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Simple classical and Monte Carlo methods are illustrated in the context of the numerical
evaluation of definite integrals.

11.1 Numerical Integration Methods in One Dimension

Monte Carlo methods were introduced in Chapter 7 in the context of systems that are intrinsically
random. In this chapter we will find that we can use sequences of random numbers to estimate
definite integrals, a problem that seemingly has nothing to do with randomness. To place the
Monte Carlo numerical integration methods in perspective, we will first discuss several common
classical methods of determining the numerical value of definite integrals. We will see that these
classical methods, although usually preferable in low dimensions, are impractical for multidimen-
sional integrals and that Monte Carlo methods are essential for the evaluation of the latter if the
number of dimensions is sufficiently high.

Consider the one-dimensional definite integral of the form

F =
∫ b

a

f(x) dx. (11.1)

For some choices of the integrand f(x), the integration in (11.1) can be done analytically, found
in tables of integrals, or evaluated as a series. However, there are relatively few functions that can
be evaluated analytically and most functions and must be integrated numerically.

The classical methods of numerical integration are based on the geometrical interpretation
of the integral (11.1) as the area under the curve of the function f(x) from x = a to x = b (see
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Figure 11.1: The integral F equals the area under the curve f(x).

Figure 11.1). In these methods the x-axis is divided into n equal intervals of width ∆x, where ∆x
is given by

∆x =
b− a
n
, (11.2a)

and
xn = x0 + n∆x. (11.2b)

In the above, x0 = a and xn = b.
The simplest approximation of the area under the curve f(x) is the sum of rectangles shown in

Figure 11.2. In the rectangular approximation, f(x) is evaluated at the beginning of the interval,
and the approximate Fn of the integral is given by

Fn =
n−1∑
i=0

f(xi)∆x. (rectangular approximation) (11.3)

In the trapezoidal approximation or rule the integral is approximated by computing the area
under a trapezoid with one side equal to f(x) at the beginning of the interval and the other side
equal to f(x) at the end of the interval. This approximation is equivalent to replacing the function
by a straight line connecting the values of f(x) at the beginning and the end of each interval.
Because the approximate area under the curve from xi to xi+1 is given by 1

2 [f(xi+1) + f(xi)]∆x,
the total area Fn is given by

Fn =
[
1
2
f(x0) +

n−1∑
i=1

f(xi) +
1
2
f(xn)

]
∆x. (trapezoidal rule) (11.4)
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Figure 11.2: The rectangular approximation for f(x) = cosx for 0 ≤ x ≤ π/2. The error in
the rectangular approximation is shaded. Numerical values of the error for various values of the
number of intervals n are given in Table 11.1.

A generally more accurate method is to use a quadratic or parabolic interpolation procedure
through adjacent triplets of points. For example, the equation of the second-order polynomial that
passes through the points (x0, y0), (x1, y1), and (x2, y2) can be written as

y(x) = y0
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ y1

(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

+ y2
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
. (11.5)

What is the value of y(x) at x = x1? The area under the parabola y(x) between x0 and x2 can be
found by simple integration and is given by

F0 =
1
3

(y0 + 4y1 + y2) ∆x, (11.6)

where ∆x = x1−x0 = x2−x1. The total area under all the parabolic segments yields the parabolic
approximation for the total area:

Fn =
1
3
[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + . . .

+ 2f(xn−2) + 4f(xn−1) + f(xn)
]
∆x. (Simpson’s rule) (11.7)
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This approximation is known as Simpson’s rule. Note that Simpson’s rule requires that n be even.
In practice, Simpson’s rule is adequate for functions f(x) that are reasonably well behaved,

that is, functions that can be adequately represented by a polynomial. If f(x) is such a function, we
can adopt the strategy of evaluating the area for a given number of intervals n and then doubling
the number of intervals and evaluating the area again. If the two evaluations are sufficiently close to
one another, we may stop. Otherwise, we again double n until we achieve the desired accuracy. Of
course, this strategy will fail if f(x) is not well-behaved. An example of a poorly-behaved function
is f(x) = x−1/3 at x = 0, where f(x) diverges. Another example where this strategy might fail
is when a limit of integration is equal to ±∞. In many cases we can eliminate the problem by a
change of variables.

We first list classes NumericalIntegration and RectangularApproximator. What are the
main features of NumericalIntegration?

// numerical integration of f(x) from x = a to x = b
package edu.clarku.sip.chapter11;
import edu.clarku.sip.templates.*;
import edu.clarku.sip.graphics.*;
import java.awt.*;
import java.awt.geom.*;
import java.text.NumberFormat;

public class NumericalIntegration implements Model
{

private Function cosineFunction;
private FunctionDrawer functionDrawer; // draw function
// compute sum and draw rectangles
private RectangularApproximator rectangularApproximator;
private Control myControl = new SControl(this);
private World2D myWorld = new World2D();
private NumberFormat numberFormat = NumberFormat.getInstance();

public NumericalIntegration()
{

cosineFunction = new CosineFunction();
rectangularApproximator = new RectangularApproximator(cosineFunction);
functionDrawer = new FunctionDrawer(cosineFunction);
myWorld.addDrawable(functionDrawer);
myWorld.addDrawable(rectangularApproximator);
numberFormat.setMaximumFractionDigits(4);

}

public void reset()
{

myControl.setValue("lower limit a", 0);
myControl.setValue("upper limit b", numberFormat.format(Math.PI/2));
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myControl.setValue("n", 4);
}

public void calculate()
{

double a = myControl.getValue("lower limit a");
double b = myControl.getValue("upper limit b");
int n = (int) myControl.getValue("n"); // number of intervals
double dx = (b - a)/n; // width of interval
functionDrawer.initialize(a, b, 0.01, false);
double ymin = 0;
double ymax = 1;
myWorld.setXYMinMax(a, b, ymin, ymax);
double areaUnderCurve = rectangularApproximator.computeArea(a, b, dx);
myWorld.repaint();
myControl.println("area under curve = " + areaUnderCurve);

}

public static void main(String[] args)
{

NumericalIntegration integ = new NumericalIntegration();
integ.reset();

}
}

The new classes that we have used in class RectangularApproximator are Vector and Rectangle2D.
The Vector class is part of the java.util package which provides various container classes for storing
and managing objects. Vectors can be thought of as dynamic arrays that can change size while
the program is running. They are used in the following to store the rectangles that will be drawn.
Vectors are less efficient than arrays and the elements in a vector must be objects. The simplest
way to store an object in a Vector is to use the add() method.

package edu.clarku.sip.chapter11;
import java.awt.*;
import java.awt.geom.*;
import java.util.Vector;
import edu.clarku.sip.graphics.*;

public class RectangularApproximator implements Drawable
{

private Function function;
private Vector rectangles = new Vector();

public RectangularApproximator(Function f)
{
function = f;
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}

public double computeArea(double a, double b, double dx)
{

rectangles.clear();
double x = a;
double sum = function.evaluate(x);
while (x < b)
{

double ytop = function.evaluate(x);
double xleft = x;
double height = ytop;
double width = dx;
// Rectangle is (already defined) Shape in Java 2D
/* coordinates of rectangle are world coordinates; must convert

them to pixel coordinates before drawing */
Rectangle2D.Double r = new Rectangle2D.Double(xleft, ytop, width, height);
rectangles.add(r); // add rectangle to vector of rectangles
x = x + dx;
sum = sum + function.evaluate(x);

}
return sum*dx;

}

public void draw(World2D myWorld, Graphics g)
{

Graphics2D g2 = (Graphics2D) g;
g2.setColor(Color.red);
Rectangle2D.Double worldRect = null; // Rectangle in world coordinates
Rectangle2D.Double pixRect = null; // Rectangle in pixel coordinates
// draw rectangles
for (int i = 0; i < rectangles.size(); i++)
{

worldRect = (Rectangle2D.Double) rectangles.get(i); // get Rectangle from Vector
double px = myWorld.xToPix(worldRect.x);
double py = myWorld.yToPix(worldRect.y);
double pwidth = myWorld.xToPix(worldRect.x + worldRect.width) - px;
double pheight = myWorld.yToPix(0) - myWorld.yToPix(worldRect.height);
pixRect = new Rectangle2D.Double( px, py, pwidth, pheight);
g2.draw(pixRect);

