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Framework for testing random numbers in parallel calculations
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We propose a framework for testing the quality of random numbers in parallel calculations. The key idea is
to study cross-correlations between distinct sequences of random numbers via correlations between various
diffusing random walkers, each of which is governed by a distinct random number sequence. The asymptotic
power-law behavior of the corresponding correlation functions yields exponents, which can be compared with
exact theoretical results. Correlations prior to the asymptotic regime can be further investigated by other
complementary methods. We demonstrate this approach by three efficient tests, which find correlations in
various commonly used pseudorandom number generators. Finally, we discuss some ideas for applying this
framework in other contexts.@S1063-651X~99!05106-5#

PACS number~s!: 02.70.Lq, 05.40.2a, 82.20.Wt
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I. INTRODUCTION

Random numbers are used in various simulation te
niques such as the Monte Carlo method, simulated ann
ing, and Langevin dynamics@1#. The purpose of random
numbers is to introduce the stochastic dynamics in th
methods, thus they all depend crucially on the quality
random numbers, which for practical reasons are usually
duced by deterministic pseudorandom number generato
gorithms @2#. Due to advances in developing better alg
rithms @2–4# and test methods@2–7#, the problem raised by
the deterministic nature of pseudorandom numbers is no
serious as one might suspect. However, no matter how w
the correlations in random number sequences are, they
still inevitable and can lead to erroneous results in so
applications. This is particularly true in high-precisio
Monte Carlo work, where the high accuracy required a
special simulation algorithms used have led to a situa
where some well-known and commonly used pseudorand
number generators have failed in recent simulations of ph
cal model systems@7–13#. These observations have give
rise to a newapplication specifictesting approach, where th
models themselves act as a testing ground for pseudoran
numbers@7#. This approach has turned out to be very use
in revealing situations where the subtle, underlying corre
tions in pseudorandom number sequences interfere cons
tively with the simulation algorithm. A related problem co
cerns the use of pseudorandom numbers in para
calculations, which is the usual approach when large-s
computations are carried out. In this respect, it is surpris
to note that virtually all tests in present use have been
signed to focus on correlationswithin a singlepseudorandom
number sequence$r i%, while in parallel calculations it is the
cross-correlationsbetweendistinct pseudorandom numbe
sequences$r i%

(1), . . . ,$r i%
(m) that are at least equally impor

tant. This emphasizes the importance of developing no
test methods that mimic the use of random numbers inpar-
allel calculations, and the need to test the quality of pseud
random number sequences in this context.

In this work, our purpose is to introduce a framework f
testing the quality of random numbers in parallel applic
PRE 591063-651X/99/59~6!/7200~5!/$15.00
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tions. The key idea is to study cross-correlations betw
non-overlapping sequences of random numbers in term
random walks, which are relevant to a wide variety of dis
plines, including physics, chemistry, biology, and econom
@14#. For practical purposes, we demonstrate this appro
by three tests. To optimize their efficiency in finding corr
lations, the tests are designed to be as simple as poss
Nevertheless they have a close connection with various c
monly studied problems, namely, they focus on t
asymptotic behavior of random walks governed by the c
responding universal exponents, which therefore allow
comparison with exact theoretical results. Correlations p
to the asymptotic regime are further investigated by ot
methods. The first two tests measure cross-correlations
tween two distinct random number sequences, conside
their height correlations and intersection probabilities. T
third test, which is based on calculating the number of s
visited by the random walkers, can be used to study cro
correlations between any number of distinct random num
sequences. Although the emphasis here is on presenting
general framework, we also test a number of commonly u
pseudorandom number generators and find the tests t
very efficient in probing short- and intermediate-range c
relations. Ideas for applying this framework in other conte
are further discussed.

