On projective modules over finite quantum groups

Cristian Vay

FaMAF – UNC, CIEM – CONICET

Mathematical Congress of the Americas 2017 Montréal, Canada

- 2 Main results
- Special features of the finite quantum groups
 Duality of Verma modules
 - Tensor products

Introduction

On projective modules over finite quantum groups arXiv:1612.09220v2

Bellamy and Thiel

Highest weight theory for finite-dimensional graded algebras with triangular decomposition arXiv:1705.08024

Theorem [BT]

The category of graded modules over a finite-dimensional algebra admitting a triangular decomposition can be endowed with the structure of a highest weight category.

Special features of the finite quantum groups
Duality of Verma modules

• Tensor products

Special features of the finite quantum groups $_{\rm OOOO}$

Finite quantum groups

• G = finite group. $\rightsquigarrow \mathcal{D}(G) = \text{Drinfeld double of } G.$

• V = Yetter-Drinfeld module over G. $\rightsquigarrow \mathfrak{B}(V) =$ Nichols algebra of V.

Assume that $\mathfrak{B}(V)$ is finite-dimensional.

Definition

A finite quantum group is the Drinfeld double of $\mathfrak{B}(V) \# \Bbbk G$. We denote it by \mathcal{D} .

Main results

Special features of the finite quantum groups $_{\rm OOOO}$

Facts

• \overline{V} = dual object of V as $\mathcal{D}(G)$ -module.

 $\rightsquigarrow~\mathfrak{B}(\overline{V})=\mathsf{Nichols}$ algebra of \overline{V} with the inverse braiding.

Triangular decomposition

As vector spaces, $\mathcal{D} \simeq \mathfrak{B}(V) \otimes \mathcal{D}(G) \otimes \mathfrak{B}(\overline{V})$

Graded Hopf algebra

For
$$n \in \mathbb{Z}$$
, $\mathcal{D}^n = \bigoplus_{n=j-i} \mathfrak{B}^i(V) \otimes \mathcal{D}(G) \otimes \mathfrak{B}^j(\overline{V})$.

Daulity

As
$$\mathcal{D}(G)$$
-modules, $\mathfrak{B}^n(\overline{V}) \simeq \mathfrak{B}^n(V)^*$.

Simmetry

 $\ensuremath{\mathcal{D}}$ is a symmetric algebra.

Highest-weight data

- $\Lambda = \text{set of weights} = \text{simple } \mathcal{D}(G) \text{-modules}.$
- $M(\lambda) = \mathcal{D} \otimes_{\mathcal{D}^{\geq 0}} \lambda =$ Verma module of $\lambda \in \Lambda$.
- $L(\lambda) =$ the head of $M(\lambda)$.

Theorem

- **1** $L(\lambda)$ is simple and graded for all $\lambda \in \Lambda$.
- ② Every graded simple module is isomorphic to a shift of L(λ) for some λ ∈ Λ.

Standard filtration

Theorem

Every projective module admit a graded standard filtration.

That is, given a projective module P, there is a sequence of graded subdmodules

$$0 = \mathsf{N}_0 \subset \mathsf{N}_1 \subset \cdots \subset \mathsf{N}_n = \mathsf{P}$$

such that each

 N_i/N_{i-1}

is isomorphic to a shift of a Verma module.

•
$$N = \bigoplus_i N(i) = \text{graded } \mathcal{D}\text{-module}.$$

$$\ \ \, \longrightarrow \ \ \, \operatorname{ch}^{\bullet} {\sf N} = \sum_i \operatorname{ch} {\sf N}(i) \, t^i \in \Lambda[t,t^{-1}].$$

Theorem

The graded characters of the simple modules form a $\mathbb{Z}[t, t^{-1}]$ -basis of the Grothendieck ring of the category of graded \mathcal{D} -modules.

Then there exist Laurent polynomials $p_{N,L(\lambda)}$ such that

$$\operatorname{ch}^{\bullet} \mathsf{N} = \sum_{\lambda} p_{\mathsf{N},\mathsf{L}(\lambda)} \operatorname{ch} \mathsf{L}(\lambda).$$

Graded character

Theorem

The graded characters of the Verma modules form a $\mathbb{Z}[t, t^{-1}]$ -basis of the Grothendieck ring of the category of graded projective \mathcal{D} -modules.

Then, given a graded projective \mathcal{D} -module P, there exist Laurent polynomials $p_{\mathsf{P},\mathsf{M}(\lambda)}$ such that

$$\operatorname{ch}^{\bullet} \mathsf{P} = \sum_{\lambda} p_{\mathsf{P},\mathsf{M}(\lambda)} \operatorname{ch} \mathsf{M}(\lambda).$$

Main results

Special features of the finite quantum groups 0000

Graded BGG Reciprocity

•
$$P(\mu) =$$
 the projective cover of $L(\mu)$.