}
}

}

The class FunctionDrawer defines a object that can draw itself using an object of type GeneralPath.
The latter represents a geometric path constructed from straight lines, quadratic, and cubic curves.
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What is the function of each method that was used? An affine transform is used to transform the
coordinate system.

package edu.clarku.sip.chapter11;
import edu.clarku.sip.graphics.*;
import java.awt.*;
import java.awt.geom.*;
// class draws a function from xmin to xmax

public class FunctionDrawer implements Drawable
{

private double ymin, ymax; // y min and max values of function in specified range
// GeneralPath class represents a geometric path constructed from straight
// lines, quadratic, and cubic curves
private GeneralPath path = new GeneralPath();
private Function function;
private boolean filled = false; // fill area under curve with drawing color
public Color color = Color.black;

public FunctionDrawer(Function f)
{

function = f;
}

public double getYMin(){return ymin;}

public double getYMax(){return ymax;}

public void initialize(double xmin, double xmax, double stepSize, boolean _filled)
{

filled = _filled;
// reset path to empty
path.reset();
path.moveTo((float) xmin, (float) function.evaluate(xmin));
ymin = function.evaluate(xmin);
ymax = ymin; // starting values for ymin and ymax
if (filled)
{

path.moveTo((float) xmin, 0);
path.lineTo((float) xmin, (float) ymin);

}
else

path.moveTo((float)xmin, (float)ymin);
for (double x = xmin + stepSize; x <= xmax; x = x + stepSize)
{

// add point to path by drawing straight line from current to specified coordinates
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double y = function.evaluate(x);
path.lineTo((float) x,(float) y);
ymin = Math.min(ymin, y);
ymax = Math.max(ymax, y);

}
if (filled)
{

path.lineTo((float)xmax, 0);
path.closePath();

}
}

public void draw(World2D myWorld, Graphics g)
{

Graphics2D g2 = (Graphics2D) g;
g2.setColor(color);
/* AffineTransform class performs linear mapping from 2D coordinates

to other 2D coordinates preserving straightness and parallelness of lines */
/* AffineTransform(double m00,double m10,double m01,double m11,double m02,double m12)
[x’] [m00 m01 m02] [x] [m00x + m01y + m02]
[y’] = [m10 m11 m12] [y] = [m10x + m11y + m12]
[1 ] [ 0 0 1 ] [1] [ 1 ] */

double m00 = myWorld.getXPixPerUnit();
double m11 = -myWorld.getYPixPerUnit();
double m02 = myWorld.getXOffset();
double m12 = myWorld.getSize().height - myWorld.getYOffset();
AffineTransform transform = new AffineTransform(m00, 0, 0, m11, m02, m12);
/* return new Shape object defined by geometry of specified Shape after

it has been transformed */
Shape s = path.createTransformedShape(transform);
if (filled)

g2.fill(s);
else

g2.draw(s);
}

}

package edu.clarku.sip.chapter11;
public class CosineFunction implements Function
{

public double evaluate(double x)
{

return Math.cos(x);
}

}
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package edu.clarku.sip.chapter11;
public interface Function
{

public double evaluate(double x);
}

Let us consider the accuracy of the rectangular approximation for the integral of f(x) = cosx
from x = 0 to x = π/2 by comparing the numerical results shown in Table 11.1 with the exact
answer of unity. Note that the error decreases as n−1. This observed n dependence of the error is
consistent with the analytical derivation of the n dependence of the error obtained in Appendix 11A.
We explore the n dependence of the error associated with other numerical integration methods in
Problems 11.1 and 11.2.

n Fn ∆n

2 1.34076 0.34076
4 1.18347 0.18347
8 1.09496 0.09496
16 1.04828 0.04828
32 1.02434 0.02434
64 1.01222 0.01222
128 1.00612 0.00612
256 1.00306 0.00306
512 1.00153 0.00153
1024 1.00077 0.00077

Table 11.1: Rectangular approximations of the integral of cosx from x = 0 to x = π/2 as a
function of n, the number of intervals. The error ∆n is the difference between the rectangular
approximation and the exact result of unity. Note that the error ∆n decreases approximately as
n−1, that is, if n is increased by a factor of 2, ∆n decreases by a factor 2.

Problem 11.1. The rectangular and midpoint approximations

a. Test the above program by reproducing the results in Table 11.1.

b. Use the rectangular approximation to determine numerical approximations for the definite in-
tegrals of f(x) = 2x+ 3x2 + 4x3 and f(x) = e−x for 0 ≤ x ≤ 1 and f(x) = 1/x for a ≤ x ≤ 2.
What is the approximate n dependence of the error in each case?

c. A straightforward modification of the rectangular approximation is to evaluate f(x) at the
midpoint of each interval. Define a MidpointApproximator class by making the necessary
modifications and approximate the integral of f(x) = cosx in the interval 0 ≤ x ≤ π/2. How
does the magnitude of the error compare with the results shown in Table 11.1? What is the
approximate dependence of the error on n?

d. Use the midpoint approximation to determine the definite integrals considered in part (b). What
is the approximate n dependence of the error in each case? Given that our goal is to compute
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the integral as accurately as possible with the smallest number of function evaluations of the
integrand, which approximation would you choose?

Problem 11.2. The trapezoidal and Simpson’s rule

a. Modify your program so that the trapezoidal rule is computed and determine the n-dependence
of the error for the same functions as in Problem (11.1b).

b. It is possible to double the number of intervals without losing the benefit of the previous
calculations. For n = 1, the trapezoidal rule is proportional to the average of f(a) and f(b).
In the next approximation the value of f at the midpoint is added to this average. The next
refinement adds the values of f at the 1/4 and 3/4 points. Modify your program so that the
number of intervals is doubled each time and the results of previous calculations are used. The
following pseudocode should be helpful:

if (n == 1) then
sum = 0.5*(b - a)*(f(a) + f(b));

else
{

int nadd = (int) Math.pow(2.0, n); // additional intervals
double delta = (b - a)/nadd;
double x = a + 0.5*delta;
double sumit = 0.0; // intermediate sum
for (int i = 1; i <= nadd; i++)
{

sumit = sumit + f(x);
x = x + delta;

}
sum = 0.5*(sum + (b - a)*sum/nadd;

}

c. Use the trapezoidal approximation to approximate the integrals of f(x) = cosx for 0 ≤ x ≤ π/2
and f(x) = 2x + 3x2 + 4x3 and f(x) = e−x for 0 ≤ x ≤ 1. What is the approximate n
dependence of the error in each case? Which approximation yields the best results for the same
computation time?

d. Either adapt your program so that it uses Simpson’s rule directly or convince yourself that the
result of Simpson’s rule can be expressed as

Sn = (4T2n − Tn)/3, (11.8)

where Tn is the result from the trapezoidal rule for n intervals. Determine the same integrals
as in part (c) and discuss the relative merits of the various approximations.

e. Use Simpson’s rule to approximate the integral of f(x) = (2π)−1/2 e−x2
for −1 ≤ x ≤ 1. Do

you obtain the same result by choosing the interval [0, 1] and then multiplying by two? Why or
why not?
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f. Evaluate the integral of the function f(x) = 4
√

1 − x2 for −1 ≤ x ≤ 1. What value of n is
needed for four decimal accuracy? The reason for the slow convergence can be understood by
reading Appendix 11A.

g. So far, our strategy for numerically estimating the value of definite integrals has been to choose
one or more of the classical integration formulae and to compute Fn and F2n for reasonable
values of n. If the difference |F2n −Fn| is too large, then we double n until the desired accuracy
is reached. The success of this strategy is based on the implicit assumption that the sequence
Fn, F2n, · · · converges to the true integral F . Is there a way of extrapolating this sequence to the
limit? Let us explore this idea by using the trapezoidal approximation. Because the error for
this approximation decreases approximately as n−2, we can write F = Fn +Cn−2, and plot Fn

as a function of n−2 to obtain the extrapolated result F . Apply this procedure to the integrals
considered in some of the above problems and compare your results to those found from the
trapezoidal approximation and Simpson’s rule alone. A more sophisticated application of this
idea is known as Romberg integration (cf. Press et al.).

