000 00000000000000000000000000000000000	000 000	00000	00	000

Symmetries on modules over Drinfeld doubles

Cristian Vay

FaMAF – UNC, CIEM – CONICET

Motivation		BGG Reciprocity	Symmetric Hilbert series		Braided autoequivalences
000	00000000000	000	00000	00	000

- 2 Introduction
- 3 BGG Reciprocity
- 4 Symmetric Hilbert series
- 5 Tate duality
- 6 Braided autoequivalences

We are interested on the representations of the Drinfeld double

$\mathcal{D}=\mathcal{D}(\mathfrak{B}(V)\#H)$

of the bozonization of a Nichols algebra and a Hopf algebra.

Why?

- These are natural generalization of (small) quantum groups.
- The category of graded *D*-modules is highest-weight [Bellamy-Thiel].
- Categorification of Z-fusion datum associated with cyclic complex reflection groups [Bonnafé-Rouquier].
- These could give information about the Nichols algebra.
- To construct new examples of fusion categories.

Motivation ○0●	Introduction 00000000000	BGG Reciprocity 000	Symmetric Hilbert series	Tate duality 00	Braided autoequivalences
Goals	of the tal	k			

- BGG Reciprocity
- Symmetric Hilbert Series
- Tate duality
- Braided autoequivalences

Motivation	Introduction	BGG Reciprocity	Symmetric Hilbert series		Braided autoequivalences
000	0000000000	000	00000	00	000

- 3 BGG Reciprocity
- 4 Symmetric Hilbert series
- 5 Tate duality
- 6 Braided autoequivalences

Motivation	Introduction	BGG Reciprocity	Symmetric Hilbert series		Braided autoequivalences
000	0000000000	000	00000	00	000

• H = finite dimensional Hopf algebra.

The Drinfeld double $\mathcal{D}(H)$ of H is

a Hopf algebra which is constructed as a kind of double crossed product between H and H^\ast

$$\mathcal{D}(H) = H^* \bowtie H.$$

Example: $H = \Bbbk G$ a group algebra

 $\mathcal{D}(G) = \Bbbk^G \otimes \Bbbk G$ as coalgebras and

$$\delta_h g = g \, \delta_{g^{-1}hg}$$

for all $g, h \in G$.

Motivation Intro	duction	BGG Reciprocity	Symmetric Hilbert series		Braided autoequivalences
000 000	00000000	000	00000	00	000

• V = Yetter-Drinfeld module over $H \equiv \mathcal{D}(H)$ -module.

The Nichols algebra $\mathfrak{B}(V)$ of V is

a graded braided Hopf algebra in the category of $\mathcal{D}(H)\text{-modules};$

$$\mathfrak{B}(V) = \frac{T(V)}{\mathcal{J}}$$

where \mathcal{J} is the maximal ideal which is a coideal and generated by homogeneous element of degree ≥ 2 .

Motivation	Introduction	BGG Reciprocity	Symmetric Hilbert series		Braided autoequivalences
000	000000000000000000000000000000000000000	000	00000	00	000

Example:
$$V_3 = \langle x_{(12)}, x_{(23)}, x_{(13)} \rangle$$
 over $\mathcal{D}(\mathbb{S}_3)$

$$gx_{(ij)} = \operatorname{sgn}(g) \, x_{g(ij)g^{-1}} \quad \text{and} \quad \delta_h \cdot x_{(ij)} = \delta_{(ij),h} \, x_{(ij)}$$

Example: The Fomin-Kirillov algebra $\mathcal{FK}_3 = \mathfrak{B}(V_3)$

$$\begin{aligned} x_{(12)}^2 &= x_{(13)}^2 = x_{(23)}^2 = 0\\ x_{(12)}x_{(13)} + x_{(13)}x_{(23)} + x_{(23)}x_{(12)} = 0\\ x_{(13)}x_{(12)} + x_{(23)}x_{(13)} + x_{(12)}x_{(23)} = 0 \end{aligned}$$

Properties of finite dimensional Nichols algebras

 The homogeneous component of maximum degree is one dimensional:

$$\mathfrak{B}^{n_{top}}(V) = \mathbb{k}\{x_{top}\}.$$

• $\mathfrak{B}(V)$ is Frobenius whose non-degenerate bilinear form is

$$\mathfrak{B}(V)\otimes\mathfrak{B}(V)\xrightarrow{\mathrm{mult}} \mathfrak{B}(V)\xrightarrow{(x_{top})^*} \Bbbk$$

