Symmetries on modules over Drinfeld doubles

Cristian Vay

FaMAF - UNC, CIEM - CONICET

We are interested on the representations of the Drinfeld double

$$
\mathcal{D}=\mathcal{D}(\mathfrak{B}(V) \# H)
$$

of the bozonization of a Nichols algebra and a Hopf algebra.

Why?

- These are natural generalization of (small) quantum groups.
- The category of graded \mathcal{D}-modules is highest-weight [Bellamy-Thiel].
- Categorification of \mathbb{Z}-fusion datum associated with cyclic complex reflection groups [Bonnafé-Rouquier].
- These could give information about the Nichols algebra.
- To construct new examples of fusion categories.

Goals of the talk

- BGG Reciprocity
- Symmetric Hilbert Series
- Tate duality
- Braided autoequivalences

(1) Motivation

(3) BGG Reciprocity

4 Symmetric Hilbert series
(5) Tate duality
(6) Braided autoequivalences

- $H=$ finite dimensional Hopf algebra.

The Drinfeld double $\mathcal{D}(H)$ of H is

a Hopf algebra which is constructed as a kind of double crossed product between H and H^{*}

$$
\mathcal{D}(H)=H^{*} \bowtie H
$$

Example: $H=\mathbb{k} G$ a group algebra
$\mathcal{D}(G)=\mathbb{k}^{G} \otimes \mathbb{k} G$ as coalgebras and

$$
\delta_{h} g=g \delta_{g^{-1} h g}
$$

for all $g, h \in G$.

- $V=$ Yetter-Drinfeld module over $H \equiv \mathcal{D}(H)$-module.

The Nichols algebra $\mathfrak{B}(V)$ of V is

a graded braided Hopf algebra in the category of $\mathcal{D}(H)$-modules;

$$
\mathfrak{B}(V)=\frac{T(V)}{\mathcal{J}}
$$

where \mathcal{J} is the maximal ideal which is a coideal and generated by homogeneous element of degree ≥ 2.

Example: $V_{3}=\left\langle x_{(12)}, x_{(23)}, x_{(13)}\right\rangle$ over $\mathcal{D}\left(\mathbb{S}_{3}\right)$

$$
g x_{(i j)}=\operatorname{sgn}(g) x_{g(i j) g^{-1}} \quad \text { and } \quad \delta_{h} \cdot x_{(i j)}=\delta_{(i j), h} x_{(i j)}
$$

Example: The Fomin-Kirillov algebra $\mathcal{F} \mathcal{K}_{3}=\mathfrak{B}\left(V_{3}\right)$

$$
\begin{array}{r}
x_{(12)}^{2}=x_{(13)}^{2}=x_{(23)}^{2}=0 \\
x_{(12)} x_{(13)}+x_{(13)} x_{(23)}+x_{(23)} x_{(12)}=0 \\
x_{(13)} x_{(12)}+x_{(23)} x_{(13)}+x_{(12)} x_{(23)}=0
\end{array}
$$

Properties of finite dimensional Nichols algebras

- The homogeneous component of maximum degree is one dimensional:

$$
\mathfrak{B}^{n_{t o p}}(V)=\mathbb{k}\left\{x_{t o p}\right\}
$$

- $\mathfrak{B}(V)$ is Frobenius whose non-degenerate bilinear form is

$$
\mathfrak{B}(V) \otimes \mathfrak{B}(V) \xrightarrow{\text { mult }} \mathfrak{B}(V) \xrightarrow{\left(x_{t o p}\right)^{*}} \mathbb{k}
$$

- The Hilbert series of $\mathfrak{B}(V)$ is symmetric

$$
\operatorname{dim} \mathfrak{B}^{i}(V)=\operatorname{dim} \mathfrak{B}^{n_{t o p}-i}(V) .
$$

The Hilbert series

h_{M} of a graded module M is

$$
h_{M}=\sum_{i} \operatorname{dim} M^{i} t^{i}
$$

Example: V_{3}

	$h_{\mathfrak{B}\left(V_{3}\right)}=1+3 t+4 t^{2}+3 t+1$
$\mathfrak{B}^{0}\left(V_{3}\right) \mid$	$\langle 1\rangle$
$\mathfrak{B}^{1}\left(V_{3}\right) \mid$	$\left\langle x_{(12)}, x_{(23)}, x_{(13)}\right\rangle$
$\mathfrak{B}^{2}\left(V_{3}\right) \mid$	$\left\langle x_{(12)} x_{(13)}, x_{(12)} x_{(23)}, x_{(13)} x_{(23)}, x_{(13)} x_{(12)}\right\rangle$
$\mathfrak{B}^{3}\left(V_{3}\right) \mid\left\langle x_{(12)} x_{(13)} x_{(23)}, x_{(12)} x_{(13)} x_{(12)}, x_{(13)} x_{(12)} x_{(23)}\right\rangle$	
$\mathfrak{B}^{4}\left(V_{3}\right) \mid$	$\left\langle x_{\text {top }}\right\rangle$