II. FRAMEWORK FOR TESTING RANDOM NUMBERS

Let us first briefly discuss the use of random numbers
parallel calculations and then justify our approach. In para
simulations, the task is decomposed into several~about!
equally sized subtasks, whose number equals the numb
central processing units~CPU’s! m. Within a given time pe-
riod, each subtaskk51, . . . ,m requires a distinct sequenc
of random numbers$r i%

(k), i 51, . . . ,Vk , to update the sys-
tem, after which the CPU’s exchange information. This p
cess is repeated a desired number of times. The correla
in pseudorandom numbers may now affect the dynamic
two ways. The first case regarding correlationswithin $r i%

(k)

is well established, since it is characteristic for doing s
chastic simulations in a ‘‘traditional’’ way in single work
7200 ©1999 The American Physical Society
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stations. The second possibility concernscross-correlations
between distinct @15# random number sequence
$r i%

(1), . . . ,$r i%
(m) used by processors one throughm. In

practical numerical work, this problem is faced, for examp
in Langevin molecular dynamics simulations of fluids or
Monte Carlo simulations of diffusion on a lattice withpar-
ticle decomposition, in which one divides particles over th
CPU’s. For simplicity, we now imagine each particle groupk
to be characterized by some pseudoparticle whose stoch
dynamics is governed by$r i%

(k). This pseudoparticle is im
mersed in a sea of other pseudoparticles, whose dynamic
governed by other sequences$r i%

( l ), lÞk. This gives rise to
the leading idea in the present work. We consider diffus
random walkers, each of which is governed by a disti
random number sequence, and study their mutual corr
tions. Although this approach does not account for all mic
scopic degrees of freedom subject to stochastic dynamic
real model systems, it still grasps the point of interest in
simple and efficient manner.

We now propose three tests that are based on the
above. They study both types of correlations, that is, co
lations within a single random number sequence$r i%

(k) and
correlations betweendistinct @15# random number sequence
$r i%

(1), . . . ,$r i%
(m). Here we consider the case where t

sizesVk of sequences$r i%
(k) are equal for allk. Random

numbersr i are uniformly distributed between zero and on
In the height correlation test, we consider the positionxi

of a one-dimensional~1D! random walker vs the number o
jumps made,i. The positionxt5( i 51

t dxi is a sum of dis-
placementsdxi , which are random variables

dxi5H 11, if r i<1/3

0, if 1/3,r i<2/3

21, otherwise.

~1!

In this fashion, we construct the pathsxi
(1) andxi

(2) from the
sequences$r i%

(1) and $r i%
(2), respectively. The height be

tween the two random walkers is then defined asht5xt
(1)

2xt
(2) , whose correlation functionHt[^uht2h0u&;tf is

known to decay asymptotically as a power law with an e
ponentf51/2 @16#. Deviations fromf51/2 are expected, if
Ht does not correspond to a random process.

The intersection testdeals with two random walks on
square lattice. Starting from the origin, the random walk
carry out jumps to the four possible directions with an eq
probability. In this way, one obtains paths (xi

(1) ,yi
(1)) and

(xi
(2) ,yi

(2)) of the two random walkers for all i
51,2, . . . ,V. We now consider the probabilityI t that the
two random walks aftert jumps haveno intersection other
than their common starting point. We stress that the t
random walks need not meet at the same site at the s
time, but any common point in their paths is regarded as
intersection. For a random process,I t behaves asymptotically
like a power lawI t;t2a with an exponenta55/8 @17–19#.

The previous tests focused on correlations between
paths of two random walks. TheSN test described next is
more general in the sense that it can be applied to study
number of random walks. Inone dimension, N random walk-
ers move simultaneously without any interaction such tha
any jump attempt, they can make a jump to the left or to
,
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right with equal probability. Aftert@1 jumps by all random
walkers, the mean number of sites visited,SN,t , has an
asymptotic formSN,t; f (N)tg, where the scaling function
f (N)5(ln N)1/2 and g51/2 @20#. The value ofg observed
serves as a measure of correlations.

In this work, the height correlation functionHt was inves-
tigated up toV52000 withM5107 independent runs, while
in the intersection test the relevant parameters wereM
5108 andV54000. To allow a comparison of the efficienc
of the three tests, theSN test was also carried out with tw
random walkers (N52). In this case, the test utilizedM
5108 samples withV52000. To assure that these choic
for the length of a single random walkV were large enough
to find the true asymptotic behavior of the correlation fun
tions, we considered the ‘‘running exponent’’@21#

e t[
ln~Ct1dt /Ct!

ln@~ t1dt !/t#
~2!

of the corresponding correlation functionCt , which can be
any of the functionsHt , I t , or SN,t . The time windowdt
used in this work was typically 200. As is shown below, t
running exponent of the ‘‘best’’ pseudorandom number g
erators converges to the theoretically expected value w
beforeV.