• The Hilbert series of $\mathfrak{B}(V)$ is symmetric

$$\dim \mathfrak{B}^{i}(V) = \dim \mathfrak{B}^{n_{top}-i}(V).$$

The Hilbert series h_M of a graded module M is $h_M = \sum_i \dim M^i t^i$ $\mathfrak{B}(V)$

 x_{top}

000 00000000 000 00000	00 000	

Example: V_3

	$h_{\mathfrak{B}(V_3)} = 1 + 3t + 4t^2 + 3t + 1$
$\mathfrak{B}^0(V_3)$	$\langle 1 \rangle$
$\mathfrak{B}^1(V_3)$	$\langle x_{(12)}, x_{(23)}, x_{(13)} \rangle$
$\mathfrak{B}^2(V_3)$	$\langle x_{(12)}x_{(13)}, x_{(12)}x_{(23)}, x_{(13)}x_{(23)}, x_{(13)}x_{(12)} \rangle$
$\mathfrak{B}^3(V_3)$	$\langle x_{(12)}x_{(13)}x_{(23)}, x_{(12)}x_{(13)}x_{(12)}, x_{(13)}x_{(12)}x_{(23)} \rangle$
$\mathfrak{B}^4(V_3)$	$\langle x_{top} angle$

The bosonization $\mathfrak{B}(V) \# H$ is

a Hopf algebra which is constructed as a kind of crossed product between H and $\mathfrak{B}(V)$

Notation

$$\mathcal{D}:=\mathcal{D}(\mathfrak{B}(V)\#H)$$

Properties of ${\mathcal D}$

- Triangular decomposition: $\mathcal{D} \simeq \mathfrak{B}(V) \otimes \mathcal{D}(H) \otimes \mathfrak{B}(\overline{V})$
- Graded: $\mathcal{D}^n = \bigoplus_{n=j-i} \mathfrak{B}^i(V) \otimes \mathcal{D}(H) \otimes \mathfrak{B}^j(\overline{V})$
- Symmetric algebra

where \overline{V} is the dual object of V as $\mathcal{D}(H)$ -module endowed with the inverse braiding. It holds $\mathfrak{B}^n(\overline{V}) \simeq \mathfrak{B}^n(V)^*$ as $\mathcal{D}(H)$ -modules.

Representation theory of \mathcal{D}

• $\Lambda =$ the set of simple $\mathcal{D}(H)$ -modules.

Theorem [Bellamy-Thiel, V]

If H is semisimple, then the category of graded \mathcal{D} -modules is a highest weight category whose set of weights is $\Lambda \times \mathbb{Z}$.

The standard (Verma) modules are:

$$\mathsf{M}(\lambda[n]) = \mathcal{D} \otimes_{\mathcal{D}^{\geq 0}} \lambda[n].$$

The simple modules are:

$$\mathsf{L}(\lambda[n]) = top\,\big(\mathsf{M}(\lambda[n])\big).$$

Motivation	Introduction	BGG Reciprocity	Symmetric Hilbert series		Braided autoequivalences
000	000000000000	000	00000	00	000

•
$$\lambda_V = \mathfrak{B}^{n_{top}}(V) \in \Lambda.$$

Lemma $\mathsf{M}(\lambda)^* \simeq \mathsf{M}\big((\lambda_V \lambda)^*\big)$ $\mathsf{L}(\lambda)^* \simeq \mathsf{L}(\overline{\lambda}^*)$

Motivation	Introduction	BGG Reciprocity	Symmetric Hilbert series		Braided autoequivalences
000	000000000000	000	00000	00	000

Problem

Describe $ch^{\bullet} L(\lambda)$ for all $\lambda \in \Lambda$.