The bosonization $\mathfrak{B}(V) \# H$ is

a Hopf algebra which is constructed as a kind of crossed product between H and $\mathfrak{B}(V)$

Notation

$$
\mathcal{D}:=\mathcal{D}(\mathfrak{B}(V) \# H)
$$

Properties of \mathcal{D}

- Triangular decomposition: $\mathcal{D} \simeq \mathfrak{B}(V) \otimes \mathcal{D}(H) \otimes \mathfrak{B}(\bar{V})$
- Graded: $\mathcal{D}^{n}=\oplus_{n=j-i} \mathfrak{B}^{i}(V) \otimes \mathcal{D}(H) \otimes \mathfrak{B}^{j}(\bar{V})$
- Symmetric algebra
where \bar{V} is the dual object of V as $\mathcal{D}(H)$-module endowed with the inverse braiding. It holds $\mathfrak{B}^{n}(\bar{V}) \simeq \mathfrak{B}^{n}(V)^{*}$ as $\mathcal{D}(H)$-modules.

Representation theory of \mathcal{D}

- $\Lambda=$ the set of simple $\mathcal{D}(H)$-modules.

Theorem [Bellamy-Thiel, V]

If H is semisimple, then the category of graded \mathcal{D}-modules is a highest weight category whose set of weights is $\Lambda \times \mathbb{Z}$.
The standard (Verma) modules are:

$$
\mathrm{M}(\lambda[n])=\mathcal{D} \otimes_{\mathcal{D} \geq 0} \lambda[n] .
$$

The simple modules are:

$$
\mathrm{L}(\lambda[n])=\operatorname{top}(\mathrm{M}(\lambda[n])) .
$$

- $\lambda_{V}=\mathfrak{B}^{n_{\text {top }}}(V) \in \Lambda$.

Lemma

$$
\begin{gathered}
\mathrm{M}(\lambda)^{*} \simeq \mathrm{M}\left(\left(\lambda_{V} \lambda\right)^{*}\right) \\
\mathrm{L}(\lambda)^{*} \simeq \mathrm{~L}\left(\bar{\lambda}^{*}\right)
\end{gathered}
$$

Problem

Describe $\operatorname{ch} \stackrel{L}{ }(\lambda)$ for all $\lambda \in \Lambda$.

- $\mathrm{N}=\oplus_{i} \mathrm{~N}(i)$ a graded $\mathcal{D}(H)$-module.

$$
\rightsquigarrow \quad \operatorname{ch} \bullet \mathrm{N}=\sum_{i} \operatorname{ch} \mathrm{~N}(i) t^{i} \in \Lambda\left[t, t^{-1}\right] .
$$

Diagonal case

- $H=\mathbb{k} \Gamma$ a finite abelian group
- $\mathfrak{B}(V)=$ Nichols algebra of diagonal type with finite root system

Theorem [Yamane]

λ "typical", it holds a Weyl-Kac-type formula

$$
\operatorname{ch}^{\bullet} \mathrm{L}(\lambda)=\sum_{\dot{\omega} \in \dot{W}^{\lambda}} \operatorname{sgn}(\dot{\omega}) \operatorname{ch} \bullet \mathrm{M}(\dot{\omega} \cdot \lambda)
$$

(2) Introduction
(3) BGG Reciprocity

4 Symmetric Hilbert series
(5) Tate duality
(6) Braided autoequivalences

- $\mathrm{P}(\lambda)=$ projective cover of $\mathrm{L}(\lambda)$.

Theorem [Holmes-Nakano, B-T, V]

$P(\lambda)$ admits a standard filtration, i.e.

$$
\exists \quad 0=\mathrm{N}_{0} \subset \mathrm{~N}_{1} \subset \cdots \subset \mathrm{~N}_{n}=\mathrm{P}(\lambda) \text { s.t. }
$$

$$
\forall i \quad \mathrm{~N}_{i} / \mathrm{N}_{i-1} \simeq \mathrm{M}\left(\lambda_{i}\right) \quad \text { for some } \lambda_{i} \in \Lambda
$$

BGG Reciprocity [B-T, V]

$$
[\mathrm{P}(\lambda): \mathrm{M}(\mu)]=[\mathrm{M}(\mu): \mathrm{L}(\lambda)]
$$

Theorem [Holmes-Nakano, B-T, V]

$\mathrm{P}(\lambda)$ admits a graded standard filtration.

