FISICA COMPUTACIONAL: PRÁCTICA 2 - 2020

Ecuaciones en Derivadas Parciales

Entregar problema 1, hasta el VIERNES 24/04/20

1. Ecuación de Calor

entregar

Resolveremos, mediante diferentes algoritmos, la ecuación de calor

$$\frac{\partial T}{\partial t} = \frac{K}{C\rho} \nabla^2 T(\mathbf{x}, t)$$

para el caso particular de una barra de aluminio de longitud L=1m y diámetro w, alineada a lo largo del eje x; que está aislada en sus lados, pero no en sus extremos. Inicialmente la barra se encuentra a 100 °C, y se colocan sus extremos a 0 °C. El calor fluye sólo por los extremos. La conductividad térmica, K, el calor específico, C, y la densidad, ρ , del aluminio son:

$$K = 237 \text{W/(mK)}; \quad C = 900 \text{J/(kg K)}; \quad \rho = 2700 \text{kg/m}^3.$$

Para ello:

(a) Adimencionalice la ecuación para llevarla a la forma

$$\frac{\partial T(\hat{x}, \hat{t})}{\partial \hat{t}} = \frac{\partial^2 T(\hat{x}, \hat{t})}{\partial^2 \hat{x}}.$$

- (b) Escriba un código que resuelva la ecuación utilizando el método (de diferencias finitas) explícito de Euler "hacia adelante" (forward Euler). Utilice 100 divisiones en el eje x, y prevea hacer miles de pasos en t (almacene sólo los valores de t que necesita, y no todos). Use $\Delta t = 0.3$ s (adimencionalizar y verificar que cumpla la condición de estabilidad). Escriba cada aproximadamente 300 pasos temporales, los valores de la temperatura en la barra, y haga un gráfico de superficie mostrando T(x,t) versus (x,t).
- (c) Controle que el programa de una distribución de temperatura que varía suavemente a lo largo de la barra, y que está de acuerdo con las condiciones de contorno.
- (d) Verifique que el programa de una distribución de temperatura que varía suavemente con el tiempo, y que para t grandes alcance el valor de equilibrio. Puede que tenga que variar Δx y/o Δt para conseguir una solución bien comportada.
- (e) Compare la solución analítica:

$$T(x,t) = \sum_{n=1,3,...}^{\infty} \frac{4T_0}{n\pi} \sin k_n x \ e^{-k_n^2 Kt/(C\rho)},$$

con la solución numérica. Para ello, grafique T(x,t), para $t_1=180$ s y $t_2=1800$ s. Compare también los tiempos de CPU necesarios , T(x,t) para obtener ambas soluciones (con la misma precisión). Utilice ahora 10 divisiones en el eje x (y elija Δt de acuerdo a la condición de estabilidad) y compare los resultados obtenidos para t_1 y t_2 .

- (f) Haga un gráfico de superficie mostrando T(x,t) versus (x,t), y un gráfico de contornos mostrando las isotermas.
- (g) Repita los incisos (b)-(f) para los algoritmos: implícito y Cranck-Nicolson.

Ayuda gnuplot: usen para visulizar mapeo, con barra de colores, etc: "set pm3d" y sus opciones. O use directamente por ej: "splot archivo w pm3d at s", donde at puede ser at surface (s), at bottom (b), at top (t). Usen help de "set palette", "set cbrange", "set colorbox".

2. Ecuación de Fisher

opcional

Dada la ecuación de Fisher, que en una dimensión tiene la forma

$$\frac{du(x,t)}{dt} = D\nabla^2 u(x,t) + au(x,t) - bu^2(x,t)$$

- (a) Integrar la ecuación, para valores arbitrarios (pero positivos) de a,b,D a partir de una condición inicial homogénea u(x,t)=a/b y analizar la forma de la solución para valores grandes de t. En lugar de considerar un dominio infinito, considerar uno suficientemente grande $(L>>\pi\sqrt{D/a})$, y condiciones de borde de Neumann.
- (b) Analizar la convergencia a la solución estacionaria midiendo la distancia euclídea entre soluciones sucesivas.
- (c) Analizar la evolución de una condición inicial homogénea como la anterior dentro de un dominio acotado de longitud L, imponiendo condiciones de borde de absorción total o Dirichlet $u(\pm L, t) = 0$. Comparar la solución para diferentes valores de L y hallar el tamaño de dominio crítico.

Nota: Esta es la versión continua de la ecuación logística a la que se le agrega un término de difusión. Esta ecuación se usa entre otras cosas para modelar el crecimiento de una colonia de células, por ejemplo bacterias. El coeficiente D es el coeficiente de difusión, y el término correspondiente da cuenta de la la dispersión no controlada de las bacterias, moviéndose desde zonas de mayor densidad a zonas menos pobladas. El coeficiente a es la tasa de crecimiento de la población, que es proporcional a la población existente porque las bacterias se reproducen por mitósis, el coeficiente b está relacionado con un término de competencia debida a la lucha or los recursos. En el espacio libre, sin condiciones de borde, las soluciones que se pueden encontrar son frentes viajeros. Esto es, frentes que conservan su perfil y se mueven a velocidad constante. Para probar que esto es cierto se propone una solución de la forma u(x,t) = U(z), con z = x - ct y se analiza el comportamiento de la ecuación transformada

$$U''(z) + cU'(z) + aU(z) - bU(z) = 0$$

y $c > 2(aD)^{1/2}$. En un dominio acotado, la solución estacionaria adopta la forma de una estructura que depende de las condiciones de borde impuestas y que puede escribirse en términos de funciones elípticas. Es posible verificar que si el dominio no es lo suficientemente grande, la única solución estable es la idénticamente nula.