• $N = \oplus_i N(i)$ a graded $\mathcal{D}(H)$ -module.

$$\ \ \, \rightarrow \quad \mathrm{ch}^{\bullet}\,\mathsf{N}=\sum_{i}\mathrm{ch}\,\mathsf{N}(i)\,t^{i}\in\Lambda[t,t^{-1}].$$

Motivation 000	Introduction 0000000000	BGG Reciprocity 000	Symmetric Hilbert series	Tate duality 00	Braided autoequivalences
Diagor	nal case				

- $H = \Bbbk \Gamma$ a finite abelian group
- $\mathfrak{B}(V)=\mathsf{Nichols}$ algebra of diagonal type with finite root system

Theorem [Yamane]

 λ "typical", it holds a Weyl-Kac-type formula

$$\operatorname{ch}^{\bullet} \mathsf{L}(\lambda) = \sum_{\dot{\omega} \in \dot{W}^{\lambda}} \operatorname{sgn}(\dot{\omega}) \operatorname{ch}^{\bullet} \mathsf{M}(\dot{\omega} \cdot \lambda).$$

Motivation		BGG Reciprocity	Symmetric Hilbert series		Braided autoequivalences
000	00000000000	000	00000	00	000

Motivation

2 Introduction

- 3 BGG Reciprocity
- 4 Symmetric Hilbert series
- 5 Tate duality
- 6 Braided autoequivalences

000 000000000 0 00 0000 000 000	Motivation		BGG Reciprocity	Symmetric Hilbert series		Braided autoequivalences
	000	00000000000	000	00000	00	000

•
$$P(\lambda) = projective cover of L(\lambda).$$

Theorem [Holmes-Nakano, B-T, V]

 $P(\lambda)$ admits a standard filtration, *i.e.*

$$\exists \quad 0 = \mathsf{N}_0 \subset \mathsf{N}_1 \subset \dots \subset \mathsf{N}_n = \mathsf{P}(\lambda) \quad \text{s.t.}$$

 $orall i \quad \mathsf{N}_i/\mathsf{N}_{i-1}\simeq \mathsf{M}(\lambda_i) \quad ext{for some } \lambda_i\in\Lambda$

BGG Reciprocity [B-T, V]

$$[\mathsf{P}(\lambda):\mathsf{M}(\mu)]=[\mathsf{M}(\mu):\mathsf{L}(\lambda)]$$

 Motivation
 Introduction
 BGG Reciprocity
 Symmetric Hilbert series
 Tate duality
 Braided autoequivalences

 000
 0000000000
 0●
 000000
 00
 000

Theorem [Holmes-Nakano, B-T, V]

 $\mathsf{P}(\lambda)$ admits a graded standard filtration.

•
$$p_{\mathsf{P}(\lambda),\mathsf{M}(\mu)}$$
 and $p_{\mathsf{M}(\mu),\mathsf{L}(\lambda)} \in \mathbb{Z}[t,t^{-1}]$ s.t.

$$\operatorname{ch}^{\bullet} \mathsf{P}(\lambda) = \sum_{\mu} \underbrace{p_{\mathsf{P}(\lambda),\mathsf{M}(\mu)}}_{\operatorname{ch}^{\bullet} \mathsf{M}(\mu)} \operatorname{ch}^{\bullet} \mathsf{M}(\mu) \quad \text{and}$$
$$\operatorname{ch}^{\bullet} \mathsf{M}(\mu) = \sum_{\lambda} \underbrace{p_{\mathsf{M}(\mu),\mathsf{L}(\lambda)}}_{\operatorname{ch}^{\bullet} \mathsf{L}(\lambda)} \operatorname{ch}^{\bullet} \mathsf{L}(\lambda)$$

Graded BGG Reciprocity [B-T, V]

$$\begin{array}{c}p_{\mathsf{P}(\mu),\mathsf{M}(\lambda)} = \overline{p_{\mathsf{M}(\lambda),\mathsf{L}(\mu)}}\\\\ \text{where } \overline{p(t,t^{-1})} = p(t^{-1},t).\end{array}$$

Motivation		BGG Reciprocity	Symmetric Hilbert series		Braided autoequivalences
000	00000000000	000	00000	00	000

Motivation

2 Introduction

- 3 BGG Reciprocity
- 4 Symmetric Hilbert series
- 5 Tate duality
- 6 Braided autoequivalences

Motivation		BGG Reciprocity	Symmetric Hilbert series		Braided autoequivalences
000	00000000000	000	0000	00	000

Example:
$$\mathcal{D}(\Bbbk[x \mid x^n] \# \Bbbk \mathbb{Z}_n)$$
 [Chen]