11.2 Simple Monte Carlo Evaluation of Integrals

We now explore a totally different method of estimating integrals. Let us introduce this method
by asking, ‘ Suppose the pond is in the middle of a field of known area A. One way to estimate the
area of the pond is to throw the stones so that they land at random within the boundary of the
field and count the number of splashes that occur when a stone lands in a pond. The area of the
pond is approximately the area of the field times the fraction of stones that make a splash. This
simple procedure is an example of a Monte Carlo method.

More explicitly, imagine a rectangle of height h, width (b−a), and area A = h(b−a) such that
the function f(x) is within the boundaries of the rectangle (see Figure 11.3). Compute n pairs of
random numbers xi and yi with a ≤ xi ≤ b and 0 ≤ yi ≤ h. The fraction of points xi, yi that
satisfy the condition yi ≤ f(xi) is an estimate of the ratio of the integral of f(x) to the area of the
rectangle. Hence, the estimate Fn in the hit or miss method is given by

Fn = A
ns

n
, (hit or miss method) (11.9)

where ns is the number of “splashes” or points below the curve, and n is the total number of
points. The number of trials n in (11.9) should not be confused with the number of intervals used
in the numerical methods discussed in Section 11.1.

Another Monte Carlo integration method is based on the mean-value theorem of calculus,
which states that the definite integral (11.1) is determined by the average value of the integrand
f(x) in the range a ≤ x ≤ b. To determine this average, we choose the xi at random instead
of at regular intervals and sample the value of f(x). For the one-dimensional integral (11.1), the
estimate Fn of the integral in the sample mean method is given by

Fn = (b− a) 〈f〉 = (b− a) 1
n

n∑
i=1

f(xi). (sample mean method) (11.10)
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Figure 11.3: The function f(x) is in the domain determined by the rectangle of height H and
width (b− a).

The xi are random numbers distributed uniformly in the interval a ≤ xi ≤ b, and n is the number
of trials. Note that the forms of (11.3) and (11.10) are formally identical except that the n points
are chosen with equal spacing in (11.3) and with random spacing in (11.10). We will find that for
low dimensional integrals (11.3) is more accurate, but for higher dimensional integrals (11.10) does
better.

A simple program that implements the hit or miss method is given below. Note the use of
the Random class and the methods setSeed and nextDouble(). The primary reason that it is
desirable to specify the seed rather than to choose it more or less at random from the time (as
done by Math.random()) is that it is convenient to use the same random number sequence when
testing a Monte Carlo program. In Section ??.

package edu.clarku.sip.chapter11;
import edu.clarku.sip.templates.*;
import java.util.Random;

public class MonteCarloEstimation implements Model
{

private Control myControl = new SControl(this);
private Random rnd = new Random();
private int n; // number of trials
private long seed;

public double evaluate(double x)
{

return Math.sqrt(1 - x*x);
}
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public void calculate()
{

double ymax = 1.0;
double a = 0;
double b = 1.0;
n = (int) myControl.getValue("n");
seed = (long) myControl.getValue("seed");
rnd.setSeed(seed);
long hits = 0;
double x, y;

for (int i = 0; i < n; i++)
{

// nextDouble returns random double between 0 (inclusive) and 1 (exclusive)
x = rnd.nextDouble()*(b-a);
y = rnd.nextDouble()*ymax;
if ( y <= evaluate(x) )

hits++;
}

double estimatedArea = (hits*(b-a)*ymax)/n;
myControl.println("estimated area = " + estimatedArea);

}

public void reset()
{

myControl.setValue("n", 1000);
myControl.setValue("seed", 1379);

}

public static void main(String[] args)
{

new MonteCarloEstimation().reset();
}

}

Problem 11.3. Monte Carlo integration in one dimension

a. Use the hit or miss Monte Carlo method to estimate Fn, the integral of f(x) = 4
√

1 − x2 in the
interval 0 ≤ x ≤ 1 as a function of n. Choose a = 0, b = 1, h = 1, and compute the mean value
of the function

√
1 − x2. Multiply the estimate by 4 to determine Fn. Calculate the difference

between Fn and the exact result of π. This difference is a measure of the error associated with
the Monte Carlo estimate. Make a log-log plot of the error as a function of n. What is the
approximate functional dependence of the error on n for large n, for example, n ≥ 104?

b. Estimate the same integral using the sample mean Monte Carlo method (11.10) and compute
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the error as a function of the number of trials n for n ≥ 104. How many trials are needed to
determine Fn to two decimal places? What is the approximate functional dependence of the
error on n for large n?

c. Determine the computational time per trial using the two Monte Carlo methods. Which Monte
Carlo method is preferable?

11.3 ∗Numerical Integration of Multidimensional Integrals

Many problems in physics involve averaging over many variables. For example, suppose we know
the position and velocity dependence of the total energy of ten interacting particles. In three
dimensions each particle has three velocity components and three position components. Hence
the total energy is a function of 60 variables, and a calculation of the average energy per particle
involves computing a d = 60 dimensional integral. (More accurately, the total energy is a function
of 60 − 6 = 54 variables if we use center of mass and relative coordinates.) If we divide each
coordinate into p intervals, there would be p60 points to sum. Clearly, standard numerical methods
such as Simpson’s rule would be impractical for this example.

A discussion of the n dependence of the error associated with the standard numerical methods
for d-dimensional integrals is given in Appendix 11A. We show that if the error decreases as n−a for
d = 1, then the error decreases as n−a/d in d dimensions. In contrast, we find (see Section 11.4) that
the error for all Monte Carlo integration methods decreases as n−1/2 independently of the dimension
of the integral. Because the computational time is roughly proportional to n in both the classical
and Monte Carlo methods, we conclude that for low dimensions, the classical numerical methods
such as Simpson’s rule are preferable to Monte Carlo methods unless the domain of integration
is very complicated. However, the error in the conventional numerical methods increases with
dimension (see Appendix 11A), and Monte Carlo methods are essential for higher dimensional
integrals.

To illustrate the general method for evaluating multidimensional integrals, we consider the
two-dimensional integral

F =
∫

R

f(x, y) dxdy, (11.11)

where R denotes the region of integration. The extension to higher dimensions is straightforward,
but tedious. Form a rectangle that encloses the region R, and divide this rectangle into squares of
length h. Assume that the rectangle runs from xa to xb in the x direction and from ya to yb in the
y direction. The total number of squares is nxny, where nx = (xb − xa)/h and ny = (yb − ya)/h.
If we use the midpoint approximation, the integral F is estimated by

F ≈
nx∑
i=1

ny∑
j=1

f(xi, yj)H(xi, yj)h2, (11.12)

where xi = xa + (i− 1
2 )h, yj = ya + (j − 1

2 )h, and the function H(x, y) equals unity if (x, y) is in
R and is zero otherwise.
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A simple Monte Carlo method for evaluating a two-dimensional integral uses the same rectan-
gular region as in the above, but the n points (xi, yi) are chosen at random within the rectangle.
The estimate for the integral is then

Fn =
A

n

n∑
i=1

f(xi, yi)H(xi, yi), (11.13)

where A is the area of the rectangle. Note that if f(x, y) = 1 everywhere, then (11.13) is equivalent
to the hit or miss method of calculating the area of the region R. In general, (11.13) represents
the area of the region R multiplied by the average value of f(x, y) in R. In Section 11.7 we discuss
a more efficient Monte Carlo method for evaluating definite integrals.

