

From Hopf algebras to tensor categories

Nicolás Andruskiewitsch

Pan-American Advanced Studies Institute (PASI)

Commutative Algebra and Its Interactions with Algebraic Geometry, Representation Theory, and Physics

Guanajuato, May 22, 2012.

I. Introduction. \Bbbk algebraically closed field.

A algebra: product $\mu : A \otimes A \to A$, unit $u : \Bbbk \to A$

1

C coalgebra: coproduct $\Delta : C \to C \otimes C$, counit $\varepsilon : C \to \Bbbk$

Co-associative:

Hopf algebra: $(H, \mu, u, \Delta, \varepsilon)$

- (H, μ, u) algebra
- (H, Δ, ε) coalgebra
- Δ, ε algebra maps
- There exists $\mathcal{S}: H \to H$ (the antipode) such that

Example:

- Γ finite group
- $H = \mathcal{O}(\Gamma) =$ algebra of functions $\Gamma \to \Bbbk$
- $\Delta : H \to H \otimes H \simeq \mathcal{O}(\Gamma \times \Gamma), \ \Delta(f)(x,y) = f(x,y).$

•
$$\varepsilon : H \to \Bbbk$$
, $\varepsilon(f) = f(e)$.

•
$$\mathcal{S}: H \to H$$
, $\mathcal{S}(f)(x) = f(x^{-1})$.

Remark: $(H, \mu, u, \Delta, \varepsilon)$ finite-dimensional Hopf algebra $\implies (H^*, \Delta^t, \varepsilon^t, \mu^t, u^t)$ Hopf algebra

Example: $H = \mathcal{O}(\Gamma)$; for $x \in \Gamma$, $E_x \in H^*$, $E_x(f) = f(x)$. Then

$$E_x E_y = E_{xy}, \qquad \mathcal{S}(E_x) = E_{x^{-1}}.$$

Hence $H^* = \Bbbk \Gamma$, group algebra of Γ .

Remark: $(H, \mu, u, \Delta, \varepsilon)$ Hopf algebra with dim $H = \infty$, H^* NOT a Hopf algebra,

but contains a largest Hopf algebra with operations transpose to those of H.

Example:

• Γ affine algebraic group

• $H = \mathcal{O}(\Gamma) =$ algebra of regular (polynomial) functions $\Gamma \to \Bbbk$ is a Hopf algebra with analogous operations.

• $H^* \supset \Bbbk \Gamma$

• $H^* \supset \mathcal{U} :=$ algebra of distributions with support at e; this is a Hopf algebra

- If char $\Bbbk = 0$, then $\mathcal{U} \simeq U(\mathfrak{g})$, $\mathfrak{g} = \mathsf{Lie}$ algebra of Γ
- If \mathfrak{g} is any Lie algebra, then the enveloping algebra $U(\mathfrak{g})$ is a Hopf algebra with $\Delta(x) = x \otimes 1 + 1 \otimes x$, $x \in \mathfrak{g}$.

Short history: See also [AF].

• Since the dictionary *Lie groups* $\leftrightarrow i$ *Lie algebras* fails when char > 0, Dieudonné studied in the early 50's the hyperalgebra \mathcal{U} . Pierre Cartier introduced the abstract notion of hyperalgebra (cocommutative Hopf algebra) in 1955.

• A. Borel considered algebras with a coproduct (1952) extending previous work of Hopf. He coined the expression *Hopf algebra*.

• Very influential paper by Milnor and Moore.

• George I. Kac introduced an analogous notion in the context of von Neumann algebras.

• The first appearance of the definition (that I am aware of) as it is known today is in a paper by Kostant (1965).

First invariants of a Hopf algebra *H*: $G(H) = \{x \in H - 0 : \Delta(x) = x \otimes x\}$, group of grouplikes.

Prim $(H) = \{x \in H : \Delta(x) = x \otimes 1 + 1 \otimes x\}$, Lie algebra of primitive elements.

 $\tau: V \otimes W \to W \otimes W$, $\tau(v \otimes w) = w \otimes v$ the *flip*. *H* is commutative if $\mu \tau = \mu$. *H* is cocommutative if $\tau \Delta = \Delta$.

Group algebras, enveloping algebras, hyperalgebras are cocommutative.

Theorem. (Cartier-Kostant, early 60's). char $\Bbbk = 0$. Any cocommutative Hopf algebra is of the form $U(\mathfrak{g}) \# \Bbbk \Gamma$.

