
John von Neumann Institute for Computing

Statistical Analysis of Simulations:
Data Correlations and Error Estimation

Wolfhard Janke

published in

Quantum Simulations of Complex Many-Body Systems:
From Theory to Algorithms, Lecture Notes,
J. Grotendorst, D. Marx, A. Muramatsu (Eds.),
John von Neumann Institute for Computing, Jülich,
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Statistical Analysis of Simulations:
Data Correlations and Error Estimation

Wolfhard Janke

Institut für Theoretische Physik, Universität Leipzig
Augustusplatz 10/11, 04109 Leipzig, Germany

E-mail: wolfhard.janke@itp.uni-leipzig.de

This lecture gives an introduction to data correlations and error estimation in Monte Carlo
simulations. The basic concepts are illustrated for studies of second-order phase transitions
in classical spin systems such as the Ising model and for models exhibiting first-order phase
transitions such as the q-state Potts model.

1 Introduction

The statistical mechanics of complex systems poses many hard problems which are often
difficult to solve by analytical approaches. Numerical simulation techniques will therefore
be indispensable tools on our way to a better understanding of such systems. Applications
range from physics and chemistry to biological systems and even sociology and economy.
Examples include (spin) glasses, disordered magnets, or biologically motivated studies of
protein folding, to mention only a few important problems in classical physics. The broad
class of quantum statistical problems in condensed matter and elementary particles physics
as well as non-perturbative approaches to quantum gravity are further important examples.

Depending on the specific physical problem and the objectives at hand, the simulational
approach is either based on molecular dynamics (MD) or Monte Carlo (MC) methods. 1, 2

Sometimes even a combination of both methods is used. For the purpose of this lecture I
will focus in the following mainly on the MC approach. Thanks to advances in computer
technology and significant algorithmic refinements in the past few years, MC studies have
reached in many applications an accuracy that allows “quasi-exact” predictions. Since a
MC simulation is a stochastic method, it is thus very important to supplement the data with
carefully determined, reliable statistical error estimates. But also in other areas, where it
is sometimes only feasible to obtain a first qualitative overview of the system behaviour
from simulation studies, it is necessary to gain at least a rough idea of the data correlations
involved and the order of magnitude of the statistical errors.

The required tools for the data analysis described below are designed for the general
case and are perfectly suited for applications to very complex systems. Still, they can be
illustrated and tested for very simple examples. In this lecture I will, therefore, mainly
concentrate on Ising and Potts models, and sometimes even use synthetically generated
stochastic data.

The rest of the paper is organized as follows. In the next section I first recall the defini-
tion of the example models and a few standard observables. Then some properties of phase
transitions and related aspects of Monte Carlo simulations are briefly summarized. Here
emphasis will be placed on those points which are necessary for an understanding of the
tools of statistical data analysis which are described in Sec. 3 and illustrated with worked
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out examples in Secs. 4 and 5. Section 6 is devoted to error propagation in multicanonical
simulations. In Sec. 7, I conclude with a brief summary and a few general comments.

2 Model Systems and Phase Transitions

2.1 Models and Observables

When developing and testing advanced analysis tools for stochastically generated data it
is not only convenient to work with very simple models but, in fact, even advantageous
since usually at least a few exact analytical results are available for comparison. On the
other hand, one should always be prepared that a really complex system may add further
complications which are not present in the simple test cases. I nevertheless will follow
the “bottom-up” approach, but at several places point out potential difficulties when more
complex systems are considered.

The paradigm for a well-controlled second-order phase transition is the well-known
Ising model3 whose partition function is defined as

ZI(β) =
∑
{σi}

exp(−βHI) , HI = −
∑
〈ij〉

σiσj , σi = ±1 , (1)

where β = J/kBT is the inverse temperature in natural units, the spins σ i live on the
sites i of a D-dimensional cubic lattice of volume V = LD, and the symbol 〈ij〉 indicates
that the lattice sum runs over all 2D nearest-neighbour pairs. We always assume periodic
boundary conditions. In two dimensions (2D) and zero field this model has been solved
exactly, even on finite lattices. For the three-dimensional (3D) model no exact solution
is available, but there is an enormous amount of very precise data from MC simulations,
high-temperature series expansions and, as far as critical exponents are concerned, also
from field theoretical methods. The computer code for MC simulations of this model
is easy to program and can be found, for instance, on the accompanying diskette to the
article in Ref. 4, where Metropolis, heat-bath, Wolff single-cluster and Swendsen-Wang
multiple-cluster update routines are described and implemented. In addition also programs
for reweighting analyses and the exact solution of the 2D Ising model are provided in this
reference.

Standard observables are the internal energy per site, e = E/V , with E =
−d lnZI/dβ ≡ 〈HI〉, the specific heat,

C/kB =
de

d(kBT )
= β2

(〈H2
I 〉 − 〈HI〉2

)
/V , (2)

the magnetization

m = M/V = 〈|µ|〉 , µ =
∑

i

σi/V , (3)

and the susceptibility

χ = βV
(〈µ2〉 − 〈|µ|〉2) . (4)

In the high-temperature phase one often employs the fact that the magnetization vanishes
in the infinite-volume limit and defines

χ′ = βV 〈µ2〉 . (5)
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Similarly, the spin-spin correlation function can then be taken as

G(�xi − �xj) = 〈σiσj〉 . (6)

At large distances, G(�x) decays exponentially, G(�x) ∼ exp(−|�x|/ξ), and the spatial cor-
relation length ξ can be defined as

ξ = − lim
|�x|→∞

(|�x|/ lnG(�x)) . (7)

The standard example exhibiting a first-order phase transition is the q-state Potts
model5 defined by the Hamiltonian

HP = −
∑
〈ij〉

δσiσj , σi ∈ 1, . . . , q , (8)

where δij is the Kronecker symbol. In 2D, this model is exactly known 6 to exhibit a
temperature-driven first-order transition at β t = log(1 +

√
q) for all q ≥ 5. For q ≤ 4 the

transition is of second order, including the Ising case (q = 2) and the special percolation
limit (q = 1). In 3D, there is strong numerical evidence that for all q ≥ 3 the transition is
of first order.7

2.2 Phase Transitions

The theory of phase transitions is a broad subject well covered by many textbooks. Here
we shall confine ourselves to those properties that are important for understanding the
requirements on the data analysis tools.