 $1+t+t^2+\cdots+t^i$ with $i\leq n$

•
$$\Lambda_{\mathcal{D}(\mathbb{S}_3)} =$$

$$= \big\{ \varepsilon, \, (e, -), \, (e, -), \, (e, \rho), \, (\sigma, +), \, (\sigma, -), \, (\tau, 0), \, (\tau, 1), \, (\tau, 2) \big\}$$

Example: $\mathcal{D}(\mathcal{FK}_3 \# \Bbbk \mathbb{S}_3)$ [Pogorelsky-V]

•
$$h_{\varepsilon} = 1$$

•
$$h_{(e,\rho)} = 2 + 3t + 2t^2$$

•
$$h_{(\tau,0)} = 2 + 3t + 2t^2$$

•
$$h_{(\sigma,-)} = 3 + 4t + 3t^2$$

•
$$h_{\lambda} = h_{\mathfrak{B}(V_3)} \cdot \dim \lambda$$

Symmetries on modules over Drinfeld doubles

Motivation	BGG Reciprocity	Symmetric Hilbert series	Braided autoequivalences
		00000	

Question

Are the Hilbert series of simple modules symmetric?

0 0000000000000000000000000000000000000	0000 00 000	

Ulrich Thiel posed the same question for *restricted rational Cherednik algebras*

$$\overline{\mathbf{H}}_c = \left(\mathbb{k}[V]/\mathbb{k}[V]^G \right) \otimes \mathbb{k}G \otimes \left(\mathbb{k}[V^*]/\mathbb{k}[V^*]^G \right).$$

Example

Yes, for all the exceptional complex reflection groups and generic parameters c.

Counterexample

For special parameters c there are simple modules whose Hilbert series is not symmetric.

Motivation		BGG Reciprocity	Symmetric Hilbert series	Tate duality	Braided autoequivalences
000	00000000000	000	00000	00	000

Motivation

2 Introduction

- 3 BGG Reciprocity
- 4 Symmetric Hilbert series

5 Tate duality

			race adding	Braidea aarooquiraiciiceb
000 0000000	00 000	00000	00	000

Theorem [Linckelmann]

For any symmetric algebra ${\cal A}$ and finitely generated ${\cal A}\text{-modules}\;U$ and V, the Tate duality holds

$$\left(\widehat{\operatorname{Ext}}_{A}^{-n}(U,V)\right)^{*} \simeq \widehat{\operatorname{Ext}}_{A}^{n-1}(V,U).$$

In particular, it applies for $A = \mathcal{D}$.

Motivation		BGG Reciprocity	Symmetric Hilbert series		Braided autoequivalences
000	00000000000	000	00000	00	000

Motivation

2 Introduction

- 3 BGG Reciprocity
- 4 Symmetric Hilbert series
- 5 Tate duality

Motivation		BGG Reciprocity	Symmetric Hilbert series		Braided autoequivalences
000	00000000000	000	00000	00	000

Problem

Compute the Brauer–Picard group of a fusion category \mathcal{A} :

 $\operatorname{BrPic}(\mathcal{A}) = \{ \text{semisimple invertible } \mathcal{A}\text{-bimodule categories} \}$

Or equivalently, the group of braided autoequivalences of $\mathcal{Z}(\mathcal{A})$.

 $\operatorname{BrPic}(\mathcal{A}) \simeq \operatorname{Aut}^{br}(\mathcal{Z}(\mathcal{A}))$

Remark

$$\mathcal{A} = H - mod \Longrightarrow \mathcal{Z}(\mathcal{A}) = \mathcal{D}(H) - mod$$

Example: $\mathcal{D}(\mathcal{FK}_3 \# \mathbb{S}_3)$

this corresponds to the unique non-trivial braided autoequivalence of the category of $\mathcal{D}(\mathbb{S}_3)$ -modules:

$$\begin{split} \overline{(e,\rho)} &= (\tau,0), \\ \overline{(\tau,0)} &= (e,\rho) \quad \text{and} \\ \overline{\lambda} &= \lambda \quad \text{for the other weights.} \end{split}$$

[Lentner-Priel, Nikshych-Riepel].

Question

Does this bijection induce a braided autoequivalence in the category of $\mathcal{D}(H)\text{-modules}?$