$H = \Bbbk[X], \ \Delta(X) = X \otimes 1 + 1 \otimes X.$ Then

$$\Delta(X^n) = \sum_{0 \le j \le n} {n \choose j} X^j \otimes X^{n-j}.$$

If char $\Bbbk = p > 0$, then $\Delta(X^p) = X^p \otimes 1 + 1 \otimes X^p$.

Thus $\Bbbk[X]/\langle X^p \rangle$, $\Delta(X) = X \otimes 1 + 1 \otimes X$ is a Hopf algebra, commutative and cocommutative, dim p.

(Kulish, Reshetikhin and Sklyanin, 1981). Quantum SL(2): if $q \in k, q \neq 0, \pm 1$, set

$$U_{q}(\mathfrak{sl}(2)) = \mathbb{k}\langle E, F, K, K^{-1} | KK^{-1} = 1 = K^{-1}K$$
$$KE = q^{2}EK,$$
$$KF = q^{-2}FK,$$
$$EF - FE = \frac{K - K^{-1}}{q - q^{-1}}\rangle$$

$$\Delta(K) = K \otimes K,$$

$$\Delta(E) = E \otimes 1 + K \otimes E,$$

$$\Delta(F) = F \otimes K^{-1} + 1 \otimes F.$$

These Hopf algebras, neither commutative nor cocommutative, are analogues of the enveloping algebra of $\mathfrak{sl}(2)$.

(Lusztig, 1989). If q is a root of 1 of order N odd, then
$$\begin{split} \mathfrak{u}_q(\mathfrak{sl}(2)) &= \mathbb{k} \langle E, F, K, K^{-1} | \text{same relations plus} \\ K^N &= 1, \quad E^N = F^N = 0 \rangle. \end{split}$$

These Hopf algebras, neither commutative nor cocommutative, are analogues of the Frobenius kernel of $\mathfrak{sl}(2)$.

There are dual Hopf algebras, analogues of the algebra of regular functions of SL(2).

$$\mathcal{O}_q(SL(2)) = \mathbb{k} \langle \begin{pmatrix} a & b \\ c & d \end{pmatrix} | ab = qba, \quad ac = qca, \quad bc = cb,$$

$$bd = qdb, \quad cd = qdc, \quad ad - da = (q - q^{-1})bc,$$

$$ad - qbc = 1 \rangle.$$

$$\Delta \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \otimes \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

(Manin). If q is a root of 1 of order N odd, then

$$\mathfrak{o}_q(\mathfrak{sl}(2)) = \mathbb{k} \langle \begin{pmatrix} a & b \\ c & d \end{pmatrix} | \text{same relations plus}$$

 $a^N = \mathbf{1} = d^N, \quad b^N = c^N = \mathbf{0} \rangle.$

In 1983, Drinfeld and Jimbo introduced quantized enveloping algebras $U_q(\mathfrak{g})$, for q as above and \mathfrak{g} any simple Lie algebra.

- Quantum function algebras $\mathcal{O}_q(G)$: Faddeev-Reshetikhin and Takhtajan (for SL(N)) and Lusztig (any simple G).
- Finite-dimensional versions when q is a root of 1.

Motivation: A braided vector space is a pair (V, c), where V is a vector space and $c: V \otimes V \rightarrow V \otimes V$ is a linear isomorphism that satisfies

$$(c \otimes id)(id \otimes c)(c \otimes id) = (id \otimes c)(c \otimes id)(id \otimes c).$$

This is called the braid equation (closely related to the quantum Yang-Baxer equation).

• Any Hopf algebra (with bijective antipode) gives a machine of solutions of the braid equation.

• The solutions associated to $U_q(\mathfrak{g})$ are very important in low dimensional topology and some areas of theoretical physics.

Braided Hopf algebra: $(R, c, \mu, u, \Delta, \varepsilon)$

- (R,c) braided vector space
- (R, μ, u) algebra, (R, Δ, ε) coalgebra

• Δ, ε algebra maps, with the multiplication μ_2 in $R \otimes R$ $R \otimes R \otimes R \otimes R \xrightarrow{\operatorname{id} \otimes c \otimes \operatorname{id}} R \otimes R \otimes R \otimes R$ $\mu_2 \xrightarrow{\mu \otimes \mu}$ $R \otimes R$

• There exists $\mathcal{S}: R \to R$, the antipode.