Problem 11.4. Two-dimensional numerical integration

a. Write a program to implement the midpoint approximation in two dimensions and integrate
the function f(x, y) = x2 + 6xy + y2 over the region defined by the condition x2 + y2 ≤ 1. Use
h = 0.1, 0.05, 0.025, and if time permits 0.0125. Display n, the number of squares, and the
estimate for the integral.

b. Repeat part (a) using a Monte Carlo method and the same number of points n. For each value
of n repeat the calculation several times to obtain a crude estimate of the random error.

Problem 11.5. Volume of a hypersphere

a. The interior of a d-dimensional hypersphere of unit radius is defined by the condition x1
2 +

x2
2 + . . . xd

2 ≤ 1. Write a program that finds the volume of a hypersphere using the midpoint
approximation. If you are clever, you can write a program that does any dimension using
recursive subroutines. Test your program for d = 2 and d = 3, and then find the volume for
d = 4 and d = 5. Begin with h = 0.2, and decrease h until your results do not change by more
than 1%, or until you run out of patience or resources.

b. Repeat part (a) using a Monte Carlo technique. For each value of n, repeat the calculation
several times to obtain a rough estimate of the random error. Is a program valid for any d
easier to write in this case than in part (a)?

11.4 Monte Carlo Error Analysis

Both the classical numerical integration methods and the Monte Carlo methods yield approximate
answers whose accuracy depends on the number of intervals or on the number of trials respectively.
So far, we have used our knowledge of the exact value of various integrals to determine that the
error in the Monte Carlo method approaches zero as approximately n−1/2 for large n, where n
is the number of trials. In the following, we will find how to estimate the error when the exact
answer is unknown. Our main result is that the n dependence of the error is independent of the
nature of the integrand and, most importantly, independent of the number of dimensions.

Because the appropriate measure of the error in Monte Carlo calculations is subtle, we first
determine the error for an explicit example. Consider the Monte Carlo evaluation of the integral
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of f(x) = 4
√

1 − x2 in the interval [0, 1] (see Problem 11.3). Our result for a particular sequence
of n = 104 random numbers using the sample mean method is Fn = 3.1489. How does this result
for Fn compare with your result found in Problem 11.3 for the same value of n? By comparing
Fn to the exact result of F = π ≈ 3.1416, we find that the error associated with n = 104 trials is
approximately 0.0073.

How can we estimate the error if the exact result is unknown? How can we know if n = 104

trials is sufficient to achieve the desired accuracy? Of course, we cannot answer these questions
definitively because if the actual error in Fn were known, we could correct Fn by the required
amount and obtain F . The best we can do is to calculate the probability that the true value F is
within a certain range centered on Fn.

If the integrand were a constant, then the error would be zero, that is, Fn would equal F for
any n. Why? This limiting behavior suggests that a possible measure of the error is the variance
σ2 defined by

σ2 = 〈f2〉 − 〈f〉2, (11.14)

where

〈f〉 =
1
n

n∑
i=1

f(xi), (11.15a)

and

〈f2〉 =
1
n

n∑
i=1

f(xi)2. (11.15b)

From the definition of the standard deviation σ, we see that if f is independent of x, σ is zero. For
our example and the same sequence of random numbers used to obtain Fn = 3.1489, we obtain
σn = 0.8850. Because this value of σ is two orders of magnitude larger than the actual error, we
conclude that σ cannot be a direct measure of the error. Instead, σ is a measure of how much the
function f(x) varies in the interval of interest.

Another clue to finding an appropriate measure of the error can be found by increasing n and
seeing how the actual error decreases as n increases. In Table 11.2 we see that as n goes from 102

to 104, the actual error decreases by a factor of 10, that is, as ∼ 1/n
1
2 . However, we also see that

σn is roughly constant and is much larger than the actual error.

n Fn actual error σn

102 3.0692 0.0724 0.8550
103 3.1704 0.0288 0.8790
104 3.1489 0.0073 0.8850

Table 11.2: Examples of Monte Carlo measurements of the mean value of f(x) = 4
√

1 − x2 in the
interval [0, 1]. The actual error is given by the difference |Fn − π|. The standard deviation σn is
found using (11.14).

One way to obtain an estimate for the error is to make additional runs of n trials each.
Each run of n trials yields a mean or measurement that we denote as Mα. In general, these
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run α Mα actual error
1 3.1489 0.0073
2 3.1326 0.0090
3 3.1404 0.0012
4 3.1460 0.0044
5 3.1526 0.0110
6 3.1397 0.0019
7 3.1311 0.0105
8 3.1358 0.0058
9 3.1344 0.0072
10 3.1405 0.0011

Table 11.3: Examples of Monte Carlo measurements of the mean value of f(x) = 4
√

1 − x2 in the
interval [0, 1]. A total of 10 measurements of n = 104 trials each were made. The mean value Mα

and the actual error |Mα − π| for each measurement are shown.

measurements are not equal because each measurement uses a different finite sequence of random
numbers. Table 11.3 shows the results of ten separate measurements of n = 104 trials each. We see
that the actual error varies from measurement to measurement. Qualitatively, the magnitude of
the differences between the measurements is similar to the actual errors, and hence these differences
are a measure of the error associated with a single measurement. To obtain a quantitative measure
of this error, we determine the differences of these measurements using the standard deviation of
the means σm which is defined as

σm
2 = 〈M2〉 − 〈M〉2, (11.16)

where

〈M〉 =
1
m

m∑
α=1

Mα, (11.17a)

and

〈M2〉 =
1
m

m∑
α=1

Mα
2. (11.17b)

From the values of Mα in Table 11.3 and the relation (11.16), we find that σm = 0.0068. This
value of σm is consistent with the results for the actual errors shown in Table 11.3 which we see
vary from 0.00112 to 0.01098. Hence we conclude that σm, the standard deviation of the means, is
a measure of the error for a single measurement. The more precise interpretation of σm is that a
single measurement has a 68% chance of being within σm of the “true” mean. Hence the probable
error associated with our first measurement of Fn with n = 104 is 3.149 ± 0.007.

Although σm gives an estimate of the probable error, our method of obtaining σm by making
additional measurements is impractical because we could have combined the additional measure-
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ments to make a better estimate. In Appendix 11.8 we derive the relation

σm =
σ√
n− 1

(11.18a)

≈ σ√
n
. (11.18b)

The reason for the expression 1/
√
n− 1 in (11.18a) rather than 1/

√
n is similar to the reason for the

expression 1/
√
n− 2 in the error estimates of the least squares fits (see (7.27c)). The idea is that to

compute σ, we need to use n trials to compute the mean, 〈f(x)〉, and, loosely speaking, we have only
n− 1 independent trials remaining to calculate σ. Because we almost always make a large number
of trials, we will use the relation (11.18b) and consider only this limit in Appendix 11A. Note that
(11.18) implies that the most probable error decreases with the square root of the number of trials.
For our example we find that the most probable error of our initial measurement is approximately
0.8850/100 ≈ 0.009, an estimate consistent with the known error of 0.007 and with our estimated
value of σm ≈ 0.007.

subset k Sk

1 3.14326
2 3.15633
3 3.10940
4 3.15337
5 3.15352
6 3.11506
7 3.17989
8 3.12398
9 3.17565
10 3.17878

Table 11.4: The values of Sk for f(x) = 4
√

1 − x2 for 0 ≤ x ≤ 1 is shown for 10 subsets of 103

trials each. The average value of f(x) over the 10 subsets is 3.14892, in agreement with the result
for Fn for the first measurement shown in Table 11.3.