The characterising feature of second-order phase transitions is a divergent spatial cor-
relation length ξ at the transition point βc. This causes scale invariance, the “heart” of
renormalization group treatments, and is the origin of the important concept of univer-
sality. The growth of spatial correlations in the vicinity of the critical point is illustrated
in Fig. 1. At βc one thus expects fluctuations on all length scales, implying power-law
singularities in thermodynamic functions such as the correlation length,

ξ = ξ+,−
0 t−ν + . . . , (9)

where t ≡ |1−T/Tc| and the . . . indicate subleading (analytical and confluent) corrections.
This defines the (universal) critical exponent ν and the (non-universal) critical amplitudes
ξ+,−
0 on the high- and low-temperature side of the transition. Similar singularities of the

specific heat, magnetization, and susceptibility as sketched in Fig. 2 define the critical
exponents α, β, and γ, respectively, which are related with each other through scaling and
hyper-scaling relations; only two of them (e.g. ν and γ) may be considered as independent.

When updating the spins with an importance sampling MC process, 2, 4, 8 the informa-
tion on the updated state of the spins has to propagate over the correlation volume before
one obtains a new, statistically independent configuration. The number of update steps this
takes is measured by the autocorrelation time τ (a formal definition is given below) which
close to βc scales according to

τ ∝ ξz ∝ t−νz . (10)

Here we have introduced the independent dynamical critical exponent z, which depends on
the employed update algorithm. For a local MC update procedure such as the Metropolis
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Figure 1. Approach of the critical region (lower right) starting from high temperatures (upper left) illustrating
the development of large spatial correlations. Shown are 2D Ising model configurations for a 100 × 100 lattice
with periodic boundary conditions at β/βc = 0.50, 0.70, 0.85, 0.90, 0.95, and 0.98.
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or heat-bath algorithm, one expects that the updated information performs a random walk
in configuration space, requiring on the average ξ 2 steps to propagate over a distance pro-
portional to ξ. For local update algorithms one thus expects a dynamical critical exponent
of z ≈ 2. In fact, an exact lower bound is z ≥ γ/ν = 2 − η, and numerical estimates for
the Ising model yield z ≈ 2.125 in 2D and z ≈ 2.03 in 3D.9, 10 As we will see in the next
section, this critical slowing down of the dynamics (based on local update rules) is respon-
sible for the dramatic reduction of the statistical accuracy attainable close to a critical point
in a given computer time allocation. This is the reason why cluster and multigrid update
algorithms have become so important.8–10 Here the update rules are non-local, leading to
a significant reduction of critical slowing down. The dynamical critical exponent z varies
among the different non-local update schemes and depends on the model class considered.
In most cases, however, one finds z smaller than unity, and when cluster algorithms are ap-
plied to the 2D Ising model it is even difficult to distinguish z from zero, i.e. a logarithmic
divergence.

For systems of finite size, as in any numerical simulation, the correlation length can-
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Figure 2. The characteristic behaviour of the magnetization, m, specific heat, C, and susceptibility, χ, at first-
and second-order phase transitions.
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not diverge, and also the divergences in all other quantities are rounded and shifted. For
the specific heat of the 2D Ising model this is illustrated in Fig. 3. In the scaling for-
mulas the role of ξ is then taken over by the linear size of the system, L. By writing
t ∝ ξ−1/ν −→ L−1/ν , it becomes clear how thermodynamic scaling laws, e.g. χ ∝ t−γ ,
should be replaced by finite-size scaling (FSS) Ansätze, e.g. χ ∝ Lγ/ν , for finite geome-
tries. In particular, by recalling (10) we obtain for the autocorrelation time a FSS of the
form

τ ∝ Lz . (11)
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Figure 3. Finite-size scaling behaviour of the specific heat of the 2D Ising model on L × L lattices close to the
infinite-volume critical point βc = log(1 +

√
2)/2 = 0.440 686 . . . .

Most phase transitions in nature are of first order.11–14 An example experienced every
day is ordinary melting. The characterising feature of first-order phase transitions are
discontinuities in the order parameter (the jump ∆m of the magnetization m in Fig. 2)
or in the energy (the latent heat ∆e), or both, at the transition point T 0. This reflects the
fact that at T0, two (or more) phases can coexist. In the example of the melting transition
these are the solid (ordered) and liquid (disordered) phases. In contrast to a second-order
transition, the correlation length in the coexisting pure phases is finite. Consequently the
specific heat, the susceptibility and also the autocorrelation time do not diverge in the pure
phases. There are, however, superimposed delta function like singularities associated with
the jumps of e and m.

For finite systems the singularities are smeared out to narrow peaks with a height pro-
portional to the volume and a width proportional to 1/volume. This signalizes that the
system is now capable to flip from one phase into the other via mixed phase configura-
tions. Mixed phase configurations are separated by interfaces which carry an extra free
energy σLD−1, where σ is the (reduced) interface tension and LD−1 is the projected area
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of the interfaces. Since at T0 the total bulk contribution to the free energy of the two co-
existing phases equals that of the pure phases, the probability for the occurrence of mixed
phase configurations is suppressed by the interfacial Boltzmann weight exp(−2σLD−1),
where the factor two accounts for the topological constraint that with periodic boundary
conditions only an even number of interfaces can be present. This argument explains the
typical double-peak structure of the energy and magnetization densities at a first-order
phase transition. Due to the exponentially suppressed dip between the two peaks, for large
system sizes it may take very long before the systems flips from one phase into the other.
In fact, the autocorrelation time associated with this “flipping mode” is just the inverse of
the suppression factor in the probability density,

τ ∝ exp
(
2σLD−1

)
. (12)

Since here the autocorrelations grow exponentially with the system size, this behaviour
has been termed “supercritical slowing down” – even though nothing is “critical” at a first-
order phase transition.

