Evaluation of Machine Translation Systems

Paula Estrella

Introduction

- MT implies generating text from a SL into a TL
 - Rule-based, example-based, statistical
- Once it’s done
 - How can we be sure the generated TL actually is a translation of the SL text?
 - How can we state what is a good MT system?
- MT evaluation attempts to answer these questions

Introduction (cont.)

- MT systems are evaluated according to a set of criteria
- Researchers and developers
 - focus on quality of MT output in a given domain
- Users / buyers
 - Output quality important but also speed, formats handled, adaptability, user-friendliness, etc.

Why is MT evaluation difficult?

- Evaluating MT is a hard task
 - There is no “gold standard”
 - There is (yet) no fully reliable method to evaluate MT
 - Wide range of parameters and users
 - Stakeholders have different priorities
- Today’s talk will provide a general overview of the field
 - Slightly biased towards context-based methods

Plan

- Methodologies
 - Evaluation campaigns
 - Task-based evaluation
 - Context-based
- Evaluation of MT output
 - Human-based metrics
 - Automatic metrics
- Context-based evaluation
 - Standards for software evaluation
 - Application of standards: FEMTI

Plan

- Methodologies
 - Evaluation campaigns
 - Task-based evaluation
 - Context-based
System evaluations

- Internal evaluations (e.g., during development)
 - Human-based or automatic metrics applied
- External evaluations (e.g., during deployment)
 - Include the user’s view of quality
 - Usually not comparable to other system’s results
 - Different methodologies/corpora/metrics used

Evaluation campaigns (1/2)

- Evaluate several systems on a common framework
 - Goals: validate methodologies, compare systems, support and direct future research, etc
- Started in the ‘90s by Defence Advance Research Projects Agency (DARPA)
 - DARPA proposed “standard methodology”
 - Fluency/adequacy/informativeness on 5-points scale
 - Today’s de facto standard + automatic metrics

Evaluation campaigns (2/2)

- Many HLT domains: MUC, TIDES, EARS, TREC, NIST MetricsMATR
 - Many organizers: NIST, WSMT by Edinburgh SMT group, EVALDA for French text/speech technologies
- + Corpora and evaluation results usually distributed after campaigns
- - Only MT output quality is considered

Task-based evaluation (1/3)

- Measure performance of humans using MT output to accomplish a specific task
 - “Good applications for crummy MT” - (Church & Hovy 1991)
 - Quality decomposed into e.g., translation of technical terms, correctness of punctuation
 - The relative importance of these parameters varies with the intended use of an MT system

Task-based evaluation (2/3)

- (White & Taylor 1998) Propose hierarchy of tasks ordered by difficulty
 - Publication > gisting > extraction > … filtering
 - Task Proficiency metric: systems rated as adequate to perform a task and those below it in the hierarchy
- Other task-based metrics: reading comprehension, cloze tests

Task-based evaluation (3/3)

- + Tries to measure utility of MT output
- - Hard to design and difficult to isolate human factors (e.g., ability to “guess” right answers)
Context-based evaluation (1/4)

- Define the intended **context of use** of the system (e.g., task, user, input data) and apply relevant metrics
- JEIDA Report (Nomura & Isahara 1992)
 - objective: to characterize the intended context of use and the performance of an MT system
 - 3 points of view: economic factors (users), technical (users/developers)
 - 14 dimensions proposed, 2 questionnaires represented as radar charts

Context-based evaluation (2/4)

<table>
<thead>
<tr>
<th>Metric</th>
<th>System A</th>
<th>System B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed of translation</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Supported platforms</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Ability to edit</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>Interoperability</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Hardware needed</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Statue simplicity</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Language pairs</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Dictionary update</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Hardware needed</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>User training</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Forms handled</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>System configuration</td>
<td>1.0</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Context-based evaluation (3/4)

- EAGLES EWG (1993–1996) attempted to create standards for NLP systems
 - Applied to spell/grammar checkers, speech recognition, dialogue systems
 - apply the EAGLES guidelines to MT
 - ensure compatibility with the ISO/IEC standards for software evaluation

Context-based evaluation (4/4)

- FEMTI implements hierarchies for context of use and quality characteristics
 - Explained in detail later
- + Considers broad range of other factors than MT output quality
 - More expensive to design/execute and probably less reusable

