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The double pendulum is an excellent example of a chaotic system. Small differences in initial con-
ditions yield exponetially diverging outcomes. Although the chaotic nature of the double pendulum
is well studied, the fractal nature of the dependence of the outcomes on the initial conditions has
not been examined. Numerical simulations of a double pendulum over long timescales reveal the
fractal structure of the time evolution of this system. Energetics determine the gross shape of the
fractal. It also exhibits quasi-self-similar structure, and other hallmarks of classic fractals such as
the Mandelbrot and Julia sets. Additionally, in common with other Hamiltonian systems the double
pendulum exhibits a fat fractal structure; specfically for a small fraction of the initial conditions, it
is impossible to determine with certainty whether either pendulum will flip in the future even with
arbitrarily accurate initial conditions.

I. INTRODUCTION

The double pendulum is one of the simplest systems to
exhibit chaotic motion1–3. A double pendulum consists
of one pendulum hanging from another. The system is
governed by a set of coupled non-linear ordinary differ-
nential equations. Although the structure of the system
is relatively simple, above a certain initial energy the mo-
tion of the system is chaotic.

Many researchers have examined the dynamics of the
double pendulum from various points of view from how to
make a better baseball bat4 or golf swing5, the dynamics
of church bells6 and the adequacy of Newton’s axioms to
describe its dynamics7–9, to the quantum mechanics of
the system10,11. However, the long-term evolution of the
system as a function of initial conditions has not been
studied in great detail.

This paper presents the results of numerical simula-
tions of a double pendulum over many thousands of os-
cillations and examines the fractal nature of the relation-
ship between the initial conditions and the final outcome
(specifically whether either part of the pendulum flips).
§ II introduces the physical system and sets a system of
coordinates, and § III derives the Lagrangian and the
equations of motion. § IV presents the results of the
simulations.

II. COORDINATES

Specifically, let us model the double pendulum by two
identical thin rods (I = 1

12Ml2) connected by a pivot
and the end of the upper rod suspended from a pivot.
For comparison Shinbrot et al.2 studied two nearly iden-
tical pendulums and Levien and Tan3 looked at a set of
pendulums with widely different masses.

It is natural to define the coordinates to be the angles
between each rod and the vertical. These coordinates
are denoted by θ1 and θ2 (see Fig. 1). This are the same
coordinates used in by Shinbrot et al.2. Although one
could neglect the masses of the rods as Shinbrot et al.2
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FIG. 1: Coordinates for the double pendulum

did in their Appendix B, including the moment of inertia
of the rods better reflects the physical system that they
describe, so the equations of motion derived here will
differ slightly.

The position of the centre of mass of the two rods in
terms of these coordinates is

x1 =
l

2
sin θ1, x2 = l

(
sin θ1 +

1

2
sin θ2

)
, (1)

and

y1 = − l
2

cos θ1y2 = −l
(

cos θ1 +
1

2
cos θ2

)
. (2)

This is enough information to write out the La-
grangian.

III. LAGRANGIAN

The Lagrangian is given by

L =
1

2
m
(
v2

1 + v2
2

)
+

1

2
I
(
θ̇2

1 + θ̇2
1

)
−mg (y1 + y2) (3)

where the kinetic energy is the sum of the kinetic energy
of the centre of mass of each rod and the kinetic energy
about the centres of mass of the rods2. The potential
energy of a body in a uniform gravitational field is given
by the potential energy at the centre of mass.
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Plugging in the coordinates above and doing a bit of
algebra gives

L =
1

6
ml2

[
θ̇2

2 + 4θ̇2
1 + 3θ̇1θ̇2 cos(θ1 − θ2)

]
+

1

2
mgl (3 cos θ1 + cos θ2) (4)

Before looking at the equations of motion, there is only
one conserved quantity (the energy), and no conserved
momenta. The two momenta are

pθ1 =
∂L

∂θ̇1

=
1

6
ml2

[
8θ̇1 + 3θ̇2 cos(θ1 − θ2)

]
(5)

and

pθ2 =
∂L

∂θ̇2

=
1

6
ml2

[
2θ̇2 + 3θ̇1 cos(θ1 − θ2)

]
(6)