Braided Hopf algebras appear in nature:

Let $\pi : H \to K$ be a surjective morphism of Hopf algebras that admits a section $\iota : K \to H$, also a morphism of Hopf algebras. Then

$$R = \{x \in H : (\mathsf{id} \otimes \pi) \Delta(x) = x \otimes 1\}$$

is a braided Hopf algebra; it bears an action and a coaction of K. Also

$$H \simeq R \# K.$$

We say that H is the bosonization of R by K.

II. On the classification of finite-dimensional Hopf algebras $k = \overline{k}$, char k = 0.

Let C be a coalgebra, $D, E \subset C$. Then

 $D \wedge E = \{x \in C : \Delta(x) \in D \otimes C + C \otimes E\},\$

$$\wedge^{0}D = D, \ \wedge^{n+1}D = (\wedge^{n}D) \wedge D.$$

More invariants of a Hopf algebra H:

- The coradical $H_0 =$ sum of all simple subcoalgebras of H.
- The coradical filtration is $H_n = \wedge^{n+1} H_0$.

Assume that the coradical is a Hopf subalgebra (true for $u_q(\mathfrak{sl}(2))$, false for $\mathfrak{o}_q(\mathfrak{sl}(2))$).

Example: *H* is pointed if $H_0 = \Bbbk G(H)$.

• The associated graded Hopf algebra gr $H = \bigoplus_{n \in \mathbb{N}} H_n / H_{n-1}$.

It turns out that $\operatorname{gr} H \simeq R \# H_0$, where

• $R = \bigoplus_{n \in \mathbb{N}} R^n$ is a graded connected algebra and it is a braided Hopf algebra. $V := R^1 = infinitesimal \ braiding$.

• The subalgebra of R generated by R^1 is isomorphic to the Nichols algebra $\mathfrak{B}(V)$.

Example: $H = U_q(\mathfrak{b}) = \Bbbk \langle E, K, K^{-1} | KK^{-1} = 1 = K^{-1}K, KE = q^2 EK \rangle,$

$$\Delta(K) = K \otimes K, \ \Delta(E) = E \otimes 1 + K \otimes E.$$

•
$$H_0 = \mathbb{k} \langle K, K^{-1} \rangle \simeq \mathbb{k} \mathbb{Z}.$$

- H_n = subspace spanned by $K^j E^m$, $j \in \mathbb{Z}$, $m \leq n$.
- $H \simeq \operatorname{gr} H \simeq R \# \Bbbk \langle K, K^{-1} \rangle$, where
- $R = \Bbbk \langle E \rangle$, $c(E^i \otimes E^j) = q^{2ij}E^j \otimes E^i$; $\Delta(E) = E \otimes 1 + 1 \otimes E$.

Example: $H = U_q(\mathfrak{sl}(2))$

•
$$H_0 = \mathbb{k} \langle K, K^{-1} \rangle \simeq \mathbb{k} \mathbb{Z}.$$

• H_n = subspace spanned by $K^j E^i F^{n-i}$, $j \in \mathbb{Z}$, $i \in \mathbb{N}$.

• gr
$$H = \Bbbk \langle X, Y, K, K^{-1} | KK^{-1} = 1 = K^{-1}K,$$

 $KX = q^2 XK, KY = q^{-2}YK, XY - qYX = 0 \rangle.$
 $\Delta(X) = X \otimes 1 + K \otimes X, \Delta(Y) = Y \otimes 1 + K^{-1} \otimes Y.$

• $R = \Bbbk \langle X, Y \rangle$, $c(X \otimes Y) = q^2 Y \otimes X$, $c(Y \otimes X) = q^{-2} X \otimes Y$.

 $\Delta(X) = X \otimes 1 + 1 \otimes X, \ \Delta(Y) = Y \otimes 1 + 1 \otimes Y.$

Finite-dimensional pointed Hopf algebras, $\Gamma = G(H)$ abelian

• If the prime divisors of Γ are > 7, then the classification is known [AS]. The outcome is that all are variations of the Lusztig's small quantum groups.

• If the prime divisors of Γ are arbitrary, then the classification is in progress, thanks to recent results of Heckenberger and Angiono [A1, A2, H]. Besides the variations of the Lusztig's small quantum groups, there are also small quantum supergroups and a list of exceptions.