Summary

<table>
<thead>
<tr>
<th>Methodology</th>
<th>Goal</th>
<th>Relevant work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation campaigns</td>
<td>Compare several systems in terms of output quality</td>
<td>DARPA, NIST, EVALDA</td>
</tr>
<tr>
<td>Task-based</td>
<td>Utility of MT output to perform a task</td>
<td>Task proficiency, reading comprehension</td>
</tr>
<tr>
<td>Context-based</td>
<td>Consider wide range of features for intended context of use</td>
<td>JEIDA, TEMAA, FEMTI</td>
</tr>
</tbody>
</table>

Plan

- **Methodologies**
 - Evaluation campaigns
 - Task-based evaluation
 - Context-based
- **Evaluation of MT output**
 - Human-based metrics
Human-based metrics

- Rating-based: assign a score from a given scale
 - E.g. intelligibility on 100-point scale, fluency on 9-5-points, fidelity on 9-7-4-3-points
 - Aspect of quality evaluated requires bilingual or monolingual judges
 - Complex aspects can be assessed (e.g. register, style, etc)
 - Difficult to decide what counts as an error and how to penalize the translation
 - It is not clear how scale influences results

Example of scales

- ALPAC’s scale for intelligibility on 9 points
 - "1 = hopelessly unintelligible" to "9 = perfectly clear and intelligible"
 - Middle points include "5 = between 4 and 6"

- Van Slype’s scale on 4 points
 - 3 = Very intelligible: all the content of the message is comprehensible
 - 2: Fairly intelligible: the major part of the message passes
 - 1: Basely intelligible: a part only of the content is understandable, representing less than 50% of the message
 - 0: Unintelligible: nothing or almost nothing of the message is comprehensible

Meta-evaluation

- Human-based evaluation is difficult
 - Painful to read long or low quality MT output

- Reliability and Consistency: difficulty in obtaining high-levels of agreement
 - Intra-judge agreement: consistency of same human judge
 - Inter-judge agreement: judgment agreement across multiple judges of quality

- Even so, human-based metrics remain most reliable evaluators

Example

- WSMT focuses evaluation on human-based metrics
 - Relative ranking of sentences (2008)
 - how frequently is a system judged better than or equal to other systems
 - MT output post-editing (2009)
 - edit the translation without seeing the reference; after that indicate whether the edited output is equivalent to the reference
 - Showed higher inter/intra-judge agreement than relative ranking

- Sentences from CESTA evaluation campaign FR-EN

- Human evaluation with metrics
 - Fluency on 5-points
 - Looking at the translation, how grammatical and fluent is it?
 - Adequacy on 5-points
 - how much meaning of the original source text is present in the translation?
Example

<table>
<thead>
<tr>
<th>Src</th>
<th>the creation of an enormous quantity of refuse.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>la création d'une énorme quantité de déchets.</td>
</tr>
<tr>
<td>S2</td>
<td>la création d'une énorme quantité de la refuse.</td>
</tr>
<tr>
<td>S3</td>
<td>la création d'une énorme quantité d'ordures.</td>
</tr>
<tr>
<td>Ref1</td>
<td>la création d'une quantité énorme de déchets.</td>
</tr>
<tr>
<td>Ref2</td>
<td>la création d'une énorme quantité de déchets.</td>
</tr>
<tr>
<td>Ref3</td>
<td>la création d'une énorme quantité d'ordures.</td>
</tr>
</tbody>
</table>

Example inter-judge agreement

<table>
<thead>
<tr>
<th>Ame</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.62</td>
<td>0.27</td>
<td>0.87</td>
</tr>
<tr>
<td>Flu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ade</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation of EN-SP medslt system

- Formula: K = P(A) – P(E) / 1 - P(E)
- P(A): proportion of times annotators agree
- P(E): proportion of times they would agree by chance

Example inter-judge agreement

Plan

- Methodologies
 - Evaluation campaigns
 - Task-based evaluation
 - Context-based
- Evaluation of MT output
 - Human-based metrics
 - Automatic metrics

Automatic metrics

- Ideally automatic evaluation would avoid humans in the loop
- Generally need several reference translations to account for translation variation
- References ~ gold standards (?)
- Can be used on ongoing basis during development

Distance-based

- mWER: number of insertions/deletions/substitutions to convert a translation into a reference
- mPER: does not consider word order
- Translation Edit Rate (TER): allows moving blocks of words (count as 1 edit)
N-gram-based metrics

- **BLEU**: n-gram precision + brevity penalty (BP)
 - BP: very short candidates do not get too high a score
- **NIST**: variation of BLEU, BP has less impact on overall score, averages n-grams on arithmetic mean, weights rare n-grams heavily to account for informativeness
- **WNM**: variation of BLEU, weights n-grams according to their frequency in a test monolingual corpus, precision/recall on n-grams, 1 reference