The standard acceleration methods such as cluster and multigrid algorithms cannot
overcome this slowing down problem. The reason is that it is rooted in the shape of the
probability density itself. In this situation a completely different strategy is necessary,
namely generalized ensemble simulations. One of these techniques are multicanonical
simulations15–17 whose statistical analysis requires special care.

In the multicanonical reweighting approach (for reviews see Refs. 18, 19 and 20) one
rewrites the partition function by introducing an auxiliary function f(E) as

Z =
∑
{si}

e−β[H−f(E)]e−βf(E) , (13)

and adjusts the reweighting factor exp(−βf(E)) in such a way that the resulting histogram
of E sampled according to the multicanonical probability distribution

pmuca(E) ∝ exp[−β(H − f(E))]
≡ exp[−βHmuca] (14)

is approximately flat between the two peaks. Here Hmuca is the central object of a mul-
ticanonical simulation, and plays the same role in it as H does in a canonical simulation.
Canonical observables 〈O〉can can be recovered according to

〈O〉can =
〈Ow〉
〈w〉 , (15)

where 〈. . . 〉 without subscript denote expectation values in the multicanonical distribution
and

w ≡ exp(βf(E)) (16)

is the inverse reweighting factor. The multicanonical probability distribution p muca may be
updated using any legitimate MC algorithm, the simplest choice being a local Metropolis
update. The fact that all canonical expectation values are expressed as ratios of multicanon-
ical expectation values is the reason for the extra complications in the statistical analysis
of multicanonical simulations.
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3 Estimators, Autocorrelation Times, Bias and Resampling

About a decade ago most of the statistical analysis methods discussed in this section were
still quite cumbersome since due to disk-space limitations they usually had to be applied
“on the flight” during the simulation. In particular dynamical aspects of a given model are
usually not easy to predict beforehand such that the guess of reasonable analysis parameters
was quite difficult. The situation has changed dramatically when it became affordable to
store hundreds of megabytes on hard-disks. Since then a simulation study can clearly
be separated into “raw data generation” and “data analysis” parts. The interface between
these two parts should consist of time series of measurements of the relevant physical
observables taken during the actual simulations. In principle there are no limitations on the
choice of observables O which could be, for example, the energy H I or the magnetization
µ. Once the system is in equilibrium (which, in general, is non-trivial to assure), we simply
save Oj ≡ O[{σi}]j where j labels the measurements. Given these data files one can
perform detailed error analyses; in particular adapting parameters to a specific situation is
now straightforward and very fast.

3.1 Estimators

If the time series data results from an importance sampling MC simulation, the expectation
value 〈O〉 can be estimated as a simple arithmetic mean over the Markov chain,

O =
1
N

N∑
j=1

Oj , (17)

where we assume that the time series contains a total of N measurements. Conceptually it
is important to distinguish between the expectation value 〈O〉, which is an ordinary num-
ber, and the estimator O, which is a random number fluctuating around the theoretically
expected value. Of course, in practice one does not probe the fluctuations of the mean
value directly (which would require repeating the whole MC simulation many times), but
rather estimates its variance,

σ2
O = 〈[O − 〈O〉]2〉 = 〈O2〉 − 〈O〉2 , (18)

from the distribution of the individual measurements O j . If the N subsequent measure-
ments Oj were all uncorrelated then the relation would simply be

σ2
O = σ2

Oj
/N , (19)

where σ2
Oj

= 〈O2
j 〉 − 〈Oj〉2 is the variance of the individual measurements. Here one as-

sumes, of course, that the simulation is in equilibrium and uses time-translation invariance
over the Markov chain. Equation (19) is true for any distribution P(O j) of the Oj . For
the energy or magnetization the latter distributions are often plotted as physically directly
relevant histograms whose squared width (= σ2

Oj
) is proportional to the specific heat or

susceptibility, respectively.
Whatever form the distribution P(Oj) assumes (which, in fact, is often close to Gaus-

sian because the Oj are usually already lattice averages over many degrees of freedom), by
the central limit theorem the distribution of the mean value is Gaussian, at least for uncorre-
lated data in the asymptotic limit of large N . The variance of the mean, σ 2

O , is the squared
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width of this (N dependent) distribution which is usually taken as the “one-sigma” squared
error, ε2

O ≡ σ2
O , and quoted together with the mean value O. Under the assumption of a

Gaussian distribution the interpretation is that about 68% of all simulations under the same
conditions would yield a mean value in the range [O − σO ,O + σO]. For a “two-sigma”
interval which also is sometimes used, this percentage goes up to about 95.4%, and for a
“three-sigma” interval the confidence level is higher than 99.7%.

3.2 Autocorrelation Times

Things become more involved for correlated measurements. 21–23 Starting from the second
identity in (18) and inserting (17), we obtain

σ2
O = 〈O2〉 − 〈O〉2 =

1
N2

N∑
i,j=1

〈OiOj〉 − 1
N2

N∑
i,j=1

〈Oi〉〈Oj〉 . (20)

By collecting diagonal and off-diagonal terms we arrive at

σ2
O =

1
N2

N∑
i=1

(〈O2
i 〉 − 〈Oi〉2

)
+

1
N2

N∑
i�=j

(〈OiOj〉 − 〈Oi〉〈Oj〉) . (21)

The first term is identified as the variance of the individual measurements times 1/N . In
the second sum we first use the symmetry i ↔ j to reduce the summation to

