Mixed perverse sheaves on flag varieties of Coxeter groups

Pramod Achar, Simon Riche, Cristian Vay
Louisiana state University Clermont

CONICET Auvergne

Future Directions in Representation Theory - 2017 - University of Sydney

Objective

Introduce and investigate "mixed perverse sheaves on flag varieties" for general Coxeter groups using a diagrammatic approach.

Motivation

The category of "mixed perverse sheaves" on the flag variety of a semisimple algebraic group is a sort of replacement for the "mixed category \mathcal{O} " in arbitrary characteristics. It also plays a crucial role in the construction of a Koszul duality in different contexts.
The first definition is due to Beilinson-Ginzburg-Soergel [4] in the characteristic zero setting. This was adapted to the modular setting by Achar-Riche [2]. They construct a t-structure on the bounded homotopy category of "parity complexes" on the flag variety (introduced by Juteau-Mautner-Williamson [6]) and define the "mixed perverse sheaves" as the object in the heart. They also show that this turns out to be a graded highest-weight category.
On the other hand, the category of "parity complexes" is equivalent to a Elias-Williamson [5] diagrammatic category by Riche-Williamson [7].

Preliminaries

(W, S) : Coxeter system with $|S|<\infty$.
$\quad \leq$: Bruhat order on W.
\mathfrak{k} : field (some results hold under mild assumptions).
A subset $I \subseteq W$ is closed if $x \in I \wedge y \leq x \Rightarrow y \in I$. A locally closed subset is the difference between two closed subsets.

The Elias-Williamson diagrammatic category [5] is a graded \mathbb{k}-linear monoidal category associated to (W, S) and an appropriated representation V of W. Let R be the symmetric algebra of V^{*}, considered as a graded ring with $\operatorname{deg}\left(V^{*}\right)=2$.

- The objects are parametrized by the words in S
- The generating morphisms are depicted by:

for all $f \in R$ and $s, t \in S$
- The monoidal product is given by concatenation of words.

The Karoubian envelope \mathscr{D} of this category is Krull-Schmidt Its indecomposable objects are parametrized by W (up to grading shift).
$w \in W \leadsto B_{w}$: indecomposable object in \mathscr{D}
I closed $\rightsquigarrow \mathscr{D}_{I}$: full subcategory of \mathscr{D}
generated by $B_{w}, w \in I$.
$I=I_{0} \backslash I_{1} \rightsquigarrow \mathscr{D}_{I}=\mathscr{D}_{I_{0}} / / \mathscr{D}_{I_{1}}$
locally closed
$\rightsquigarrow \overline{\mathscr{D}}_{I}$: category obtained from \mathscr{D}_{I} by
applying $\mathbb{k} \otimes_{R}(-)$ to Hom-spaces.

Example. The singleton $\{w\}=\{y \leq w\} \backslash\{y<w\}$

 is locally closed for all $w \in W$. Then $\operatorname{End}_{\mathscr{D}_{\{w\}}}\left(B_{w}\right) \simeq R$ and hence$$
\mathscr{D}_{\{w\}} \cong \operatorname{Free}^{\mathrm{fg}, \mathbb{Z}}(R) \quad \text { and } \quad \overline{\mathscr{D}}_{\{w\}} \cong \operatorname{Free}^{\mathrm{fg}, \mathbb{Z}}(\mathbb{k}) .
$$

[^0] 3] Beilinson-Bernstein-Deligne, Faisceaux pervers, in Analyse et topologie sur les espaces singuliers, I (Luminy, 1981), Astérisque 100 (1982), 5-171 Beilinson-Ginzburg-Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473-527.
Elias-Williamson, Soergel calculus, Represent. Theory 20 (2016), 295-374
Juteau-Mautner-Williamson, Parity sheaves, J. Amer. Math Soc. 27 (2014), 1169-1212.

Riche-Williamson Tilting modules and the p-canonical basis, preprint arXiv:1512.08296, to appear in Astérisque.

Ambient categories

Let I be locally closed. We begin by considering the bounded homotopy categories of the diagrammatic categories associated to I.