One way to verify the relation (11.18) is to divide the initial measurement of n trials into s
subsets. This procedure does not require additional measurements. We denote the mean value of
f(xi) in the kth subset by Sk. As an example, we divide the 104 trials of the first measurement into
s = 10 subsets of n/s = 103 trials each. The results for Sk are shown in Table 11.4. As expected,
the mean values of f(x) for each subset k are not equal. A reasonable candidate for a measure
of the error is the standard deviation of the means of each subset. We denote this quantity as σs

where

σs
2 = 〈S2〉 − 〈S〉2, (11.19)

where the averages are over the subsets. From Table 11.4 we obtain σs = 0.025, a result that is
approximately three times larger than our estimate of 0.007 for σm. However, we would like to
define an error estimate that is independent of how we subdivide the data. This quantity is not σs,
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but the ratio σs/
√
s, which for our example is approximately 0.025/

√
(10) ≈ 0.008. This value is

consistent with both σm and the ratio σ/
√
n. We conclude that we can interpret the n trials either

as a single measurement or as a collection of s measurements with n/s trials each. In the former
interpretation, the probable error is given by the standard deviation of the n trials divided by the
square root of the number of trials. In the same spirit, the latter interpretation implies that the
probable error is given by the standard deviation of the s measurements of the subsets divided by
the square root of the number of measurements.

We can make the error as small as we wish by either increasing the number of trials or by
increasing the efficiency of the individual trials and thereby reducing the standard deviation σ.
Several reduction of variance methods are introduced in Sections 11.7 and 11.8.

Problem 11.6. Estimate of the Monte Carlo error

a. Estimate the integral of f(x) = e−x in the interval 0 ≤ x ≤ 1 using the sample mean Monte
Carlo method with n = 102, n = 103, and n = 104. Compute the standard deviation σ as
defined by (11.14). Does your estimate of σ change significantly as n is increased? Determine
the exact answer analytically and estimate the n dependence of the error. How does your
estimated error compare with the error estimate obtained from the relation (11.18)?

b. Generate nineteen additional measurements of the integral each with n = 103 trials. Compute
σm, the standard deviation of the twenty measurements. Is the magnitude of σm consistent with
your estimate of the error obtained in part (a)? Will your estimate of σm change significantly
if more measurements are made?

c. Divide your first measurement of n = 103 trials into s = 20 subsets of 50 trials each. Compute
the standard deviation of the subsets σs. Is the magnitude σs/

√
s consistent with your previous

error estimates?

d. Divide your first measurement into s = 10 subsets of 100 trials each and again compute the
standard deviation of the subsets. How does the value of σs compare to what you found in part
(c)? What is the value of σs/

√
s in this case? How does the standard deviation of the subsets

compare using the two different divisions of the data?

e. Estimate the integral ∫ 1

0

e−x2
dx (11.20)

to two decimal places using σn/
√
n as an estimate of the probable error.

∗Problem 11.7. Importance of randomness
We will learn in Chapter ?? that the random number generator included with many programming
languages is based on the linear congruential method. In this method each term in the sequence
can be found from the preceding one by the relation

xn+1 = (axn + c) modm, (11.21)

where x0 is the seed, and a, c, and m are nonnegative integers. The random numbers r in the unit
interval 0 ≤ r < 1 are given by rn = xn/m. The notation y = xmodm means that if x exceeds m,
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then the modulus m is subtracted from x as many times as necessary until 0 ≤ y < m. Eventually,
the sequence of numbers generated by (11.21) will repeat itself, yielding a period for the random
number generator. To examine the effect of a poor random number generator, we choose values
of x0, m, a, and c such that (11.21) has poor statistical properties, for example, a short period.
What is the period for x0 = 1, a = 5, c = 0, and m = 32? Estimate the integral in Problem a by
making a single measurement of n = 103 trials using the “random number” generator (11.21) with
the above values of x0, a, c, and m. Analyze your measurement in the same way as before, that
is, calculate the mean, the mean of each of the twenty subsets, and the standard deviation of the
means of the subsets. Then divide your data into ten subsets and calculate the same quantities.
Are the standard deviations of the subsets related as before? If not, why?

11.5 Nonuniform Probability Distributions

In the previous two sections we learned how uniformly distributed random numbers can be used to
estimate definite integrals. We will find that it is desirable to sample the integrand f(x) more often
in regions of x where the magnitude of f(x) is large or rapidly varying. Because such importance
sampling methods require nonuniform probability distributions, we first consider several methods
for generating random numbers that are not distributed uniformly before considering importance
sampling in Section 11.7. In the following, we will denote r as a member of a uniform random
number sequence in the unit interval 0 ≤ r < 1.

Suppose that two discrete events occur with probabilities p1 and p2 such that p1+p2 = 1. How
can we choose the two events with the correct probabilities using a uniform probability distribution?
For this simple case, it is obvious that we choose event 1 if r < p1; otherwise, we choose event 2.
If there are three events with probabilities p1, p2, and p3, then if r < p1 we choose event 1; else if
r < p1 +p2, we choose event 2; else we choose event 3. We can visualize these choices by dividing a
line segment of unit length into three pieces whose lengths are as shown in Figure 11.4. A random
point r on the line segment will land in the ith segment with a probability equal to pi.

Now consider n discrete events. How do we determine which event, i, to choose given the
value of r? The generalization of the procedure we have followed for n = 2 and 3 is to find the
value of i that satisfies the condition

i−1∑
j=0

pj ≤ r ≤
i∑

j=0

pj , (11.22)

where we have defined p0 ≡ 0. Check that (11.22) reduces to the correct procedure for n = 2 and
n = 3.

Now let us consider a continuous nonuniform probability distribution. One way to generate
such a distribution is to take the limit of (11.22) and associate pi with p(x) dx, the probability
density p(x), is defined such that p(x) dx is the probability that the event x is in the interval
between x and x+ dx. The probability density p(x) is normalized such that

∫ +∞

−∞
p(x) dx = 1. (11.23)
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p1 p2 p3

Figure 11.4: The unit interval is divided into three segments of lengths p1 = 0.2, p2 = 0.5, and
p3 = 0.3. Sixteen random numbers are represented by the filled circles uniformly distributed on
the unit interval. The fraction of circles within each segment is approximately equal to the value
of pi for that segment.

In the continuum limit the two sums in (11.22) become the same integral and the inequalities
become equalities. Hence we can write

P (x) ≡
∫ x

−∞
p(x′) dx′ = r. (11.24)

From (11.24) we see that the uniform random number r corresponds to the cumulative probability
distribution function P (x), which is the probability of choosing a value less than or equal to x. The
function P (x) should not be confused with the probability density p(x) or the probability p(x) dx.
In many applications the meaningful range of values of x is positive. In that case, we have p(x) = 0
for x < 0.

The relation (11.24) leads to the inverse transform method for generating random numbers
distributed according to the function p(x). This method involves generating a random number r
and solving (11.24) for the corresponding value of x. As an example of the method, we use (11.24)
to generate a random number sequence according to the uniform probability distribution on the
interval a ≤ x ≤ b. The desired probability density p(x) is

p(x) =

{
(1/(b− a), a ≤ x ≤ b
0, otherwise.

(11.25)

The cumulative probability distribution function P (x) for a ≤ x ≤ b can be found by substituting
(11.25) into (11.24) and performing the integral. The result is

P (x) =
x− a
b− a . (11.26)

If we substitute the form (11.26) for P (x) into (11.24) and solve for x, we find the desired relation

x = a+ (b− a)r. (11.27)

The variable x given by (11.27) is distributed according to the probability distribution p(x) given
by (11.25). Of course, the relation (11.27) is rather obvious, and we already have used (11.27) in
our Monte Carlo programs.

We next apply the inverse transform method to the probability density function

p(x) =

{
(1/λ) e−x/λ, if 0 ≤ x ≤ ∞
0, x < 0 .

(11.28)
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In Section 11.6 we will use this probability density to find the distance between scattering events
of a particle whose mean free path is λ. If we substitute (11.28) into (11.24) and integrate, we find
the relation

r = P (x) = 1 − e−x/λ. (11.29)

The solution of (11.29) for x yields x = −λ ln(1− r). Because 1− r is distributed in the same way
as r, we can write

x = −λ ln r. (11.30)

The variable x found from (11.30) is distributed according to the probability density p(x) given
by (11.28). On many computers the computation of the natural logarithm in (11.30) is relatively
slow, and hence the inverse transform method might not necessarily be the most efficient method
to use.

