Simple modules of small quantum groups at dihedral groups

Cristian Vay (Joint work with G. García)

FaMAF – UNC, CIEM – CONICET

Mini-Workshop (MFO, 2021): Non-semisimple Tensor Categories and Their Semisimplification

General results

- The socle of Verma modules
- Tensoring by rigid simple modules
- \bullet A recursive strategy for V decomposable

Motivation

The guiding goal is to construsct fusion categories from non-semisimple Hopf algebras.

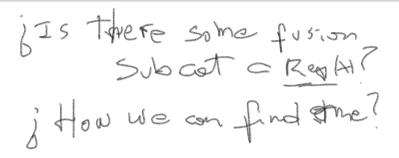
One idea is to consider the quotient category associated to a spherical Hopf algebra.

Andruskiewitsch, Angiono, García I, Torrecillas, V. From Hopf algebras to tensor categories. Conformal Field Theories and Tensor Categories, Yi-Zhu Huang et al. editors, Mathematical Lectures from Peking University, Springer.

Theorem [Barrett, Westbury]

 $\operatorname{Rep}(H)$ is semisimple tensor category with simple objects

 $\left\{ M \in \operatorname{Rep}(H) \mid M \text{ is indecomposable and } \dim_q(M) \neq 0 \right\}$



Barrett, Westbury. Spherical Categories Adv. Math. (1999)

- To consider subset generated by some object (eg tt-simple)

- To find Titting mod on for quantum promps.

Which H of the huge universe of Hopf algebras we should consider?

Something close to (small) Quantum groups at root of units

Generalized small quantum groups

 $D(\mathbf{U} \not \otimes \mathbf{N}_{0}) \longrightarrow \mathbf{u}_{q}(\mathbf{g}) = \mathbf{u}^{-} \otimes \mathbf{u}_{0} \otimes \mathbf{u}^{+}$ Nichols $D(B(D \times H) \simeq B(V) \otimes D(H) \otimes B(V)$ + A Nichols of H

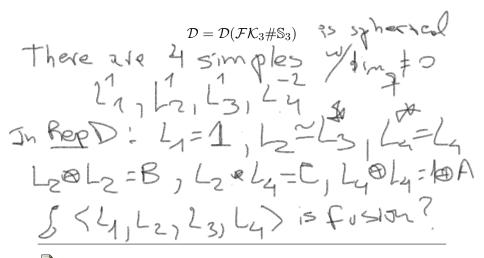
Example: Taft algebras

 $\mathcal{D} = \mathcal{D}(\Bbbk[x \mid x^n] \# \mathbb{Z}_n) \longrightarrow \mathfrak{u}_q(\mathfrak{sl}_2)$ V, W. D-Simpler > VOW=05.0F. Simple ? Yow Simple? ? Nisodd > Disribbor > spherical Proj Rep D = < simples > 25 fusion dimen

Erdmann, Green, Snashall, Taillefer. Representation theory of the Drinfeld doubles of a family of Hopf algebras. J Pure Appl. Algebra (2006).

Kauffman, Radford. A necessary and sufficient condition for a finite-dimensional Drinfel'd Double to be a ribbon Hopf algebra. J Algebra (1993).

Example: Fomin-Kirillov algebra



Pogorelsky, V. Verma and simple modules for quantum groups at non-abelian groups. Adv. Math. (2016).

In the representation theory of the Drinfeld double of the Fomin-Kirillov algebra FK₃ Algebr. Represent. Theory (2019).

Example: Dihedral groups

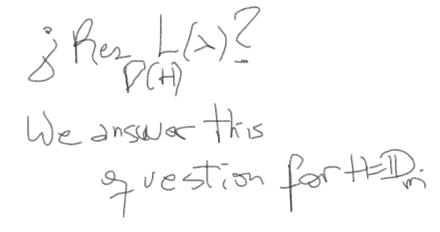
V= simple D spherical Rup D = < Simples >= < (jid) = Rup DD

🚺 García, V. Simple modules of small quantum groups at *dihedral qroups*. arXiv:2012.09323 (2020).

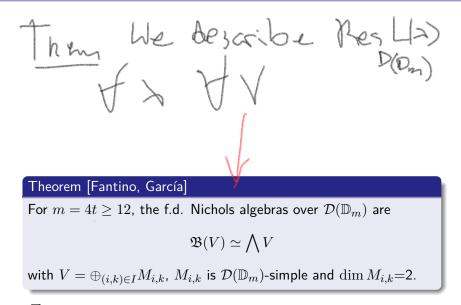
Simple modules over generalized small quantum groups

 $D = D(B(V) \neq A) = B(V) \neq D(A) \neq B(A)$ AED(H)-Simple m) AED-Simple (V.10) Verman >> MA= Dog 2 ~> L(A) = top M(D) DFHT-simple > {D-simple deget > {D-simple L(2) weight

Bellamy, Thiel. Highest weight theory for f.d. graded algebras with triangular decomposition. Adv. Math. (2018).