Biequivariant category	Right-equivariant category
$\mathrm{BE}_{I}=K^{\mathrm{b}} \mathscr{D}_{I} \longrightarrow$ For $_{\mathrm{RE}}^{\mathrm{BE}}$	

The categories $\mathrm{BE}=\mathrm{BE}_{W}$ and $\mathrm{RE}=\mathrm{RE}_{W}$ were intrduced first in [1]. They show that BE admits a monoidal structure $(\underline{\text { }}$) extending the product of \mathscr{D} and RE is a right module category over BE .

$$
\text { Example. } \mathrm{BE}_{\{w\}}=K^{\mathrm{b}} \operatorname{Free}^{\mathrm{fg}, \mathbb{Z}}(R) \cong D^{\mathrm{b}} \operatorname{Mod}^{\mathrm{ff}, \mathbb{Z}}(R) \text {. }
$$

Recollement

Let $J \subset I$ be closed and finite. We construct a recollement structure [3]:

by induction on $|J|$. We can then construct pullback and pushforward functors also for J locally closed.

Example. Let $w \in W$ and $s \in S$ with $w<w s$. There exists a canonical distinguished triangle

$$
B_{w}\langle-1\rangle \longrightarrow\left(i_{\{w s\}}^{\{w, w s\}}\right), B_{w s} \longrightarrow B_{w s} \xrightarrow{[1]}
$$

$$
\text { in } \mathrm{BE}_{\{w, w s\}} .
$$

Standard and costandard objects
The pushforward functors associated to singletons play an important role. Let $w \in I$

	$\mathrm{BE}_{\{w\}} \longrightarrow$
$B_{w} \longmapsto$	BE_{I}
$\left.B_{w} \longmapsto i_{w}^{I}\right)!$	
$\left(i_{w}^{I}\right)_{*}$	$\Delta_{w}^{I}:$ standard object.

Example. $\Delta_{e}=B_{\emptyset}$ and $\Delta_{s}, s \in S$, is isomorphic to

$$
\longrightarrow 0 \longrightarrow B_{s} \xrightarrow{\bullet} B_{\emptyset}(1) \longrightarrow 0 \longrightarrow
$$

with non-zero components in degree 0 and 1 .

The perverse t-structure
The recollement data allows to define a t-structure
$\left({ }^{p} \mathrm{BE}_{\bar{I}}^{\leq 0},{ }^{p} \mathrm{BE}_{\bar{I}}^{\geq 0}\right)$
on BE_{I} by induction, starting from a suitable t-structure on $\mathrm{BE}_{\{w\}}$ for all $w \in I$ (not the natural one!).

A heart to BE

The heart of the perverse t-structure is our main object of study. We call perverse the object which belong to it

$$
\mathrm{P}_{I}^{\mathrm{BE}}={ }^{p} \mathrm{BE}_{\bar{I}}^{\leq 0} \cap{ }^{p} \mathrm{BE}_{\bar{I}}^{\geq 0}
$$

Main properties of the standard and costandard objects

- The standard and costandard objects are perverse.
- They characterize the perverse t-structure as follows ${ }^{p} \mathrm{BE}_{\bar{I}}^{\leq 0}=\left\langle\Delta_{w}^{I}\langle m\rangle[n]: w \in W, m \in \mathbb{Z}, n \in \mathbb{Z}_{\geq 0}\right\rangle_{\mathrm{ext}}$
${ }^{p} \mathrm{BE}_{\bar{I}}^{>0}=\left\langle\nabla_{w}^{I}\langle m\rangle[n]: w \in W, m \in \mathbb{Z}, n \in \mathbb{Z}_{\leq 0}\right\rangle_{\text {ext }}$.
- Let $w \in W$ and $s \in S$ be such that $w<w$. The following isomorphisms hold in BE:

$$
\begin{gathered}
\Delta_{w} \stackrel{\dagger}{\cong} \Delta_{w \star} \quad \nabla_{w} \cong \nabla_{w \star}, \nabla_{s}, \\
\Delta_{w \star}, \nabla_{w^{-1}} \cong B_{\varnothing} \cong \nabla_{w^{-1} \underline{~}} \Delta_{w} .
\end{gathered}
$$