From the above examples, we see that two conditions must be satisfied in order to apply the
inverse transform method. Specifically, the form of p(x) must allow the integral in (11.24) to be
performed analytically, and it must be feasible to invert the relation P (x) = r for x. The Gaussian
probability density

p(x) =
1

(2πσ2)1/2
e−x2/2σ2

(11.31)

is an example of a probability density for which the cumulative distribution P (x) cannot be ob-
tained analytically. However, we can generate the two-dimensional probability p(x, y) dx dy given
by

p(x, y) dx dy =
1

2πσ2
e−(x2+y2)/2σ2

dx dy. (11.32)

First, we make a change of variables to polar coordinates:

r = (x2 + y2)1/2 θ = tan−1 y

x
. (11.33)

Let ρ = r2/2, and write the two-dimensional probability as

p(ρ, θ) dρdθ =
1
2π
e−ρdρ dθ, (11.34)

where we have set σ = 1. If we generate ρ according to the exponential distribution (11.28) and
generate θ uniformly in the interval 0 ≤ θ < 2π, then the variables

x = (2ρ)1/2 cos θ and y = (2ρ)1/2 sin θ (Box-Muller method) (11.35)

will each be generated according to (11.31) with zero mean and σ = 1. (Note that the two-
dimensional density (11.32) is the product of two independent one-dimensional Gaussian distri-
butions.) This way of generating a Gaussian distribution is known as the Box-Muller method.
We discuss other methods for generating the Gaussian distribution in Problem 11.12 and Ap-
pendix 11C.



CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 389

Problem 11.8. Nonuniform probability densities

a. Write a program to simulate the simultaneous rolling of two dice. In this case the events are
discrete and occur with nonuniform probability. You might wish to revisit Problem 7.12 and
simulate the game of craps.

b. Write a program to verify that the sequence of random numbers {xi} generated by (11.30) is
distributed according to the exponential distribution (11.28).

c. Generate random variables according to the probability density function

p(x) =

{
2(1 − x), if 0 ≤ x ≤ 1;
0, otherwise.

(11.36)

d. Verify that the variables x and y in (11.35) are distributed according to the Gaussian distribu-
tion. What is the mean value and the standard deviation of x and of y?

e. How can you use the relations (11.35) to generate a Gaussian distribution with arbitrary mean
and standard deviation?

11.6 ∗Neutron Transport

We now consider the application of a nonuniform probability distribution to the simulation of the
transmission of neutrons through bulk matter, one of the original applications of a Monte Carlo
method. Suppose that a neutron is incident on a plate of thickness t. We assume that the plate is
infinite in the x and y directions and that the z axis is normal to the plate. At any point within
the plate, the neutron can either be captured with probability pc or scattered with probability
ps. These probabilities are proportional to the capture cross section and scattering cross section,
respectively. If the neutron is scattered, we need to find its new direction as specified by the polar
angle θ (see Figure 11.5). Because we are not interested in how far the neutron moves in the x or
y direction, the value of the azimuthal angle φ is irrelevant.

If the neutrons are scattered equally in all directions, then the probability p(θ, φ) dθdφ equals
dΩ/4π, where dΩ is an infinitesimal solid angle and 4π is the total solid angle. Because dΩ =
sin θ dθdφ, we have

p(θ, φ) =
sin θ
4π

. (11.37)

We can find the probability density for θ and φ separately by integrating over the other angle. For
example,

p(θ) =
∫ 2π

0

p(θ, φ) dφ =
1
2

sin θ, (11.38)

and

p(φ) =
∫ π

0

p(θ, φ) dθ =
1
2π
. (11.39)
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Figure 11.5: The definition of the scattering angle θ. The velocity before scattering is v and the
velocity after scattering is v′. The scattering angle θ is independent of v and is defined relative to
the z axis.

Because the point probability p(θ, φ) is the product of the probabilities p(θ) and p(φ), θ and φ are
independent variables. Although we do not need to generate a random angle φ, we note that since
p(φ) is a constant, φ can be found from the relation

φ = 2πr. (11.40)

To find θ according to the distribution (11.38), we substitute (11.38) in (11.24) and obtain

r =
1
2

∫ θ

0

sinx dx (11.41)

If we do the integration in (11.41), we find

cos θ = 1 − 2r. (11.42)

Note that (11.40) implies that φ is uniformly distributed between 0 and 2π and (11.42) implies
that cos θ is uniformly distributed between −1 and +1.

We could invert the cosine in (11.42) to solve for θ. However, to find the z component of the
path of the neutron through the plate, we need to multiply cos θ by the path length (, and hence
we need cos θ rather than θ. The path length, which is the distance traveled between subsequent
scattering events, is obtained from the exponential probability density, p(() ∝ e−�/λ (see (11.28)).
From (11.30), we have

( = −λ ln r, (11.43)

where λ is the mean free path.
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Now we have all the necessary ingredients for calculating the probabilities for a neutron to
pass through the plate, be reflected off the plate, or be captured and absorbed in the plate. The
input parameters are the thickness of the plate t, the capture and scattering probabilities pc and
ps, and the mean free path λ. We begin with z = 0, and implement the following steps:

1. Determine if the neutron is captured or scattered. If it is captured, then add one to the
number of captured neutrons, and go to step 5.

2. If the neutron is scattered, compute cos θ from (11.42) and ( from (11.43). Change the z
coordinate of the neutron by ( cos θ.

3. If z < 0, add one to the number of reflected neutrons. If z > t, add one to the number of
transmitted neutrons. In either case, skip to step 5 below.

4. Repeat steps 1–3 until the fate of the neutron has been determined.

5. Repeat steps 1–4 with additional incident neutrons until sufficient data has been obtained.

Problem 11.9. Elastic neutron scattering

a. Write a program to implement the above algorithm for neutron scattering through a plate.
Assume t = 1 and pc = ps/2. Find the transmission, reflection, and absorption probabilities for
the mean free path λ equal to 0.01, 0.05, 0.1, 1, and 10. Begin with 100 incident neutrons, and
increase this number until satisfactory statistics are obtained. Give a qualitative explanation of
your results.

b. Choose t = 1, pc = ps, and λ = 0.05, and compare your results with the analogous case
considered in part (a).

c. Repeat part (b) with t = 2 and λ = 0.1. Do the various probabilities depend on λ and t
separately or only on their ratio? Answer this question before doing the simulation.

d. Draw some typical paths of the neutrons. From the nature of these paths, explain the results in
parts (a)–(c). For example, how does the number of scattering events change as the absorption
probability changes?

Problem 11.10. Inelastic neutron scattering

a. In Problem 11.9 we assumed elastic scattering, that is, no energy is lost during scattering. Here
we assume that some of the neutron energy E is lost and that the mean free path is proportional
to the speed and hence to

√
E. Modify your program so that a neutron loses a fraction f of its

energy at each scattering event, and assume that λ =
√
E. Consider f = 0.05, 0.1, and 0.5, and

compare your results with those found in Problem 11.9a.

b. Make a histogram for the path lengths between scattering events and plot the path length
distribution function for f = 0.1, 0.5, and 0 (elastic scattering).
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The above procedure for simulating neutron scattering and absorption is more computer inten-
sive than necessary. Instead of considering a single neutron at a time, we can consider a collection
of neutrons at each position. Then instead of determining whether one neutron is captured or
scattered, we determine the fraction that is captured and the fraction that is scattered. For ex-
ample, at the first scattering site, a fraction pc of the neutrons are captured and a fraction ps

are scattered. We accumulate the fraction pc for the captured neutrons. We also assume that all
the scattered neutrons move in the same direction with the same path length, both of which are
generated at random as before. At the next scattering site there are p2s scattered neutrons and
pspc captured neutrons. At the end of m steps, the fraction of neutrons remaining is w = pm

s and
the total fraction of captured neutrons is pc + pcps + pcp

2
s + . . . + pcp

m−1
s . If the new position at

the mth step is at z < 0, we add w to the sum for the reflected neutrons; if z > t, we add w to the
neutrons transmitted. When the neutrons are reflected or absorbed, we start over again at z = 0
with another collection of neutrons.