∑N
i�=j =

2
∑N

i=1

∑N
j=i+1. Then we reorder the summation and use time translation invariance to

derive

σ2
O =

1
N

[
σ2
Oi

+ 2
N∑

k=1

(〈O1O1+k〉 − 〈O1〉〈O1+k〉)
(

1 − k

N

)]
, (22)

where, due to the last factor, the k = N term may trivially be kept in the summation.
Factoring out σ2

Oi
, this can be written as

ε2O ≡ σ2
O =

σ2
Oi

N
2τ ′

O,int . (23)

Here we have introduced the so-called (proper) integrated autocorrelation time,

τ ′
O,int =

1
2

+
N∑

k=1

A(k)
(

1 − k

N

)
, (24)

with

A(k) =
〈OiOi+k〉 − 〈Oi〉〈Oi〉

〈O2
i 〉 − 〈Oi〉〈Oi〉 (25)

denoting the normalized autocorrelation function (A(0) = 1).
For large time separations k the autocorrelation function decays exponentially,

A(k) k→∞−→ ae−k/τO,exp , (26)

where τO,exp is the exponential autocorrelation time and a is some constant. Due to the
exponential decay of A(k) as k → ∞, in any meaningful simulation with N � τO,exp,
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the correction term in parentheses in (24) can safely be neglected. The usually employed
definition of the integrated autocorrelation time is thus

τO,int =
1
2

+
N∑

k=1

A(k) . (27)

Notice that, in general, τO,int (and also τ ′
O,int) is different from τO,exp. In fact, one can

show24 that τO,int ≤ τO,exp in realistic models. Only if A(k) is a pure exponential, the
two autocorrelation times, τO,int and τO,exp, coincide (up to minor corrections for small
τO,int, see Eq. (46) in Sec. 4 below).23

The important point of Eq. (23) is that due to temporal correlations of the measurements

the statistical error εO ≡
√

σ2
O on the MC estimatorO is enhanced by a factor of

√
2τO,int.

This can be rephrased by writing the statistical error similar to the uncorrelated case as

εO =
√

σ2
Oj

/Neff , but now with a parameter

Neff = N/2τO,int ≤ N , (28)

describing the effective statistics. This shows more clearly that only every 2τO,int iterations
the measurements are approximately uncorrelated and gives a better idea of the relevant
effective size of the statistical sample. Since some quantities (e.g., the specific heat or
susceptibility) can severely be underestimated if the effective statistics is too small, 25 any
serious simulation should therefore provide at least a rough order-of-magnitude estimate
of autocorrelation times.

3.3 Bias

For a better understanding of the latter point, let us consider as a specific example the
specific heat, C = β2V

(〈e2〉 − 〈e〉2) = β2V σ2
ei

. The standard estimator for the variance
is

σ̂2
ei

= e2 − e2 = (e − e)2 =
1
N

N∑
i=1

(ei − e)2 . (29)

What is the expected value of σ̂2
ei

? To answer this question, we subtract and add 〈e〉2,

〈σ̂2
ei
〉 = 〈e2 − e2〉 = 〈e2〉 − 〈e〉2 − (〈e2〉 − 〈e〉2) , (30)

and then use the previously derived result: The first two terms on the r.h.s. of (30) just give
σ2

ei
, and the second two terms in parentheses yield σ 2

e = σ2
ei

2τe,int/N , as calculated in
(23). Combining these two results we arrive at

〈σ̂2
ei
〉 = σ2

ei

(
1 − 2τe,int

N

)
= σ2

ei

(
1 − 1

Neff

)
�= σ2

ei
. (31)

The estimator σ̂2
ei

as defined in (29) thus systematically underestimates the true value by a
term of the order of τe,int/N . Such an estimator is called weakly biased (“weakly” because
the statistical error ∝ 1/

√
N is asymptotically larger than the systematic bias; for medium

or small N , however, also prefactors need to be carefully considered).
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We thus see that for large autocorrelation times or equivalently small effective statistics
Neff , the bias may be quite large. Since τe,int scales quite strongly with the system size
for local update algorithms, some care is necessary in choosing the run time N . Otherwise
the FSS of the specific heat and thus the determination of the static critical exponent α/ν
could be completely spoiled by the temporal correlations!

As a side remark we note that even in the completely uncorrelated case the estimator
(29) is biased, 〈σ̂2

ei
〉 = σ2

ei
(1 − 1/N), since with our conventions in this case τe,int = 1/2

(some authors use a different convention in which τ more intuitively vanishes in the un-
correlated case; but this has certain disadvantages in other formulas). In this case one can
(and usually does) define a bias-corrected estimator,

σ̂2
ei,corr =

N

N − 1
σ̂2

ei
=

1
N − 1

N∑
i=1

(ei − e)2 , (32)

which obviously satisfies 〈σ̂2
ei,corr〉 = σ2

ei
. For the squared error on the mean value, this

leads to the error formula ε2
e = σ̂2

e,corr = σ̂2
ei,corr/N = 1

N(N−1)

∑N
i=1 (ei − e)2, i.e., to

the celebrated replacement of one of the 1/N -factors by 1/(N − 1) “due to one missing
degree of freedom”.