Precision/recall-based

- **Precision**: correct words / total words in MT output
- **Recall**: correct words / total words in reference
- **General text matcher (GTM)**: maximum subset of non-repeated words, higher weight to longer matches and matches in the right order, the weight is a parameter to the metric.
- **METEOR**: unigram precision/recall, consider best score again each reference, allow stemming/synonymy

Meta-evaluation

- These metrics need to be validated
 - Must be applied to large nr of language pairs, domains, etc
 - Must be applied at sentence/document/system level
- Automatic metrics are evaluated against human-based metrics
 - Pearson correlation between scores
 - Spearman rank correlation of scores
 - Applied to human-generated texts

Meta-evaluation

- Several results show low correlations between human-based and automatic metrics
 - At different levels, on different corpora
 - Not clear what automatic metrics measure
- [Callison-Burch 2006] shows that some automatic metrics fail for RB systems
 - Biased towards SMT
- Automatic metrics fail as output quality improves

Example from CESTA FR-EN track

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>Ade</th>
<th>Flu</th>
<th>Ade</th>
<th>Flu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref1</td>
<td>0.60</td>
<td>0.87</td>
<td>0.70</td>
<td>0.37</td>
<td>0.70</td>
<td>0.95</td>
<td>0.70</td>
</tr>
<tr>
<td>Ref2</td>
<td>0.60</td>
<td>0.87</td>
<td>0.70</td>
<td>0.37</td>
<td>0.70</td>
<td>0.95</td>
<td>0.70</td>
</tr>
<tr>
<td>Ref3</td>
<td>0.60</td>
<td>0.87</td>
<td>0.70</td>
<td>0.37</td>
<td>0.70</td>
<td>0.95</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Example II

- Taken from [Gimenez 2008]
Other metrics (1/2)

- X-scores [Rajman & Hartley 2001]
 - distribution of POS tags is compared with a reference corpus fluency-annotated
- [Liu and Gildea 2005] proposed
 - Syntactic Tree Matching (STM) metric compares parse trees of hypothesis and references
- [Gimenez 2008] focuses on metric combination operating at different linguistic levels (e.g., lexical, syntactic and semantic)
 - IQMT framework available online
- Many other metrics exist
 - 32 new metrics presented at MetricsMATR 2008

Other metrics (2/2)

- X-scores which do not correlate well
- They also outperformed some metrics based on lexical similarity (e.g., BLEU, etc)
 - Parsers introduce additional noise
 - Might need special development before application
 - Necessary resources not always available for all language pairs
 - Exact algorithms for metrics not always available

Automatic vs. Human-based metrics

- Time-consuming vs. quick evaluation
 - Not if automatic metrics must be adapted to new language pairs
- Costly vs. cheap to apply
 - Cheap if set of reference/human scores available
- Subjective vs. objective
 - Automatic metrics seem too objective
- How do we choose the metrics or design an evaluation?

Plan

- General overview
 - Brief history
 - Different methodologies
- Evaluation of MT output
 - Human-based metrics
 - Automatic metrics
- Context-based evaluation
 - Standards for software evaluation
 - Application of standards: FEMTI
- Conclusion

EAGLES 7-step recipe

1. Why is the evaluation being done?
2. Elaborate a task model
3. Define top level quality characteristics
4. Produce detailed requirements for the system under evaluation, on the basis of 2 and 3
5. Devise the metrics to be applied to the system for the requirements produced under 4.
6. Design the execution of the evaluation
7. Execute the evaluation

- Steps 1-5 implemented in FEMTI

What is FEMTI?

- FEMTI is
 - Set of context-based evaluation guidelines
 - Repository of evaluation metrics, references
 - Web-based tool to generate evaluation plans

- Implements hierarchies for
 - Context of use
 - Environment where the system is to be used
 - ISO-based quality characteristics
 - Attributes that constitute software quality

- Note: it doesn’t cover execution of the evaluation or quality in use
Plan
- General overview
 - Brief history
 - Different methodologies
- Evaluation of MT output
 - Human-based metrics
 - Automatic metrics
- Context-based evaluation
 - Standards for software evaluation
 - Application of standards: FEMTI
- Conclusion

Standards for software evaluation
- ISO 14958 – product evaluation process
 - quality in the software life cycle
 - process for developers, acquirers and evaluators
- ISO 9126 – product quality
 - model for software product quality
 - defines six main quality characteristics
 - functionality, reliability, usability, efficiency, maintainability, portability
 - further subdivided into subcharacteristics
 - terminal nodes of this hierarchy (quality model) can be measured using internal or external metrics