Problem 11.11. Improved neutron scattering method Apply the improved Monte Carlo method to
neutron transmission through a plate. Repeat the simulations suggested in Problem a and compare
your new and previous results. Also compare the computational times for the two approaches to
obtain comparable statistics.

The power of the Monte Carlo method becomes apparent when the geometry of the material
is complicated or when the material is spatially nonuniform so that the cross sections vary from
point to point. A difficult problem of current interest is the absorption of various forms of radiation
in the human body.

Problem 11.12. Transmission through layered materials Consider two plates with the same thick-
ness t = 1 that are stacked on top of one another with no space between them. For one plate,
pc = ps, and for the other, pc = 2ps, that is, the top plate is a better absorber. Assume that λ = 1
in both plates. Find the transmission, reflection, and absorption probabilities for elastic scattering.
Does it matter which plate receives the incident neutrons?

11.7 Importance Sampling

In Section 11.4 we found found that the error associated with a Monte Carlo estimate is proportional
to σ and inversely proportional to the square root of the number of trials. Hence, there are only
two ways of reducing the error in a Monte Carlo estimate – either increase the number of trials
or reduce the variance. Clearly the latter choice is desirable because it not require much more
computer time. In this section we introduce importance sampling techniques that reduce σ and
improve the efficiency of each trial.

In the context of numerical integration, we introduce a positive function p(x) such that∫ b

a

p(x) dx = 1, (11.44)

and rewrite the integral (11.1) as

F =
∫ b

a

[
f(x)
p(x)

]
p(x) dx. (11.45)
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We can evaluate the integral (11.45) by sampling according to the probability distribution p(x)
and constructing the sum

Fn =
1
n

n∑
i=1

f(xi)
p(xi)

. (11.46)

The sum (11.46) reduces to (11.10) for the uniform case p(x) = 1/(b− a).
We wish to choose a form for p(x) that minimizes the variance of the integrand f(x)/p(x).

Because we cannot evaluate σ analytically in general, we determine σ a posteriori and choose a
form of p(x) that mimics f(x) as much as possible, particularly where f(x) is large. A suitable
choice of p(x) would make the integrand f(x)/p(x) slowly varying, and hence the variance will be
reduced. As an example, we again consider the integral (see Problem ee)

F =
∫ 1

0

e−x2
dx. (11.47)

The estimate of F with p(x) = 1 for 0 ≤ x ≤ 1 is shown in the first column of Table 11.5.
A reasonable choice of a weight function is p(x) = Ae−x, where A is chosen such that p(x) is
normalized on the unit interval. Note that this choice of p(x) is positive definite and is qualitatively
similar to f(x). The results are shown in the second column of Table 11.5. We see that although
the computation time per trial for the nonuniform case is larger, the smaller value of σ makes the
use of the nonuniform probability distribution more efficient.

p(x) = 1 p(x) = Ae−x

n (trials) 4 × 105 8 × 103

Fn 0.7471 0.7469
σ 0.2010 0.0550
σ/

√
n 3 × 10−4 6 × 10−4

Total CPU time (s) 35 1.35
CPU time per trial (s) 10−4 2 × 10−4

Table 11.5: Comparison of the Monte Carlo estimates of the integral (11.47) using the uniform
probability density p(x) = 1 and the nonuniform probability density p(x) = Ae−x. The normal-
ization constant A is chosen such that p(x) is normalized on the unit interval. The value of the
integral to four decimal places is 0.7468. The estimates Fn, variance σ, and the probable error
σ/n1/2 are shown. The CPU time (seconds) is shown for comparison only.

Problem 11.13. Importance sampling

a. Choose f(x) =
√

1 − x2 as in the text and consider p(x) = A(1−x) for x ≥ 0. What is the value
of A that normalizes p(x) in the interval [0, 1]? What is the relation for the random variable
x in terms of r assuming this form of the probability density p(x)? What is the variance of
f(x)/p(x) in the unit interval?

b. Choose the importance function p(x) = Ae−x and evaluate the integral∫ 3

0

x3/2 e−x dx. (11.48)
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c. Choose p(x) = Ae−λx and estimate the integral∫ π

0

1
x2 + cos2 x

dx. (11.49)

Determine the value of λ that minimizes the variance of the integral.

An alternative approach is to use the known values of f(x) at regular intervals to sample
more often where f(x) is relatively large. Because the idea is to use f(x) itself to determine the
probability of sampling, we only consider integrands f(x) that are non-negative. To compute a
rough estimate of the relative values of f(x), we first compute its average value by taking k equally
spaced points si and computing

S =
k∑

i=1

f(si) (11.50)

This sum divided by k gives the average value of f in the interval. The approximate value of the
integral is given by F ≈ Sh, where h = (b− a)/k. This approximation of the integral is equivalent
to the rectangular or mid-point approximation depending on where we compute the values of f(x).

We then generate n random samples as follows. The probability of choosing subinterval i is
given by the probability

pi =
f(si)
S
. (11.51)

Note that the sum over all subintervals of pi is normalized to unity. To choose a subinterval
with the desired probability, we generate a random number r uniformly in the interval [a, b] and
determine the subinterval i that satisfies the inequality (11.22). Now that the subinterval has been
chosen with the desired probability, we generate a random number xi in the subinterval [si, si +h]
and compute the ratio f(xi)/p(xi).

The estimate of the integral is given by the following considerations. The probability pi in
(11.51) is the probability of choosing the subinterval i, not the probability of choosing a value of
x between x and x + ∆x. The probability p(x)∆x is pi times the the probability of picking the
particular value of x in subinterval i:

p(xi)∆x = pi ×
∆x
h
. (11.52)

Hence, we have that

Fn =
1
n

n∑
i=1

f(xi)
p(xi)

=
h

n

n∑
i=1

f(xi)
pi

. (11.53)

Problem 11.14. Apply the above method to estimate the integral of f(x) =
√

1 − x2 in the unit
interval.
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11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

〈f〉 =
∫
p(x)f(x) dx∫
p(x) dx

, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[
1,
p(xj)
p(xi)

]
. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.

Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2*rnd.nextDouble() - 1.0)*delta;
double w = p(xtrial)/p(x);
if (rnd <= w)
{

x = xtrial
naccept++; // number of acceptances

}

Problem 11.15. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that 〈x2〉 ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
〈xi+jxi〉 − 〈xi〉2
〈x2

i 〉 − 〈xi〉2
, (11.57)

where 〈. . .〉 indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j �= 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.16. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

〈x〉 =

∫ ∞
0
xe−x dx∫ ∞

0
e−x dx

, (11.58)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x+ ∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of 〈x〉. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?
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c. In part (b) you should have found that the estimated error is much smaller than the actual
error. The reason is that the {xi} are not statistically independent. The Metropolis algorithm
produces a random walk whose points are correlated with each other over short times (measured
in the number of Monte Carlo steps). The correlation of the points decays exponentially with
time. If τ is the characteristic time for this decay, then only points separated by approximately
2 to 3τ can be considered statistically independent. Rerun your program with the data grouped
into 20 sets of 50 points each and 10 sets of 100 points each. If the sets of 50 points each are
statistically independent (that is, if τ is significantly smaller than 50), then your estimate of
the error for the two groupings should be approximately the same.