3.4 Numerical Estimation of Autocorrelation Times

The above considerations show that not only for the error estimation but also for the com-
putation of static quantities themselves it is important to have control over autocorrelations.
Unfortunately, it is very difficult to give reliable a priori estimates, and an accurate numer-
ical analysis is often too time consuming. As a rough estimate it is about ten times harder
to get precise information on dynamic quantities than on static quantities like critical expo-
nents. A (biased) estimator Â(k) for the autocorrelation function is obtained by replacing
in (25) the expectation values (ordinary numbers) by mean values (random variables), e.g.,
〈OiOi+k〉 by OiOi+k. With increasing k the relative variance of Â(k) diverges rapidly.
To get at least an idea of the order of magnitude of τO,int and thus the correct error estimate
(23), it is useful to record the “running” autocorrelation time estimator

τ̂O,int(kmax) =
1
2

+
kmax∑
k=1

Â(k) , (33)

which approaches τO,int in the limit of large kmax where, however, its statistical error
increases rapidly. As a compromise between systematic and statistical errors, an often
employed procedure is to determine the upper limit kmax self-consistently by cutting off
the summation once kmax ≥ 6τ̂O,int(kmax). In this case an a priori error estimate is
available,9, 10, 23

ετO,int = τO,int

√
2(2kmax + 1)

N
≈ τO,int

√
12

Neff
. (34)

For a 5% relative accuracy one thus needs at least Neff ≈ 5 000 or N ≈ 10 000 τO,int mea-
surements. As an order of magnitude estimate consider the 2D Ising model with L = 100
simulated with a local update algorithm. The integrated autocorrelation time for this ex-
ample is of the order of L2 ≈ 1002 (ignoring an priori unknown prefactor of “order unity”
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which depends on the considered quantity), thus implying N ≈ 10 8. Since in each sweep
L2 spins have to be updated and assuming that each spin update takes about a µsec, we end
up with a total time estimate of about 106 seconds ≈ 1 CPU-day to achieve this accuracy.

Another possibility is to approximate the tail end of A(k) by a single exponential as in
(26). Summing up the small k part exactly, one finds26

τO,int(kmax) = τO,int − ce−kmax/τO,exp , (35)

where c is a constant. The latter expression may be used for a numerical estimate of both
the exponential and integrated autocorrelation times. 26

3.5 Binning Analysis

As the preceding discussions have shown, ignoring autocorrelations can lead to a severe un-
derestimation of statistical errors. Invoking the full machinery of autocorrelation analysis,
however, is often too cumbersome. On a day by day basis the following binning analysis
is much more convenient (though somewhat less accurate). By grouping the original data
into bins or blocks, one forms a new, shorter time series which is almost uncorrelated and
can thus be analyzed by standard means. But even if the data are completely uncorrelated
in time, one still has to handle the problem of error estimation for quantities that are not
directly measured in the simulation but are computed as a non-linear combination of “ba-
sic” observables. This problem can either be solved by error propagation or by using the
Jackknife method described in the next subsection.

Let us assume that the time series consists of N correlated measurements O i. One
then forms NB non-overlapping blocks of length k such that N = NBk (assuming that N
was chosen cleverly; otherwise one has to discard some of the data and redefine N ) and
computes the block average OB,n of the n-th block,

OB,n ≡ 1
k

k∑
i=1

O(n−1)k+i , n = 1, . . . , NB . (36)

The mean value over all block variables obviously satisfies OB = O. If the block length
k is large enough (k � τ ), the blocks are basically uncorrelated in time and their variance
can be computed according to the unbiased estimator (32), leading to the squared statistical
error of the mean value,

ε2O ≡ σ2
O = σ2

B/NB =
1

NB(NB − 1)

NB∑
n=1

(OB,n −OB)2 . (37)

By comparing with (23) we see that σ2
B/NB = 2τO,intσ

2
Oi

/N , showing that one may also
use

2τO,int = kσ2
B/σ2

Oi
(38)

for the estimation of τO,int. Estimates of τO,int obtained in this way are often referred to
as “blocking τ” or “binning τ”.
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3.6 Jackknife Analysis

Instead of considering rather small blocks of lengths k and their fluctuations as in the
binning method, in a Jackknife analysis27, 28 one forms NB large Jackknife blocks OJ,n

containing all data but one of the previous binning blocks,

OJ,n =
NO − kOB,n

N − k
, n = 1, . . . , NB . (39)

Each of the Jackknife blocks thus consists of N − k data, i.e., it contains almost as many
data as the original time series. When non-linear combinations of basic variables are es-
timated, the bias is hence comparable to that of the total data set (typically 1/(N − k)
compared to 1/N ). The NB Jackknife blocks are, of course, trivially correlated because
one and the same original data enter in NB − 1 different Jackknife blocks. This trivial
correlation caused by re-using the original data over and over again has nothing to do with
temporal correlations. As a consequence the Jacknife block variance σ 2

J will be much
smaller than the variance estimated in the binning method. Because of the trivial nature of
the correlations, however, this reduction can be corrected by multiplying σ 2

J with a factor
(NB − 1)2, leading to

ε2O ≡ σ2
O =

NB − 1
NB

NB∑
n=1

(OJ,n −OJ)2 . (40)

To summarize this section, any realization of a Markov chain, i.e., MC update algo-
rithm, is characterised by autocorrelation times which enter directly in the statistical errors
of MC estimates. Since temporal correlations always increase the statistical errors, it is
a very important issue to develop MC update algorithms that keep autocorrelation times
as small as possible. This is the reason why cluster and other non-local algorithms are so
important.

4 A Simplified Model

It is always useful to have a few exact results available against which the numerical tech-
niques can be checked. Of course, to continue analytically, we have to make some simpli-
fying assumptions about the distribution P (e) from which the e i are drawn and about the
temporal correlations of these measurements. In the following we shall hence assume that
the ei are Gaussian random variables. Furthermore, without loss of generality we simplify
the notation and normalize the energies to have zero expectation, 〈e i〉 = 0, and unit vari-
ance, 〈e2

i 〉 = 1. This is convenient but inessential. Finally, the temporal correlations are
modelled by a bivariate time series with correlation coefficient ρ (0 ≤ ρ < 1),

e0 = e′0 ,

ei = ρei−1 +
√

1 − ρ2e′i , i ≥ 1 , (41)

where the e′i are independent Gaussian random variables satisfying 〈e ′
i〉 = 0 and

〈e′ie′j〉 = δij . By iterating the recursion (41) it is then easy to see that

ek = ρek−1 +
√

1 − ρ2e′k = ρke0 +
√

1 − ρ2

k∑
l=1

ρk−le′l , (42)
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Figure 4. One percent of the “MC time” evolution according to the bivariate Gaussian process (41) in (a) the
uncorrelated case respectively with (b) τexp = 10 and (c) τexp = 50. All three time evolutions with a total of
100 000 consecutive “measurements” lead to the same Gaussian histogram shown in (d).