Application of standards
- ISO generic quality characteristics
 - functionality
 - reliability
 - usability
 - efficiency
 - maintainability
 - portability
- Quality characteristics particular to MT
 - Functionality
 - Suitability
 - Accuracy
 - Fidelity
 - BLEU, NIST...
 - Consistency
 - Terminology

Components of FEMTI
- Part I: classification of the characteristics of the translation task / user / input / purpose of the evaluation
 - E.g.: document routing, email translation, information extraction
- Part II: classification of MT software quality characteristics
 - Examples: fidelity, readability, terminological correctness, speed
- Result of using FEMTI: evaluation plan
 - Characteristics of context of use + quality characteristics + related metrics
- Recent developments
 - Linking mechanism, support tools for evaluators and experts

Relating context of use to qualities
- Part I
 - Context
 - Context
 - Context
 - Quality
 - Quality
 - Quality
 - Quality
 - Quality
- Part II
 - Context
 - Context
 - Context
 - Context
 - Quality
 - Quality
 - Quality
 - Quality
 - Quality
 - Quality
- Links from Part I to Part II
 - GCQM
 - Linking mechanism to suggest qualities according to context
Example: evaluation of an MT system for instant messaging

- **Task**
 - Communication
 - Synchronous
- **User**
 - Non specialist
 - No knowledge of TL
- **Type of input**
 - Document type
 - colloquial messages
 - not domain-specific

Functionality
- Readability
- Fidelity
- Grammar
- Punctuation
- Efficiency
- Speed
- Reliability
 - (low) crashing frequency

How does the linking mechanism work?

- **Generic Contextual Quality Model (GCQM)**
 - Data structure to store links (matrix)
 - Vector representation of classifications

- **Context vectors**
 - Represent user description of context

- **Quality vectors: context vector x GCQM**
 - Represent a customized quality model

Computing quality vectors

1. Evaluation requirements
 - 1.1 Characteristics of the translation task
 - 1.1.1 Assimilation
 - 1.1.1.1 Document routing or sorting
 - 1.1.1.2 Information extraction
 - 1.1.3 Input

2. System characteristics
 - 2.1 Functionality
 - 2.1.1 Terminology
 - 2.1.2 Fidelity
 - 2.1.3 Consistency

<table>
<thead>
<tr>
<th>Context vector</th>
<th>Quality vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 03 05 06 04</td>
<td>[0.3 0.6 0.5 0.3 0.5]</td>
</tr>
<tr>
<td>11 11 11 11 11</td>
<td>[0.6 0.6 0.6 0.6 0.6]</td>
</tr>
</tbody>
</table>

Summary

- FEMTI is a rich source of information
 - Improved with linking mechanism
 - Some activities carried out to enrich GCQM
 - Guidelines converted into support tools

- But ...
 - Complex framework, specially for “beginners”
 - More guidance via chatbots (Prof. Volk’s idea)
 - Content needs re-work
 - Add/delete metrics/characteristics, develop/enrich characteristics
 - Use cases or templates would increase FEMTI’s usability

- Context-based evaluation is “real-world” oriented (?)
 - Researchers do not use FEMTI - “real users” use other methods
 - Future work: Improve FEMTI to encourage its use

Exercise

- Build a quality model for an MT system in the following context (no need to use FEMTI)
 - Task: You have to send me an email in Spanish with some feedback about this course
 - You have basic knowledge of Spanish
 - You do not want to spend a lot of money

 Solution: Babelfish English-Spanish

Exercise (cont.)

- **Cost of the system** has highest importance in my model → online translation (e.g. babelfish)
 - It doesn’t provide German-Spanish → language pairs handled is also an important feature (< cost)
 - Solution: Babelfish English-Spanish
Exercise (cont.)

Cost of the system has highest importance in my model ➔ online translation (e.g. babelfish) ➔
It doesn’t provide German-Spanish ➔
language pairs handled is also an important feature (< cost) ➔
 Solution: Babelfish English-Spanish ➔
Output quality is also important ➔ we tune the model

Exercise (cont.)

Resources

- Alpac report
 http://www.nap.edu/openbook.php?isbn=ARC000005
- Van Slype report [1979]
- Summaries of metrics in [Van Slype 1979] & chapter 3
 [Estrella 2008]
- EAGLES 7-step recipe
 7steps.html
- Mt-archive www.mt-archive.info/