- $p_{\mathrm{P}(\lambda), \mathrm{M}(\mu)}$ and $p_{\mathrm{M}(\mu), \mathrm{L}(\lambda)} \in \mathbb{Z}\left[t, t^{-1}\right]$ s.t.

$$
\begin{aligned}
& \operatorname{ch}^{\bullet} \mathrm{P}(\lambda)=\sum_{\mu} p_{\mathrm{P}(\lambda), \mathrm{M}(\mu)} \operatorname{ch}^{\bullet} \mathrm{M}(\mu) \quad \text { and } \\
& \operatorname{ch}^{\bullet} \mathrm{M}(\mu)=\sum_{\lambda} p_{\mathrm{M}(\mu), \mathrm{L}(\lambda)} \operatorname{ch}^{\bullet} \mathrm{L}(\lambda)
\end{aligned}
$$

Graded BGG Reciprocity [B-T, V]

$$
p_{\mathrm{P}(\mu), \mathrm{M}(\lambda)}=\overline{p_{\mathrm{M}(\lambda), \mathrm{L}(\mu)}}
$$

where $\overline{p\left(t, t^{-1}\right)}=p\left(t^{-1}, t\right)$.
(2) Introduction
(3) BGG Reciprocity

4 Symmetric Hilbert series
(5) Tate duality
(6) Braided autoequivalences

Example: $\mathcal{D}\left(\mathbb{k}\left[x \mid x^{n}\right] \# \mathbb{k} \mathbb{Z}_{n}\right)$ [Chen]

$1+t+t^{2}+\cdots+t^{i}$ with $i \leq n$

- $\Lambda_{\mathcal{D}\left(\mathbb{S}_{3}\right)}=$

$$
=\{\varepsilon,(e,-),(e,-),(e, \rho),(\sigma,+),(\sigma,-),(\tau, 0),(\tau, 1),(\tau, 2)\}
$$

Example: $\mathcal{D}\left(\mathcal{F} \mathcal{K}_{3} \# \mathbb{k} \mathbb{S}_{3}\right)$ [Pogorelsky-V]

- $h_{\varepsilon}=1$
- $h_{(e, \rho)}=2+3 t+2 t^{2}$
- $h_{(\tau, 0)}=2+3 t+2 t^{2}$
- $h_{(\sigma,-)}=3+4 t+3 t^{2}$
- $h_{\lambda}=h_{\mathfrak{B}\left(V_{3}\right)} \cdot \operatorname{dim} \lambda$

Example $=\mathcal{D}(\mathfrak{u f o}(7) \# \mathbb{k} \Gamma)$ [Andruskiewistch-Angiono-Mejía-Renz]

$$
\text { Case } 11, \lambda_{1}=1, \lambda_{2}=\zeta
$$

Case $12, \lambda_{1}=1, \lambda_{2}=\zeta^{4}$

Question

Are the Hilbert series of simple modules symmetric?

Ulrich Thiel posed the same question for restricted rational Cherednik algebras

$$
\overline{\mathbf{H}}_{c}=\left(\mathbb{k}[V] / \mathbb{k}[V]^{G}\right) \otimes \mathbb{k} G \otimes\left(\mathbb{k}\left[V^{*}\right] / \mathbb{k}\left[V^{*}\right]^{G}\right)
$$

Example

Yes, for all the exceptional complex reflection groups and generic parameters c.

Counterexample

For special parameters c there are simple modules whose Hilbert series is not symmetric.

(1) Motivation

(2) Introduction
(3) BGG Reciprocity

4 Symmetric Hilbert series
(5) Tate duality
(6) Braided autoequivalences

Theorem [Linckelmann]

For any symmetric algebra A and finitely generated A-modules U and V, the Tate duality holds

$$
\left(\widehat{\operatorname{Ext}}_{A}^{-n}(U, V)\right)^{*} \simeq \widehat{\operatorname{Ext}}_{A}^{n-1}(V, U)
$$

In particular, it applies for $A=\mathcal{D}$.
(2) Introduction
(3) BGG Reciprocity

4 Symmetric Hilbert series
(5) Tate duality
(6) Braided autoequivalences

Problem

Compute the Brauer-Picard group of a fusion category \mathcal{A} :

$$
\operatorname{BrPic}(\mathcal{A})=\{\text { semisimple invertible } \mathcal{A} \text {-bimodule categories }\}
$$

Or equivalently, the group of braided autoequivalences of $\mathcal{Z}(\mathcal{A})$.

$$
\operatorname{BrPic}(\mathcal{A}) \simeq \operatorname{Aut}^{b r}(\mathcal{Z}(\mathcal{A}))
$$

Remark

$$
\mathcal{A}=H-\bmod \Longrightarrow \mathcal{Z}(\mathcal{A})=\mathcal{D}(H)-\bmod
$$

Consider the bijection

Example: $\mathcal{D}\left(\mathcal{F} \mathcal{K}_{3} \# \mathbb{S}_{3}\right)$

this corresponds to the unique non-trivial braided autoequivalence of the category of $\mathcal{D}\left(\mathbb{S}_{3}\right)$-modules:

$$
\begin{aligned}
\overline{(e, \rho)} & =(\tau, 0), \\
\overline{(\tau, 0)} & =(e, \rho) \quad \text { and } \\
\bar{\lambda} & =\lambda \quad \text { for the other weights. }
\end{aligned}
$$

[Lentner-Priel, Nikshych-Riepel].

Question

Does this bijection induce a braided autoequivalence in the category of $\mathcal{D}(H)$-modules?

