeed, for $\nu \in \mathfrak{a}_{\mathbb{C}}$ we write $\nu=\Re(\nu)+i \Im(\nu)$ Hence,

$$
\begin{gathered}
\left\|P_{\sigma_{j}, \nu}(f)(s)\right\| \\
\leq \int_{\mathfrak{h}^{+}} \Delta(Y) \int_{L} \|\left(f\left(k_{2} \exp Y\right) \| \int_{L} e^{\left(\Re \nu-\rho_{H}\right)\left(H\left(\exp (-Y) k_{1}\right)\right.} d k_{1} d k_{2} d Y .\right.
\end{gathered}
$$

Since π is an integrable representation in [?] it is shown that

$$
\|\left(f\left(k_{2} \exp Y\right) \| \ll e^{-(2+\epsilon) \rho_{H}(Y)}(1+\|Y\|)^{q}\right.
$$

Therefore,

$$
\begin{gathered}
\left\|P_{\sigma_{j}, \nu}(f)(s)\right\| \\
\leq \int_{\mathfrak{h}^{+}}(1+\|Y\|)^{q} e^{-\epsilon \rho_{H}(Y)} \int_{L} e^{\left(\Re \nu-\rho_{H}\right)\left(H\left(\exp (-Y) k_{1}\right)\right.} d k_{1} d Y .
\end{gathered}
$$

In [?] we find a proof of a theorem of Helgason-Osborne which shows that the spherical function $\int_{L} e^{\left(\Re \nu-\rho_{H}\right)\left(H\left(\exp (-Y) k_{1}\right)\right.} d k_{1}$ is a bounded function of $\Re \nu$ in an open interval containing zero. Thus, the integral defining $P_{\sigma_{j}, \nu}(f)(s)$ converges absolutely in a band near \mathfrak{a}. Hence, it defines a holomorphic function near \mathfrak{a}. Therefore $P_{\sigma_{j}, \nu}(f)(s)$ is real analytic function in $\nu \in \mathfrak{a}$.

Therefore, if π is an integrable representation, $\nu \rightarrow P_{\sigma_{j}, \nu}(f)$ is nonzero in the complement of a numerable set and hence the direct integral must be supported in the whole \mathfrak{a}. When π is not an integrable representation we choose a finite dimensional representation F and an integrable representation $\tilde{\pi}$ of G so that π is the result of applying the Zuckerman functor to $\tilde{\pi}$. Since, to apply the Zuckerman functor amounts to perform tensor product for a finite dimensional representation F we get the support of the continuous spectrum of π is the whole \mathfrak{a}. For arbitrary π i can prove $\nu \rightarrow P_{\sigma_{j}, \nu}(f)$ is real analytic by means of helgason-johnson, to be typed later on.

4. Discrete factors of restriction of unitary representations

Proposition 4. Let (π, V) a unitary irreducible representation of G. Assume that there exists an irreducible H-subrepresentation V_{1} of π so that
H-smooth vectors of V_{1} are smooth vectors of V. Then π is Hilbert discrete decomposable as a representation of H.

In order to justify the statement we recall several important facts.
i) Let $\mathscr{S}(H)$ denotes the space of rapidly decreasing functions on H defined by Wallach in Vol 1. page 230. Then Wallach shows in Vol II that the space of smooth vectors of a unitary representation is an $\mathscr{S}(H)$-module, and that the representation is irreducible if and only if the $\mathscr{S}(H)$-module of smooth vectors is algebraically irreducible. Thus, the subspace of H-smooth vectors of V_{1} is contained in the subspace of smooth vectors of V.
ii) If V_{1} is a finite length representation and F is a finite dimensional representation of H. Then $V_{1} \boxtimes F$ is a representation of finite length.

We write $\mathfrak{g}=\mathfrak{h}+\mathfrak{q}$ so that \mathfrak{q} is an $A d(H)$-invariant complement.
We denote the smooth vectors of a representation by adding a subscript ∞ to the vector space. Hence, for nonnegative integer $n,\left(V_{1}\right)_{\infty} \boxtimes S^{n}(\mathfrak{q})$ is a representation of finite length of $\mathscr{C}(H)$. Thus, V_{∞} has the $\mathscr{C}(H)$-invariant filtration $\sum_{1 \leq n \leq N} \pi\left(S^{n}(\mathfrak{q})\right)\left(V_{1}\right)_{\infty}, N=1, \cdots, \infty$. Since

$$
\bigcup_{N=1}^{\infty} \sum_{0 \leq n \leq N} \pi\left(S^{n}(\mathfrak{q})\right)\left(V_{1}\right)_{\infty}
$$

is a $\mathscr{C}(G)$-invariant subspace and π is irreducible this union is a dense subspace of V_{∞}. The fact that π is unitary forces $\pi_{\left.\right|_{H}}$ to be discretely decomposable. Compare with Kobayashi Inv. Math.

FAMAF-CIEM, Universidad Nacional de Córdoba, 5000 Córdoba, ArgenTINE, E-MAIL: VARGAS@FAMAF.UNC.EDU.AR

[^0]: Partially supported by CONICET, FONCYT, SECYTUNC (Argentina), ICTP (Trieste).
 Keywords Discrete Series representations, Branching laws subjclass 1991 Primary 22E46.