III. RESULTS FOR SOME PSEUDORANDOM NUMBER
GENERATORS

The three tests were subjected to a number of commo
used pseudorandom number generators. The gener
tested in this work include generalized feedback sh
register~GFSR! algorithms@22# R250 and R89, which are of
the form r n5r n2250% r n2103 and r n5r n289% r n238, respec-
tively, where % is the bitwise exclusive OR operator. A
variation of the previous generators isZIFF9689 @4#, which is
a GFSR generator with four taps,r n5r n29689% r n2471
% r n2314% r n2157. Other generators include combinatio
generatorsRANMAR @23,24# andMZRAN @25#, and a generator
RANLUX @26#, which is based on ideas of deterministic cha
In RANLUX, one generatesb>24 random numbers, deliver
24 of them, and throws the remainingb224 numbers away.
The value ofb defines a ‘‘luxury level’’ ranging from zero
(b524) to four (b5389), for which we use notation
RANLUX0 and RANLUX4, respectively. Other versions pa
tially considered in this work areRANLUX1 (b548),
RANLUX2 (b597), andRANLUX3 (b5223). For further de-
tails of the generators, see the references above.

To determine the exponentsf, a, andg, we considered
their running counterparts via Eq.~2!. Demonstrative results
for the SN test and the height correlation test are shown
Figs. 1~a! and 1~b!, respectively. Aside from the initial re
gime which will be discussed separately below, all gene
tors express similar behavior in the sense that the runn
exponents converge to some limiting value at larget. This
regime was therefore used to determine the exponents@27#.

The results for the exponentsf, a, and g are given in
Table I. Results for the GFSR generatorsR89 and R250 are
not surprising, since they have recently failed in various r
dom walk tests@4,7,11,28#. Exponents given byZIFF9689,
which is basically a three-decimation ofr n5r n29689
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% r n2471 @4#, are in agreement with exact values. This
mainly due to the long lag in this generator, which su
presses the dominating correlations out of reach. Of the o
generators, the performance ofRANLUX0 is rather weak. This
finding is in agreement with recent studies, where one a
observed pronounced short-range correlations@26,29,30#.
The improved versionsRANLUX1–RANLUX4 together with the
combination generatorsMZRAN and RANMAR, on the other
hand, perform very well.

As far as the efficiency of the tests is concerned, the
sults indicate that theSN test is somewhat more efficient i
finding correlations than the other two tests. This sugge
that a close spatial coupling of the diffusing random walk
improves the efficiency of a test, and should be accounted
in further test development.

It is worth pointing out that the exponents extracted fro
the data characterize only the asymptotic behavior of
correlation functions. Correlations in pseudorandom num
sequences are playing a role also at shorter scales. Th
very evident from Fig. 1. Asymptoticallyg t and f t tend
towardsg andf given in Table I, while prior to this regime
for some generators, the running exponents do not leve
monotonously but have a very complex behavior. To i
prove the efficiency of the tests, we next study how the c
relations in correlation functionsCt

RNG are accumulated ove

FIG. 1. ~a! A demonstration of the temporal correlations in t
SN test. Shown here is the running exponentg t which converges to
the asymptotic valueg ~see Table I! at large t. The asymptotic,
theoretically expected valueg51/2 is illustrated with a dotted line
To clarify the presentation, results ofRANMAR, MZRAN, andZIFF9689

are not shown here.~b! Similar results for the running exponentf t

in the height correlation test. In both figures, we used a time w
dow dt5200. The variablet is given in units of jumps made in a
random walk.
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all scales. HereCt
RNG is any of the correlation functionsHt ,

I t , SN,t as determined by some random number gener
~RNG!. Since the exact form ofHt , I t , andSN,t for all t is
not known, we compare the generators with respect
RANLUX4, whose overall performance here and also in ot
tests@26,30# has been remarkably good. We have chosen
consider the cumulative effect of squared displacements

dRNG5(
t51

V
~Ct

RANLUX42Ct
RNG!2

Ct
RANLUX4

, ~3!

which mimics thex2 test @31# and yields a test statistic
jRNG5dRNG/s, wheres is a measure of true fluctuations a
determined fromRANLUX4 @32#. Consistent results are found
if we replaceRANLUX4 with either MZRAN or ZIFF9689 as a
reference generator. This basically implies that the statist
quality of these three generators in the present tests is eq
good.