Appendix 11A: Error Estimates for Numerical Integration

We derive the dependence of the truncation error estimates on the number of intervals for the
numerical integration methods considered in Sections 11.1 and 11.3. These estimates are based on
the assumed adequacy of the Taylor series expansion of the integrand f(x):

f(x) = f(xi) + f ′(xi)(x− xi) +
1
2
f ′′(xi)(x− xi)2 + . . . , (11.59)

and the integration of (11.1) in the interval xi ≤ x ≤ xi+1:∫ xi+1

xi

f(x) dx = f(xi)∆x+
1
2
f ′(xi)(∆x)2 +

1
6
f ′′(xi)(∆x)3 + . . . (11.60)

We first estimate the error associated with the rectangular approximation with f(x) evaluated
at the left side of each interval. The error ∆i in the interval [xi, xi+1] is the difference between
(11.60) and the estimate f(xi)∆x:

∆i =
[∫ xi+1

xi

f(x) dx
]
− f(xi)∆x ≈ 1

2
f ′(xi)(∆x)2. (11.61)

We see that to leading order in ∆x, the error in each interval is order (∆x)2. Because there
are a total of n intervals and ∆x = (b − a)/n, the total error associated with the rectangular
approximation is n∆i ∼ n(∆x)2 ∼ n−1.

The estimated error associated with the trapezoidal approximation can be found in the same
way. The error in the interval [xi, xi+1] is the difference between the exact integral and the estimate,
1
2 [f(xi) + f(xi+1)]∆x:

∆i =
[∫ xi+1

xi

f(x) dx
]
− 1

2
[f(xi) + f(xi+1)]∆x. (11.62)

If we use (11.60) to estimate the integral and (11.59) to estimate f(xi+1) in (11.62), we find that
the term proportional to f ′ cancels and that the error associated with one interval is order (∆x)3.
Hence, the total error in the interval [a, b] associated with the trapezoidal approximation is order
n−2.
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Because Simpson’s rule is based on fitting f(x) in the interval [xi−1, xi+1] to a parabola,
error terms proportional to f ′′ cancel. We might expect that error terms of order f ′′′(xi)(∆x)4

contribute, but these terms cancel by virtue of their symmetry. Hence the (∆x)4 term of the Taylor
expansion of f(x) is adequately represented by Simpson’s rule. If we retain the (∆x)4 term in the
Taylor series of f(x), we find that the error in the interval [xi, xi+1] is of order f ′′′′(xi)(∆x)5 and
that the total error in the interval [a, b] associated with Simpson’s rule is O(n−4).

The error estimates can be extended to two dimensions in a similar manner. The two-
dimensional integral of f(x, y) is the volume under the surface determined by f(x, y). In the
“rectangular” approximation, the integral is written as a sum of the volumes of parallelograms
with cross sectional area ∆x∆y and a height determined by f(x, y) at one corner. To determine
the error, we expand f(x, y) in a Taylor series

f(x, y) = f(xi, yi) +
∂f(xi, yi)
∂x

(x− xi) +
∂f(xi, yi)
∂y

(y − yi) + . . . , (11.63)

and write the error as

∆i =
[∫ ∫

f(x, y) dxdy
]
− f(xi, yi)∆x∆y. (11.64)

If we substitute (11.63) into (11.64) and integrate each term, we find that the term proportional
to f cancels and the integral of (x− xi) dx yields 1

2 (∆x)2. The integral of this term with respect
to dy gives another factor of ∆y. The integral of the term proportional to (y− yi) yields a similar
contribution. Because ∆y also is order ∆x, the error associated with the intervals [xi, xi+1] and
[yi, yi+1] is to leading order in ∆x:

∆i ≈
1
2
[f ′x(xi, yi) + f ′y(xi, yi)](∆x)3. (11.65)

We see that the error associated with one parallelogram is order (∆x)3. Because there are n
parallelograms, the total error is order n(∆x)3. However in two dimensions, n = A/(∆x)2, and
hence the total error is order n−1/2. In contrast, the total error in one dimension is order n−1, as
we saw earlier.

The corresponding error estimates for the two-dimensional generalizations of the trapezoidal
approximation and Simpson’s rule are order n−1 and n−2 respectively. In general, if the error
goes as order n−a in one dimension, then the error in d dimensions goes as n−a/d. In contrast,
Monte Carlo errors vary as order n−1/2 independent of d. Hence for large enough d, Monte Carlo
integration methods will lead to smaller errors for the same choice of n.

Appendix 11B: The Standard Deviation of the Mean

In Section 11.4 we gave empirical reasons for the claim that the error associated with a single
measurement consisting of n trials equals σ/

√
n, where σ is the standard deviation in a single

measurement. We now present an analytical derivation of this relation.
The quantity of experimental interest is denoted as x. Consider m sets of measurements each

with n trials for a total of mn trials. We use the index α to denote a particular measurement
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and the index i to designate the ith trial within a measurement. We denote xα,i as trial i in the
measurement α. The value of a measurement is given by

Mα =
1
n

n∑
i=1

xα,i. (11.66)

The mean M of the total mn individual trials is given by

M =
1
m

m∑
α=1

Mα =
1
nm

m∑
α=1

n∑
i=1

xα,i. (11.67)

The difference between measurement α and the mean of all the measurements is given by

eα =Mα −M. (11.68)

We can write the variance of the means as

σm
2 =

1
m

m∑
α=1

eα
2. (11.69)

We now wish to relate σm to the variance of the individual trials. The discrepancy dα,i between
an individual sample xα,i and the mean is given by

dα,i = xα,i −M. (11.70)

Hence, the variance σ2 of the nm individual trials is

σ2 =
1
mn

m∑
α=1

n∑
i=1

dα,i
2. (11.71)

We write

eα =Mα −M = 1
n

∑n
i=1

(
xα,i −M

)
(11.72)

= 1
n

∑n
i=1 dα,i. (11.73)

If we substitute (11.73) into (11.69), we find

σm
2 =

1
m

n∑
α=1

(
1
n

n∑
i=1

dα,i

)
 1
n

n∑
j=1

dα,j


 . (11.74)

The sum in (11.74) over trials i and j in set α contains two kinds of terms—those with i = j and
those with i �= j. We expect that dα,i and dα,j are independent and equally positive or negative
on the average. Hence in the limit of a large number of measurements, we expect that only the
terms with i = j in (11.74) will survive, and we write

σm
2 =

1
mn2

n∑
α=1

n∑
i=1

dα,i
2. (11.75)

If we combine (11.75) with (11.71), we arrive at the desired result

σm
2 =

σ2

n
. (11.76)
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Appendix 11C: The Acceptance-Rejection Method

Although the inverse transform method discussed in Section 11.5 can in principle be used to gen-
erate any desired probability distribution, in practice the method is limited to functions for which
the equation, r = P (x), can be solved analytically for x or by simple numerical approximation.
Another method for generating nonuniform probability distributions is the acceptance-rejection
method due to von Neumann.

Suppose that p(x) is a (normalized) probability density function that we wish to generate. For
simplicity, we assume p(x) is nonzero in the unit interval. Consider a positive definite comparison
function w(x) such that w(x) > p(x) in the entire range of interest. A simple although not
generally optimum choice of w is a constant greater than the maximum value of p(x). Because the
area under the curve p(x) in the range x to x+∆x is the probability of generating x in that range,
we can follow a procedure similar to that used in the hit or miss method. Generate two numbers
at random to define the location of a point in two dimensions which is distributed uniformly in the
area under the comparison function w(x). If this point is outside the area under p(x), the point
is rejected; if it lies inside the area, we accept it. This procedure implies that the accepted points
are uniform in the area under the curve p(x) and that their x values are distributed according to
p(x).

One procedure for generating a uniform random point (x, y) under the comparison function
w(x) is as follows.

1. Choose a form of w(x). One choice would be to choose w(x) such that the values of x
distributed according to w(x) can be generated by the inverse transform method. Let the
total area under the curve w(x) be equal to A.

2. Generate a uniform random number in the interval [0, A] and use it to obtain a corresponding
value of x distributed according to w(x).

3. For the value of x generated in step (2), generate a uniform random number y in the interval
[0, w(x)]. The point (x, y) is uniformly distributed in the area under the comparison function
w(x). If y ≤ p(x), then accept x as a random number distributed according to p(x).

Repeat steps (2) and (3) many times.
Note that the acceptance-rejection method is efficient only if the comparison function w(x) is

close to p(x) over the entire range of interest.
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