Finite-dimensional pointed Hopf algebras, $\Gamma = G(H)$ non abelian

Besides $\Bbbk \Gamma$:

- $\Gamma = \mathbb{S}_3$. [AHS], with previous work with A. Milinski, M. Graña, S. Zhang. There are two (both dim 72): $\mathcal{A}_0 = \mathfrak{B}(V_3) \# \mathbb{K} \mathbb{S}_3$ and \mathcal{A}_1 , a deformation of \mathcal{A}_0 .
- $\Gamma = \mathbb{S}_4$. [GG], with previous work by [AHS] and A. Milinski, M. Graña. There are (all of dim 24³):
- $\mathfrak{B}(V) \# \Bbbk \mathbb{S}_4$, for 3 different V related to transpositions and 4-cycles.
- Two one-parameter families of deformations and a single deformation.
- $\Gamma = D_n$, *n* divisible by 4. [FG]. There are
- $\Lambda(V) # \Bbbk \mathbb{S}_4$, for various V.
- Families of deformations.

For many Γ the following holds: If H is a finite-dimensional pointed Hopf algebra with $G(H) \simeq \Gamma$, then $H \simeq \Bbbk \Gamma$.

- [AFGV1] \mathbb{A}_n , $n \geq 5$.
- [FGV] $SL(2, 2^s)$, $SL(4, 2^3)$.
- [AFGV2]. Γ simple sporadic, except Fi_{22} , Baby Monster and the Monster.

Finite-dimensional copointed Hopf algebras, G(H) non abelian

• $\Gamma = \mathbb{S}_3$. [AV]. There are infinitely many (all dim 72): $\mathcal{A}_0 = \mathfrak{B}(V_3) \# \mathbb{k}^{\mathbb{S}_3}$ and an infinite family of deformations.

Main open problem:

 $n \geq 5$, $\mathcal{O}_2^n = \text{set of transpositions in } \mathbb{S}_n$, $V_n = v$. s. with basis $x_{(ij)}$, $(ij) \in \mathcal{O}_2^n$. $\mathfrak{B}_n := T(V_n)$ divided by the ideal generated by

$$x_{(ij)}^{2},$$

$$x_{(ij)}x_{(kl)} + x_{(kl)}x_{(ij)},$$

$$x_{(ij)}x_{(ik)} + x_{(jk)}x_{(ij)} + x_{(jk)}x_{(jk)},$$

$$x_{(ik)}x_{(ij)} + x_{(ij)}x_{(jk)} + x_{(jk)}x_{(jk)}$$

It is known that dim \mathcal{B}_n is

- 12 for n = 3, [MS].
- 24^2 for n = 4, [MS].
- 8,294,400 for n = 5, [computed by Jan-Erik Roos with Bergman].
- Unknown for $n \geq 6$, even dim $\mathcal{B}_n < \infty$?

III. Tensor categories.

Monoidal categories (categorical versions of groups).

A monoidal category is a category ${\mathcal C}$ provided with

- A bifuntor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$, called *tensor*;
- an object $1 \in C$, called *unit*;
- an *associativity* constraint, i. e. a natural isomorphism

 $a_{X,Y,Z}$: $(X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z);$

• left and right unit constraints, i. e. natural isomorphisms

$$l_X : \mathbf{1} \otimes X \simeq X, \qquad \qquad r_X : X \otimes \mathbf{1} \simeq X.$$

 $(\mathcal{C}, \otimes, a, 1, l, r)$ should satisfy the pentagon and triangle axioms, i. e. the commutativity of (1), (2), for any $X, Y, Z, W \in \text{Obj}\mathcal{C}$:

Let \mathcal{C} be a monoidal category.

A right dual of $V \in \text{Obj}\mathcal{C}$ is a collection (V^*, e_V, b_V) , where

- $V^* \in \operatorname{Obj} \mathcal{C}$,
- $e_V: V^* \otimes V \to \mathbf{1}$ is a morphism called *evaluation*,
- $b_V : \mathbf{1} \to V \otimes V^*$ is a morphism called *coevaluation*, such that

A *left dual* of $V \in \text{Obj}\mathcal{C}$ is a collection $({}^*V, e'_V, b'_V)$, where • ${}^*V \in \text{Obj}\mathcal{C}$,

• e'_V : * $V \otimes V \to \mathbf{1}$, b'_V : $\mathbf{1} \to V \otimes ^*V$ are morphisms such that

A monoidal category is *rigid* if every object admits a right and a left dual.