Let’s invert these expressions to get

θ̇1 =
6

ml2
2pθ1 − 3 cos(θ1 − θ2)pθ2

16− 9 cos2(θ1 − θ2)
(7)

and

θ̇2 =
6

ml2
8pθ2 − 3 cos(θ1 − θ2)pθ1

16− 9 cos2(θ1 − θ2)
. (8)

The remaining equations of motion are

ṗθ1 =
∂L

∂θ1
= −1

2
ml2

[
3
g

l
sin θ1 + θ̇1θ̇2 sin(θ1 − θ2)

]
,

(9)
and

ṗθ2 =
∂L

∂θ2
= −1

2
ml2

[g
l

sin θ2 − θ̇1θ̇2 sin(θ1 − θ2)
]
.

(10)
These equations of motion cannot be integrated an-
alytically but they are straightforward to integrate
numerically12. Here they are integrated using a fourth-
order Runge-Kutta technique with adaptive stepsizes13.
A straightforward question is whether a particular set
of initial conditions with both pendulums stationary will
result with either pendulum flipping and if one does how
long is it before it flips.

IV. FRACTALS

Fig. 2 shows when and whether either pendulum flips.
The boundary of the central white region is defined in
part by energy conservation. Our initial conditions have
the rods stationary so our initial Hamiltonian is

H0 = −1

2
mgl (3 cos θ1 + cos θ2) . (11)

Because the Lagrangian is not a function of time explic-
itly the Hamiltonian is conserved. For either pendulum

to flip barely, θ1 = π or θ2 = π. Looking at the Hamilto-
nian the latter requires less energy so

H0 = −1

2
mgl (3 cos θ1 + cos θ2) > −1

2
mgl(3−1) = −mgl

(12)
Rearranging yields

3 cos θ1 + cos θ2 > 2 (13)

so within the following curve 3 cos θ1 +cos θ2 = 2 it is en-
ergetically impossible for either pendulum to flip. Out-
side this region, the pendulums can flip but this is differ-
ent from determining when they will flip.

Energetics cannot determine whether either pendulum
will flip within a set period of time. The question of
the future evolution of the system is much more compli-
cated. Chaotic motion is intimately connected with frac-
tals. Fig. 2 exhibits a fractal structure. First there is a
large island of stability where neither pendulum can flip.
Two large self-similar buds (and many smaller ones) grow
off of the main island of instability. Furthermore, there
are small islands of relative stability within the regions
where the pendulums flip rather quickly (see Fig. 3).
These small islands are distorted copies of the main cen-
tral stable region.

One can estimate the fractal dimension of the bound-
ary between the stable and unstable initial conditions.
Because this boundary is indeed a fractal, its area de-
pends on the scale of measurement. The area of the
boundary is estimated by counting the number of ini-
tial conditions on a rectilinear grid of a given scale that
do not result in either pendula flipping after a long time.
Only those initial conditions that have at least a single
neighbor (again at a particular scale) that does flip are
counted as members of the boundary; an estimate of the
area of the boundary is the product of the number of
points in the boundary and the square of the distance
between the grid points.

The entire domain of initial conditions−π < θ1, θ2 < π
is divided into a Cartesian grid of dimension 215×215 for
a total of 230 ≈ 109 unique sets of initial conditions. The
number of points in the boundary are determined on the
full grid and for a grid consisting of every second grid
point in each direction, every fourth grid point and so
on. To minimize counting errors, the sparse grids are
shifted over the domain and averaged. For example, at
the second to finest grid spacing, the number of boundary
points is determined for four different grids each shifted
relative to each other. The spacing of the nth finest grid
is π2n−15×π2n−15 and there are 22n−2 such grids. In this
way the number of initial conditions sampled in each grid
is 230, independent of n. The area of the boundary µ(ε)
is defined as the product of the number of grid points in
the boundary and the square of the grid spacing ε2.