and consequently

A(k) = 〈e0ek〉 = ρk ≡ e−k/τexp . (43)

In this simplified model the autocorrelation function is thus a pure exponential with an
exponential autocorrelation time given by

τexp = −1/ lnρ . (44)

It should be stressed that in realistic situations a purely exponential decay can only be
expected asymptotically for large k where the slowest mode dominates. For smaller time
separations usually also many other modes contribute whose correlation time is smaller.
The visual appearance of uncorrelated and correlated data with τ exp = 10 and 50 is de-
picted in Figs. 4(a)-(c) where in each case one percent of the total “MC time” evolution
consisting of 100 000 consecutive “measurements” is shown. Despite the quite distinct
temporal evolutions, histogramming the time series leads to the same Gaussian distribution
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Figure 5. (a) Autocorrelation functions and (b) integrated autocorrelation time for τexp = 10 on the basis of
100 000 “measurements” in comparison with exact results for the bivariate Gaussian model shown as the solid
lines.

within error bars, as it should, cf. Fig. 4(d). The corresponding autocorrelation functions
A(k) are shown in Fig. 5(a).

The integrated autocorrelation time can also be calculated exactly,

τint =
1
2

+
∞∑

k=1

A(k) =
1
2

1 + ρ

1 − ρ
=

1
2
cth(1/2τexp) . (45)

For τexp � 1 this can be approximated by

τint = τexp

[
1 +

1
12τ2

exp

+ O(1/τ4
exp)

]
, (46)

i.e., for a purely exponential autocorrelation function we have, to a very good approxima-
tion, τint ≈ τexp, which would immediately follow from τ int ≈

∫ ∞
0

dkA(k) = τexp.
As explained in the last section, one usually truncates the summation in (45) self-

consistently at about kmax = 6τint (≈ 6τexp) since A(k) becomes very noisy for large
time separations. Observing that (45) is nothing but a geometric series, also the resulting
correction can be calculated exactly,

τint(kmax) ≡ 1
2

+
kmax∑
k=1

A(k) =
1
2
cth(1/2τexp)

[
1 − 2e−(kmax+1)/τexp

1 + e−1/τexp

]
, (47)

which simplifies in the case of large τexp � 1 to

τint(kmax) = τint

[
1 − 2τexp

2τexp + 1
e−kmax/τexp

]
, (48)

showing that with increasing kmax the asymptotic value of τint ≡ τint(∞) is approached
exponentially fast. This is illustrated in Fig. 5(b) for the bivariate Gaussian time series
with τexp = 10. Here we also see that for too large kmax the estimate for τint(kmax) can
deviate quite substantially from the exact value due to its divergent variance. The usually
employed self-consistent cutoff would be around 6τ exp = 60 where τint(kmax) ≈ 9.89.
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Figure 6. Binning analysis of 100 000 “measurements” in the bivariate Gaussian model. The solid line shows the
exact result.

Let us now turn to the binning analysis, assuming that we decompose the total number
of measurements N into NB non-overlapping blocks of length k such that N = NBk. The
nth block of measurements then yields a block average of

eB,n ≡ 1
k

k∑
i=1

e(n−1)k+i . (49)

In our simple example the expected value is, of course, zero,
〈eB,n〉 = 1

k

∑k
i=1〈e(n−1)k+i〉 = 0. Therefore, the variance of the block variables is

just the expectation value of e2
B,n,

σ2
B = 〈e2

B,n〉 =
1
k2

k∑
i,j=1

ρ|i−j|

=
1
k2


k + 2

k∑
i=1

i−1∑
j=1

ρi−j


 (50)

=
1
k

[
1 +

2ρ

1 − ρ
− 2ρ

k

1 − ρk

(1 − ρ)2

]
.

Recalling (45) this can be rewritten as

kσ2
B = 2τint

[
1 − τint

k

(
1 − e−k/τexp

)
/ cosh2(1/2τexp)

]
, (51)

and for τexp � 1 to a very good approximation as

kσ2
B ≈ 2τint

[
1 − τint

k

(
1 − e−k/τexp

)]
≈ 2τexp

[
1 − τexp

k

(
1 − e−k/τexp

)]
, (52)
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showing that with increasing block length k the asymptotic value 2τ int is approached ac-
cording to a power law. For an illustration see Fig. 6.

5 A Realistic Example

In this section the autocorrelation and error analysis is illustrated for a realistic but still
very simple model: The two-dimensional (2D) Ising model, simulated with the Metropolis
algorithm at the infinite-volume critical point βc = ln(1+

√
2)/2 ≈ 0.440 686 793 4 . . . on

a 16×16 square lattice with periodic boundary conditions. The raw data are the time series
with 1 000 000 measurements of the energy and magnetization taken after each sweep over
the lattice, after discarding the first 200 000 sweeps to equilibrate the system.

A small part of the time evolution of the energy and magnetization is shown in Fig. 7.
Notice the very different time scales for the e and m plots. The energy plot should be
compared with the Gaussian model time series in Figs. 4(b) and (c).

Next, using the complete time series the autocorrelation functions were computed ac-
cording to (25). The only difference to the analysis of the simplified model is that instead
of using the Gaussian data one now reads in the Ising model time series. The result for
the energy autocorrelations is shown in Fig. 8. On the log-scale of Fig. 8(b) we clearly
see the asymptotic linear behaviour of ln A(k). Apart from the noise for large k, which is
also present in the simplified model for finite statistics, the main difference to the artificial
data of the simplified model lies in the small k behaviour. For the Ising model we clearly
notice an initial fast drop, corresponding to faster relaxing modes, before the asymptotic
behaviour sets in. This is, in fact, the generic behaviour of autocorrelation functions in
realistic models.