Proof of \dagger.
Apply $\left(i_{\{w, w s\}}\right)$! to
the distinguished
triangle $(\mathbf{\Lambda})$$\sim \Delta_{w}\langle-1\rangle \longrightarrow \Delta_{w s} \longrightarrow\left(i_{\{w, w s\}}\right)!\left(B_{w s}\right) \xrightarrow{[1]}$
\cong by the recollement

$$
\Delta_{w}\langle-1\rangle \longrightarrow \Delta_{w s} \longrightarrow \Delta_{w \star} B_{s} \xrightarrow{[1]}
$$

$$
\begin{gathered}
\text { isomorphic } \\
\text { isomitainhe }
\end{gathered}
$$

distinguished

The distinguished
ulangies
triangle ($\mathbf{\Delta}) \quad \sim \sim B_{\emptyset}\langle-1\rangle \longrightarrow \Delta_{s} \longrightarrow B_{s} \xrightarrow{[1]} \quad \Delta_{w \star}(-) \longrightarrow \Delta_{w}\langle-1\rangle \longrightarrow \Delta_{w \star} \Delta_{s} \longrightarrow \Delta_{w \star} B_{s} \xrightarrow{[1]}$ for the pair $\{e, s\}$

Main properties of the heart of the right-equivariant categories

All the above also hold (mutatis mutandis) for the right-equivariant categories (and the functor $\mathrm{For}_{\mathrm{RE}}^{\mathrm{BE}}$ is t-exact). And even more! In particular, the heart P^{RE} of RE is our replacement for the "mixed category \mathcal{O} ".
$-P^{R E}$ is a graded highest weight category. The
standard and costandard objects $\bar{\Delta}_{w}$ and $\bar{\nabla}_{w}$ are defined as in BE for all $w \in W$. The irreducible objects are

$$
L_{w}:=\operatorname{im}\left(\bar{\Delta}_{w} \rightarrow \bar{\nabla}_{w}\right) \quad \forall w \in W .
$$

In the definition of L_{w} we use that $\operatorname{Hom}_{\mathbb{R E}}\left(\bar{\Delta}_{w}, \bar{\nabla}_{w}\right) \simeq \mathbb{k}$. - For all $w \in W$,

$$
\operatorname{soc}\left(\bar{\Delta}_{w}\right) \simeq L_{e}\langle-\ell(w)\rangle \quad \text { and } \quad \operatorname{top}\left(\bar{\nabla}_{w}\right) \simeq L_{e}\langle\ell(w)\rangle .
$$

- If $w \leq y$, then there exists an injective morphism

$$
\bar{\Delta}_{w} \hookrightarrow \bar{\Delta}_{y}\langle\ell(y)-\ell(w)\rangle .
$$

Any other morphism between standard objects is a shift or scalar multiple of it.

Tilt: additive full subcategory of P^{RE} generated by the tilting objects.

- The natural functors

$$
K^{\mathrm{b}}(\mathrm{Tilt}) \xrightarrow{\sim} D^{\mathrm{b}}\left(\mathrm{P}^{\mathrm{RE}}\right) \xrightarrow{\sim} \mathrm{RE} .
$$

are equivalences of triangulated categories

- If W is finite, there exist a Ringel duality and

$$
\mathcal{T}_{w_{0}} \simeq \mathcal{P}_{e}\left\langle\ell\left(w_{0}\right)\right\rangle .
$$

Acknowledgement. C. V. was supported by CONICET, ERC and the sponsors of the conference. He is very grateful to the The Organizing Committee, in particular to Anthony Henderson.

[^0]: Achar-Makisumi-Riche-Williamson, Free-monodromic mixed tilting sheaves on flag varieties, arXiv:1703.05843.
 2] Achar-Riche, Modular perverse sheaves on flag varieties II: Koszul Achar--iche, Modular perverse sheaves on flag varieties
 duality and formality, Duke Math. J. 165 (2016), 161-215.