The left panel of Fig. 4 shows the area of the bound-
ary as defined above for the entire set of initial conditions
(Fig. 2) and those initial conditions with θ1θ2 > 0 and
θ1θ2 < 0. Different parts of the boundary have approxi-
mately the same fractal dimensions but the region with
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FIG. 2: Outcomes for the double pendulum. The initial angles of the two rods θ1 and θ2 range from −π to π. The color of each

pixel indicates how much time elapses before either pendulum flips in units of
√
l/g. Green indicates the one of pendulums flips

within 10 time units, red indicates between 10 and 100 units, purples denotes between 100 and 1000 units and blue shows those

initial conditions that lead to flips only after 1000 to 10000
√
l/g have elapsed. Those that do not flip within 10000

√
l/g are

plotted white. For reference the period of oscillation of the lower pendulum is 2π
√

3/2
√
l/g ≈ 7.7

√
l/g. Within each colour

range, the darker shades flip sooner. Within the solid black curve, it is not energetically possible for either pendulum to flip.

θ1θ2 > 0 contributes more to the boundary area for the
finer grids than the region with θ1θ2 < 0. However, at
the smallest grid scales the area of the boundary does not
go to zero as the grid scale goes to zero. This is evidence
of a “fat fractal”.

For each of the regions the area of the boundary is
fit with the sum of a power-law and a constant, µ(ε) =
Aεβ + µ(0)14,15. If µ(0) = 0, the boundary is a thin
fractal and β is equal to the codimension D − d, where
d is the fractal dimension and D is the dimension of the
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FIG. 3: Outcomes for the double pendulum (detail). The left-hand panel is an enlargement of the region within the cyan box
in Fig. 2. The right-hand panel is an enlargement of the region in the region within the cyan box in the left-hand panel. The
colors designate the time to flip as in Fig. 2.

embedding space. In general, the value of β is dubbed
the fatness exponent and can be defined precisely as

β = lim
ε→0

log [µ(ε)− µ(0)]

log ε
. (14)

In all three cases, µ(0) 6= 0. For the entire set µ(0) ≈
0.057 or about 0.15% of the entire area of initial condi-
tions (4π2).

Umberger and Farmer15 studied the Poincaré section
of various Hamiltonian mappings and found that the area
filled by a particular orbit is greater than zero; more pre-
cisely, the closure of the orbit has positive Lebesque mea-
sure. This paper examines the totality of possible orbits
with static initial conditions for a non-linear Hamiltonian
system, the double pendulum, for which no simple ana-
lytic mapping exists. Again the dependence of the future
evolution of the system on its initial conditions exhibits
the structure of a fat fractal. Specifically, the set of ini-
tial conditions that eventually results in either pendulum
flipping has fat fractal boundary.

Farmer14 examined the sensitivity of the behaviour of
the mapping

xk+1 = fr(xk) = r
(
1− 2x2

k

)
(15)

on the value of the parameter r, in particular the frac-
tion of chaotic parameter intervals and how the value of
this fraction scales (the scaling exponent). In the dou-
ble pendulum for all initial conditions of sufficient en-
ergy the motion is chaotic, i.e. the Lyapunov exponent
is positive2,3. The sensitivity to initial conditions ex-
amined here is much more gross. If one defines chaotic
as the inability to forecast whether a pendulum will flip

with a given level on uncertainty in the initial conditions
(ε), the analysis here maps nicely onto that of Farmer14.
Firstly, the results presented in Fig. 4 imply that for a
small fraction of the initial conditions of about 0.15% it
is impossible to determine with certainty whether either
pendulum will flip in the future even with arbitrarily ac-
curate initial conditions. A finite fraction of the initial
conditions lie on the boundary between flipping and not
flipping. Secondly, the value of µ(ε)/(4π2) gives the prob-
ability that if your initial conditions are specified with an
uncertainty of ε that the numerical calculation of whether
either pendulum flips will be unreliable due to the uncer-
tainty in the initial conditions.

V. CONCLUSIONS

Numerical simulations of the double pendulum reveal
that the set of initial conditions that do not result in ei-
ther pendulum flipping within a set period of time has
a fractal structure. Specfically, the boundary of this set
is a fat fractal similar to that found by Farmer14 for a
simple Hamiltonian logistic map, indicating that fat frac-
tal boundaries may be a hallmark of chaos in non-linear
Hamiltonian systems.
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FIG. 4: The panel depicts area of the boundary of the stable
set as a function of the measuring scale. At the smallest
grid scale, the upper points (solid triangles) are for entire set
(Fig. 2). The middle points (open circles) are for θ1θ2 < 0
and the lower points (crosses) are for θ1θ2 > 0. In all cases
the asymptotic behaviour of each boundary is fitted by the
sum of a power law and a constant.
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