As one can observe from Table I,j is a very strong mea-
sure of correlations in pseudorandom number sequences
sides being consistent with the asymptotic results,j reveals
that correlations in some generators are prominent also p
to the asymptotic regime. In this regard, results ofR89, R250,
andRANLUX0 are not surprising, although the extent of co
relations is striking. More advanced versions ofRANLUX,
namely,RANLUX2 and RANLUX3, perform essentially better
while RANLUX1 seems to be a borderline case whose res
in the SN test are manifested by slight correlations. Nev
theless, one should pay attention to the results ofRANMAR,
which has recently performed well in various test schem
@7,10,23,24,29,33# and which has also been suggested a
good candidate when one aims towards a ‘‘universal gen

TABLE I. Results for the exponents of the three tests. The
tation 0.4984~2! means 0.498460.0002. The exponents were ex
tracted from the asymptotic tail of the corresponding correlat
functions, and the exponents that deviate from the exact value
more than two error bars are shown in bold face. The genera
RANLUX1 – RANLUX3 have been studied only by theSN test, which
seems to be the most efficient one of the present tests; thus ‘‘N
stands for not available. In the case of cumulative correlations
scribed byj, the generator is considered to fail the test ifj.1.
Such cases are also clarified by presenting them in bold face.

Height correlation Intersection SN test
RNG test test

f j a j g j

RANLUX4 0.5001~1! 0.6257~5! 0.5000~1!

RANLUX3 NA NA NA NA 0.4999~1! 0.5
RANLUX2 NA NA NA NA 0.5000~1! 0.2
RANLUX1 NA NA NA NA 0.4999~1! 1.1
RANLUX0 0.4999~1! 0.7 0.6240„4… 0.2 0.4991„1… 894.7
RANMAR 0.5000~1! 2.1 0.6250~4! 0.9 0.5001~1! 11.0
MZRAN 0.5000~1! 0.2 0.6244~6! 0.8 0.5000~1! 0.1
ZIFF9689 0.5000~1! 0.3 0.6237~7! 0.4 0.5000~1! 0.1
R250 0.4989„2… 5.5 0.6265„5… 19.7 0.4984„1… 23.8
R89 0.4984„2… 277.9 0.6205„5… 279.0 0.4981„1… 3940.6

Exact 1/2 5/8 1/2

-
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tor’’ @24#. Despite the correct asymptotic behavior, resu
for j indicate that the pseudorandom number sequences
duced byRANMAR contain correlations which are very wea
but still observable when accumulated over a wide range
walk lengths. By studying Eq.~3! with varyingV, we found
that the correlation effects appear after about 120 jum
This is comparable to the longer lag of 97 in the lagg
Fibonacci part inRANMAR @23,24#, thus providing a simple
reason for this observation. Anyhow, we feel that one sho
not be surprised by any results presented here. Every p
dorandom number generator is a possible source of erro
stochastic simulations, and it is only a question of time wh
the underlying correlations turn out to be relevant for t
application under study. In other words, there are no univ
sal pseudorandom number generators.

IV. SUMMARY AND DISCUSSION

In this work, we have presented a framework for test
the quality of pseudorandom number generators in para
applications. The approach is based on studying mutual
relations between various random walks taking place sim
taneously and has a close connection with many commo
studied problems. For practical purposes, we have dem
strated this approach by three tests, which find correlation
various commonly used pseudorandom number genera
studied in this work. However, we stress that the three t
presented here serve mainly as a demonstration for fur
development. That could make use of polymer diffusio
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where each polymer segment in a single chain is gover
by a distinct pseudorandom number sequence, or of mu
correlations between self-avoiding random walks@34#, for
example. In a more general context, one can also study
model systems by starting two different runs from an iden
cal initial state but with distinct pseudorandom number
quences, and consider how rapidly the two systems lose
herence. Therefore the only requirement is to study
correlation between some species governed by distinct
quences of random numbers. We finally close this work
addressing the importance of theoretical work@35#. Namely,
although the present test methods are very useful in detec
correlations, they do not reveal how large the contribut
arisingdirectly from cross-correlations is. A theoretical bas
for analyzing the pseudorandom number sequences is th
fore crucial in understanding how cross-correlations co
into play in stochastic simulation studies.
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