Theorem

 $p_{\mathsf{P}(\mu),\mathsf{M}(\lambda)} = \overline{p_{\mathsf{M}(\lambda),\mathsf{L}(\mu)}}.$

$$\begin{split} \mathrm{ch}^{\bullet}\,\mathsf{P}(\mu) &= \sum_{\lambda} p_{\mathsf{P}(\mu),\mathsf{M}(\lambda)}\,\,\mathrm{ch}^{\bullet}\,\mathsf{M}(\lambda)\\ \mathrm{ch}^{\bullet}\,\mathsf{M}(\lambda) &= \sum_{\mu} p_{\mathsf{M}(\lambda),\mathsf{L}(\mu)}\,\,\mathrm{ch}^{\bullet}\,\mathsf{L}(\mu)\\ p(t,t^{-1}) \in \mathbb{Z}[t,t^{-1}] \quad \rightsquigarrow \quad \overline{p} = p(t^{-1},t) \end{split}$$

BGG Reciprocity

Corollary

$[\mathsf{P}(\mu):\mathsf{M}(\lambda)]=[\mathsf{M}(\lambda):\mathsf{L}(\mu)]\text{,}$

i. e. the number of subquotients in a standard filtration of $\mathsf{P}(\mu)$ isomorphic to $\mathsf{M}(\lambda)$ is equal to the number of composition factors of $\mathsf{M}(\lambda)$ isomorphic to $\mathsf{L}(\mu).$

Proof: $[P(\mu) : M(\lambda)]$ and $[M(\lambda) : L(\mu)]$ are the values of $p_{P(\mu),M(\lambda)}$ and $\overline{p_{M(\lambda),L(\mu)}}$ at t = 1, resp.

Remarks

- The category of \mathcal{D} -modules is not highest weight because \mathcal{D} is symmetric and non-semisimple, then it has infinite global dimension.
- Λ does not admit a partial order \leq such that $\mu \leq \lambda$ if L(μ) is a composition factor of the Verma module M(λ). For instance if $\mathfrak{B}(V)$ is the Fomin-Kirillov algebra \mathcal{FK}_3 and $G = \mathbb{S}_3$, there are two Verma modules, M(τ , 0) and M(e, ρ), with the same composition factors: L(τ , 0), L(σ , -) and L(e, ρ). Then, such an order on Λ will imply that (τ , 0) = (e, ρ).
- If G is non-abelian, there are weights of dimension ≥ 1 . For instance, $\dim(\tau, 0) = \dim(e, \rho) = 2$ and $\dim(\sigma, -) = 3$.
- The tensor product of weights is not necessarily a weight.

3 Special features of the finite quantum groups

- Duality of Verma modules
- Tensor products

• λ_V = homogeneous component of maximum degree of $\mathfrak{B}(V)$. It is a one-dimensional weight spanned by x_{top} .

$$\implies soc_{\mathcal{D}} \leq 0} \mathsf{M}(\lambda) = \Bbbk x_{top} \otimes \lambda$$
 is a weight.

Lemma

$\mathsf{M}(\lambda)^* \simeq \mathsf{M}\left((\lambda_V \cdot \lambda)^*\right)$

Proof: • $(\mathfrak{B}^{n_{top}}(V) \otimes \lambda)^*$ is a highest-weight of $\mathsf{M}(\lambda)^*$ isomorphic to $(\lambda_V \otimes \lambda)^*$.

- This induces a morphism $f : \mathsf{M}((\lambda_V \cdot \lambda)^*) \longrightarrow \mathsf{M}(\lambda)^*$.
- f is injective on $soc_{\mathcal{D}^{\leq 0}}(\mathsf{M}(\lambda_V \cdot \lambda)^*)$:

$$\begin{aligned} \langle x_{top} \cdot f((\lambda_V \cdot \lambda)^*), 1 \otimes \lambda \rangle &= \langle (\mathfrak{B}^{n_{top}}(V) \otimes \lambda)^*, \mathcal{S}(x_{top}) \otimes \lambda \rangle \\ &= \langle (\mathfrak{B}^{n_{top}}(V) \otimes \lambda)^*, x_{top} \otimes g_{x_{top}}^{-1} \cdot \lambda \rangle \neq 0, \end{aligned}$$

where x_{top} is G-comodule via $g_{x_{top}}$.

• $W(\lambda) = \mathcal{D} \otimes_{\mathcal{D}^{\leq 0}} \lambda = \text{coVerma module}.$

•
$$\operatorname{Ind}(\lambda) = \mathcal{D} \otimes_{\mathcal{D}(G)} \lambda.$$

If $\lambda \otimes \mu \simeq \oplus_i \lambda_i$, we set $\operatorname{Ind}(\lambda \cdot \mu) := \oplus_i \operatorname{Ind}(\lambda_i)$.

Lemma

$$\mathsf{W}(\lambda)\otimes\mathsf{M}(\mu)\simeq\mathsf{Ind}(\lambda\cdot\mu)$$

Proof: • Let $f : \operatorname{Ind}(\lambda \cdot \mu) \to W(\lambda) \otimes M(\mu)$ induced by $\lambda \otimes \mu \xrightarrow{\sim} (1 \otimes \lambda) \otimes (1 \otimes \mu).$ • f is injective on $\operatorname{soc}_{\mathcal{D}^{\leq 0}}\operatorname{Ind}(\lambda \cdot \mu)$: If z is in the socle, then $z = x_{top} \sum_i y_i(h_i \otimes k_i)$ where $y_i \in \mathfrak{B}(\overline{V})$ and $(h_i \otimes k_i) \in \lambda \otimes \mu$. Hence

$$f(z) \in \sum g_{x_{top}}(y_i h_i) \otimes (x_{top} k_i) + \mathsf{W}(\lambda) \otimes \left(\oplus_{i=0}^{n_{top}-1} \mathsf{M}^{-i}(\mu) \right).$$

Main results

Special features of the finite quantum groups $\bigcirc \bigcirc \bigcirc \bigcirc$

Tensor products

Corollary

Let P and Q be projective modules. Then

$$\mathsf{P} \otimes \mathsf{Q} \simeq \oplus_{\lambda,\mu \in \Lambda} p_{\mathsf{P},\mathsf{W}(\lambda)} \, p_{\mathsf{Q},\mathsf{M}(\mu)} \, \mathsf{Ind}(\lambda \cdot \mu).$$

Gracias!