Our main result



Fantino, García. On pointed Hopf algebras over dihedral groups. Pacific J. Math. (2011).

Remarks

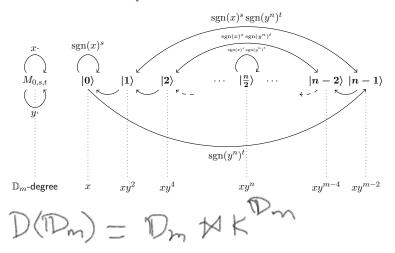
- In general, the $\mathcal{D}(G)$ -weights are well-known and they are no necessarily one-dimensional. For $G = \mathbb{D}_m$ we have
 - **1** 8 one-dimensional weights.
 - (m+2)(n-1) two-dimensional weights.
 - 3 8 n-dimensional weights.

- -T
- ② The tensor products of weights are no necessarily simple.
- This is an infinity family of small quantum groups at non abelian groups.

Andruskiewitsch, Graña. Braided Hopf algebras over non-abelian finite groups. Bol. Acad. Nac. Cienc. (1999).

An *n*-dimensional weight

 $D_m = \langle x, y / x^2 = e = 1^m, xy = y^2 k \rangle$



1 Introduction

2 General results

- The socle of Verma modules
- Tensoring by rigid simple modules
- A recursive strategy for V decomposable

Notation

H= F.A. Hapf oh. B(N)= fd Ni anols oh L+ $\mathcal{D} = \mathcal{D}(\mathcal{O}(\mathcal{V}_{\mathcal{A}}\mathcal{H}) = \mathcal{B}(\mathcal{V}_{\mathcal{A}}\mathcal{O}\mathcal{D}(\mathcal{H})\mathcal{O}\mathcal{B}(\mathcal{V})$ $M(\lambda) = M_{\mu}^{V}(\lambda) = D \otimes \lambda = B(v) \otimes \lambda$ L(A) = L'H(A) = top M(A) S(X) = Socle M(A)

1 Introduction

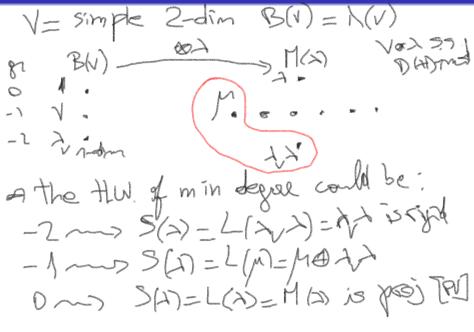
2 General results

The socle of Verma modules

- Tensoring by rigid simple modules
- A recursive strategy for V decomposable

{ueighs } > { D-simples ? > く コレト) 150 A K-> S(A) [N] ID= Trop S(+)=L(p) where 0 A is the unique Highes-w of minimum depree S(x) = Dy = B(y) MRomk

Example



2 General results

- The socle of Verma modules
- Tensoring by rigid simple modules
- A recursive strategy for V decomposable

L(M) = A risid The If LIM=misrip and rom is DHAD-35. = Dt; $\rightarrow L(\lambda) \otimes L(\mu) = \bigoplus L(\lambda)$ Dn) L(ploL/p) is grundled in 2) All the HW. Of L(x) OL(p) ou on degree 0.

1 Introduction

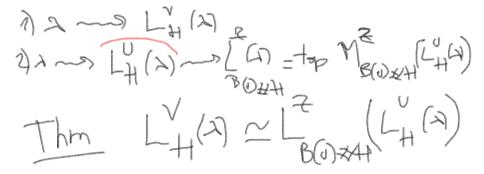
2 General results

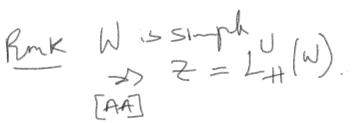
• The socle of Verma modules

- Tensoring by rigid simple modules
- A recursive strategy for V decomposable

V=WOU on D(H)-mod $B(v) \not\approx H \simeq B(z) \not\approx (B(v) \not\approx H)$ $Z = od B(v) (W) \not\in (B0 \not\approx H)$ $B(v) \not\approx H \simeq B(z) (W) \not\in (B0 \not\approx H)$ $A D = D(B(V)x(H) \simeq D(B(H) x(B(V)x(H)))$ » B(v)@D(A)@B(r)~~B(z)@D(B(v)&H)@B(z) in two differents works!

Andruskiewitsch, Angiono. On Nichols algebras over basic Hopf algebras. Math. Zeitschrift (2020).





Example

 $= -f^{(1)}p$ $= -f^{(1)}p$ W= simple 2-din C_{N,U} $B(w) = \lambda(w)$ G

1 Introduction

2 General results

- The socle of Verma modules
- Tensoring by rigid simple modules
- \bullet A recursive strategy for V decomposable