Once the autocorrelation function is known, it is straightforward to sum up the inte-
grated autocorrelation time. The result for the energy is depicted in Fig. 9, yielding an
estimate of τe,int ≈ 27. Also shown is the binning analysis which yields consistent results
as it should (the horizontal line shows 2τe,int ≈ 54).
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Figure 7. Part of the time evolution of the energy e and magnetization m for the 2D Ising model on a 16 × 16
lattice at βc.
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Figure 8. (a) Autocorrelation function of the energy for the 2D Ising model on a 16 × 16 lattice at βc. (b) The
same data as in (a) on a logarithmic scale, revealing the fast initial drop for small k and the noisy behaviour for
large k.
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Figure 9. (a) Integrated autocorrelation time and (b) binning analysis for the energy of the 2D Ising model on a
16 × 16 lattice at βc. The horizontal line in (b) shows 2τe,int ≈ 54.

6 Error Propagation in Multicanonical Simulations

As a rather extreme example for dealing with non-linear combinations of basic observables
we consider now the error analysis of multicanonical simulations. 26 As shown in (15), for
any observableO expectation values in the canonical ensemble, 〈O〉 can, can be calculated
as

〈O〉can =
〈Ow〉
〈w〉 , (53)

where 〈. . . 〉 (without subscript) denote expectation values with respect to the multicanon-
ical distribution and w = exp(βf) is the inverse reweighting factor. In a MC simulation
with a total number of N measurements these values are, as usual, estimated by the mean
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values

〈Ow〉 ≈ Ow ≡ 1
N

N∑
i=1

Oiwi , (54)

〈w〉 ≈ w ≡ 1
N

N∑
i=1

wi , (55)

where Oi and wi denote the measurements for the i-th configuration. Hence 〈O〉 can is
estimated by

〈O〉can ≈ Ô ≡ Ow

w
. (56)

The estimator Ô is biased,

〈Ô〉 = 〈O〉can
[
1 − 〈Ow; w〉

〈Ow〉〈w〉 +
〈w; w〉
〈w〉〈w〉 + · · ·

]
, (57)

and fluctuates around 〈Ô〉 with variance, i.e. squared statistical error

ε2Ô = 〈O〉2can
[ 〈Ow;Ow〉

〈Ow〉2 +
〈w; w〉
〈w〉2 − 2

〈Ow; w〉
〈Ow〉〈w〉 + · · ·

]
. (58)

Here we used the abbreviation

〈Ow; w〉 ≡ 〈Ow w〉 − 〈Ow〉〈w〉 , (59)

etc. to denote (connected) correlations of the mean values, which can be computed as

〈Ow; w〉 = 〈Oiwi; wi〉
2τ int

Ow;w

N
, (60)

where

τ int
Ow;w = τ int

w;Ow =
1
2

+
N∑

k=1

〈O0w0; wk〉
〈O0w0; w0〉

(
1 − k

N

)
(61)

is the associated integrated autocorrelation time of measurements in the multicanonical
distribution. Hence the statistical error is given by

ε2Ô = 〈O〉2can
[
〈Oiwi;Oiwi〉

〈Oiwi〉2
2τ int

Ow;Ow

N
+

〈wi; wi〉
〈wi〉2

2τ int
w;w

N

−2
〈Oiwi; wi〉
〈Oiwi〉〈wi〉

2τ int
Ow;w

N

]
. (62)

Since for uncorrelated measurements τ int
Ow;Ow = τ int

Ow;w = τ int
w;w = 1/2, it is useful to

define an effective multicanonical variancea

σ2
Ô = 〈O〉2can

[〈Oiwi;Oiwi〉
〈Oiwi〉2 +

〈wi; wi〉
〈wi〉2 − 2

〈Oiwi; wi〉
〈Oiwi〉〈wi〉

]
, (63)

aIn the multicanonical distribution this is nothing but an abbreviation of the expression on the r.h.s. but not the
variance in the multicanonical distribution.
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3D 4-state Potts model, multibondic simulations
L τ int

E;E τ int
Ew;Ew τ int

w;w τ int
Ew;w τeff

e τ jack
e τflip

e

8 71(5) 39(2) 9(1) 18(1) 77(5) 63 119(2)
10 95(10) 62(3) 38(2) 50(3) 107(8) 103 181(3)
12 148(12) 81(3) 53(2) 66(3) 189(34) 205 298(4)
14 229(24) 105(3) 74(2) 87(3) 316(21) 326 468(6)
16 303(27) 131(3) 100(4) 113(3) 488(65) 498 655(10)
20 584(41) 206(5) 166(4) 183(4) 940(58) 1009 1298(18)
24 1008(427) 280(10) 239(8) 256(11) 1607(473) 1471 2434(82)
30 2730(1293) 340(15) 334(13) 324(13) 3085(173) 4972 5429(238)
L τ int

B;B τ int
Bw;Bw τ int

w;w τ int
Bw;w τeff

b τ jack
b τflip

b

8 69(5) 40(2) 9(1) 18(1) 75(5) 62 106(2)
10 93(10) 62(3) 38(2) 50(3) 107(7) 102 177(3)
12 146(12) 81(3) 53(2) 66(3) 189(34) 204 286(4)
14 225(23) 104(3) 74(2) 87(3) 317(21) 327 451(6)
16 299(27) 131(3) 100(4) 113(3) 490(64) 498 649(10)
20 578(41) 206(5) 166(4) 183(4) 941(58) 1009 1281(18)
24 1005(427) 280(10) 239(8) 256(10) 1611(449) 1479 2418(83)
30 2723(1364) 340(15) 334(13) 324(13) 3081(172) 4978 5429(237)

Table 1. Autocorrelation times in multibondic simulations of the three-dimensional 4-state Potts model. Error
estimates are obtained with the Jackknife method on the basis of 100 blocks for L = 8 − 20, 50 blocks for
L = 24, and 40 blocks for L = 30.

such that the squared error (62) can be written in the usual form

ε2Ô ≡ σ2
Ô

2τO
N

, (64)

with τO collecting the various autocorrelation times in an averaged sense. For a comparison
with canonical simulations we need one further step since

(ε2Ô)can = 〈O;O〉can = (σ2
Oi

)can
2τcan

O
N

(65)

but σ2
Ô �= (σ2

Oi
)can = 〈Oi;Oi〉. Hence we define an effective autocorrelation time τ eff

O
through

ε2Ô = (σ2
Oi

)can
2τeff

O
N

= (ε2Ô)can
τeff
O

τcan
O

, (66)

i.e.,

τeff
O =

σ2
Ô

(σ2
Oi

)can
τO . (67)

For symmetric distributions and odd observables we have 〈O iwi〉 ≡ 0 and this simplifies
to

ε2Ô =
〈Oiwi;Oiwi〉

〈wi〉2 2τ int
Ow;Ow , (68)
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3D 4-state Potts model, multibondic simulations
L <Ew;Ew>

<Ew>2
<w;w>
<w>2

<Ew;w>
<Ew><w> σ2

e × 102 εe × 102 εjack
e ×102

8 0.11208(70) 0.05993(28) 0.07032(46) 9.751(67) 0.462(13) 0.417
10 0.2429(25) 0.15050(89) 0.1799(16) 8.363(70) 0.423(15) 0.415
12 0.4471(52) 0.3418(26) 0.3759(37) 7.731(71) 0.383(45) 0.398
14 0.6555(76) 0.5422(42) 0.5790(57) 7.331(83) 0.393(14) 0.399
16 1.047(14) 0.9210(87) 0.961(11) 6.988(92) 0.369(25) 0.373
20 1.561(22) 1.433(15) 1.468(18) 6.992(94) 0.363(13) 0.376
24 2.175(71) 2.038(56) 2.077(62) 6.15(22) 0.70(11) 0.673
30 2.555(91) 2.328(65) 2.381(73) 8.11(18) 1.119(32) 1.420

Table 2. Variances, covariances and expectation values of multibondic simulations of the three-dimensional 4-
state Potts model, which enter the effective error estimate εe. σ2

e is the canonical variance of the energy. For the
number of Jackknife blocks used in the computation of εjacke see Table 1.

such that

τO = τ int
Ow;Ow , (69)

and

τeff
O =

σ2
Ô

(σ2
Oi

)can
τ int
Ow;Ow . (70)

These formulas have been tested and compared with a standard Jackknife analysis in
Refs. 26 and 29. As an example the various quantities computed are shown in Tables 1 and
2 for the case of the 3D 4-state Potts model simulated with the multibondic algorithm, 30, 31

a cluster algorithm variant of the multicanonical method. Here E denotes as usual the
energy and B is the number of active bonds.

7 Summary

Thanks to the great improvements in Monte Carlo simulation methodology over the last
decade, the results for at least certain model classes have reached such a high degree of pre-
cision that careful and reliable statistical error analyses become more and more important.
The interplay of autocorrelations and correlations between basic observables in non-linear
combined quantities requires rather involved analyses which are well understood in prin-
ciple but still a bit cumbersome to implement in practice. Still, after spending months or
even years of computer time for the generation of the raw data, it is certainly worth spend-
ing this comparatively little extra effort; since a Monte Carlo simulation is a stochastic
method, trustworthy error estimates are an important part of the final results.

Acknowledgments

I would like to thank Bernd Berg, Stefan Kappler, Tilman Sauer and Martin Weigel for
enjoyable collaborations and many useful discussions on various aspects of this lecture.

443

Veronica I. Marconi



References

1. D. Frenkel and B. Smit, Understanding Molecular Simulation – From Algorithms to
Applications (Academic Press, San Diego, 1996).

2. D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics
(Cambridge University Press, Cambridge, 2000).

3. There is by now a huge amount of Ising model material available on the
World Wide Web, including animations. For a list of useful links, see e.g.
http://oscar.cacr.caltech.edu/Hrothgar/Ising/references.html.

4. W. Janke, Monte Carlo Simulations of Spin Systems, in: Computational Physics: Se-
lected Methods – Simple Exercises – Serious Applications, eds. K.H. Hoffmann and
M. Schreiber (Springer, Berlin, 1996), p. 10.

5. R.B. Potts, Proc. Camb. Phil. Soc. 48, 106 (1952).
6. F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982); ibid. 55, 315(E) (1983).
7. W. Janke and R. Villanova, Nucl. Phys. B489, 679 (1997).
8. W. Janke, Nonlocal Monte Carlo Algorithms for Statistical Physics Applications,

Mathematics and Computers in Simulations 47, 329 (1998).
9. A.D. Sokal, Monte Carlo Methods in Statistical Mechanics: Foundations and New Al-

gorithms, lecture notes, Cours de Troisième Cycle de la Physique en Suisse Romande,
Lausanne, 1989.

10. A.D. Sokal, Bosonic Algorithms, in: Quantum Fields on the Computer, ed. M. Creutz
(World Scientific, Singapore, 1992), p. 211.

11. J.D. Gunton, M.S. Miguel, and P.S. Sahni, in: Phase Transitions and Critical Phe-
nomena, Vol. 8, eds. C. Domb and J.L. Lebowitz (Academic Press, New York, 1983),
p. 269.

12. K. Binder, Rep. Prog. Phys. 50, 783 (1987).
13. H.J. Herrmann, W. Janke, and F, Karsch (eds.), Dynamics of First Order Phase Tran-

sitions (World Scientific, Singapore, 1992).
14. W. Janke, Recent Developments in Monte Carlo Simulations of First-Order Phase

Transitions, in: Computer Simulations in Condensed Matter Physics VII, eds. D.P.
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