Examples:

• C discrete category (only arrows are the identities) monoidal $\leftrightarrow \Rightarrow$ monoid rigid monoidal $\leftrightarrow \Rightarrow$ group

• $\operatorname{Vec}_{\Bbbk} = \operatorname{category} \operatorname{of} \operatorname{vector} \operatorname{spaces} \operatorname{over} \Bbbk, \otimes = \otimes_{\Bbbk}$

 $V \in \operatorname{Vec}_{\Bbbk}$ has duals $(V^* = \operatorname{Hom}(V, \Bbbk) = {}^*V) \iff \dim V < \infty \rightsquigarrow$ $\operatorname{vec}_{\Bbbk} = \operatorname{category} \text{ of fin. dim. vector spaces is rigid}$

• R a k-algebra, $Bimod_R = category$ of R-bimodules, $\otimes = \otimes_R$

• *G* a group, Rep_G , $\otimes = \otimes_{\Bbbk}$; $\operatorname{rep}_G = \operatorname{fin.} \operatorname{dim.} \operatorname{reps.}$ is rigid $V, W \in \operatorname{Rep}_G$, $v \in V, w \in W, g \in G$: $g \cdot (v \otimes w) = g \cdot v \otimes g \cdot w$.

• \mathfrak{g} a Lie algebra, $\operatorname{Rep}_{\mathfrak{g}}$, $\otimes = \otimes_{\Bbbk}$; $\operatorname{rep}_{\mathfrak{g}} = \operatorname{fin.}$ dim. reps. is rigid $V, W \in \operatorname{Rep}_{\mathfrak{g}}$, $v \in V, w \in W, X \in \mathfrak{g}$: $X \cdot (v \otimes w) = X \cdot v \otimes w + v \otimes X \cdot w$.

• *H* a Hopf algebra with bijective antipode S, Rep_{*H*}, $\otimes = \otimes_{\Bbbk}$; rep_{*H*} = fin. dim. reps. is rigid

• $V, W \in \operatorname{Rep}_H$, $v \in V, w \in W, X \in H$: set $\Delta(X) = \sum_i X_i \otimes X^i$, then

 $X \cdot (v \otimes w) = X \cdot v \otimes w + v \otimes X \cdot w.$

• $1 := \Bbbk \in \operatorname{Rep}_H$: if $X \in H$, then $X \cdot 1 = \varepsilon(X)1$.

• $V \in \operatorname{rep}_H \rightsquigarrow V^* = \operatorname{Hom}(V, \Bbbk) = {}^*V$ as v. sp. but with **different** actions: $v \in V, X \in H, \alpha \in \mathbf{V}^* = \operatorname{Hom}(V, \Bbbk), \beta \in {}^*\mathbf{V} = \operatorname{Hom}(V, \Bbbk)$

$$\langle X \cdot \alpha, v \rangle = \langle \alpha, \mathcal{S}(X) \cdot v \rangle, \qquad \langle X \cdot \beta, v \rangle = \langle \beta, \mathcal{S}^{-1}(X) \cdot v \rangle.$$

Tensor categories

A tensor category is a monoidal category ${\mathcal C}$ such that

- C is abelian (good kernels and cokernels);
- C is k-linear (Hom(V, W)) is a k-v. sp., composition is bilinear);
- the tensor product $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is \Bbbk -bilinear;
- the unit $1 \in \mathcal{C}$ is simple and $\mathsf{Hom}_{\mathcal{C}}(1,1) \simeq \Bbbk$;

Example: H a Hopf algebra with bijective antipode S

 \rightsquigarrow Rep H is a tensor category

Another construction: (H, ω) a *spherical* Hopf algebra.

 \implies Rep *H* has a factor tensor category <u>*Rep*</u> *H* that is semisimple but not Rep *K* for any *K*.

Problem: compute finite tensor subcategories of Rep H.

Example: If q is a root of 1 and $H = u_q(g)$, then the category of tilting modules is a finite tensor subcategory of <u>Rep</u> H (Andersen-Padarowski).

<u>References:</u>

[AC] N. A., J. Cuadra, *On the structure of (co-Frobenius) Hopf algebras*. To appear in J. Noncommut. Geom.

[AFGV1] N. A., F. Fantino, M. Graña, L. Vendramin. *Finite-dimensional pointed Hopf algebras with alternating groups are trivial*. Ann. Mat. Pura Appl. 190, 225-245 (2011).

[AFGV2] N. A., F. Fantino, M. Graña, L. Vendramin. *Pointed Hopf algebras over the sporadic simple groups*. J. Algebra 325 (2011), pp. 305-320.

[AF] N. A., W. R. Ferrer Santos. *The beginnings of the theory of Hopf algebras*. Acta Appl Math 108 (2009), 317.

[AHS] N. A., I. Heckenberger, H.-J. Schneider. *The Nichols algebra of a semisimple Yetter-Drinfeld module*. Amer. J. Math., 132 (2010), 1493-1547.

[AS] N. A., H.-J. Schneider, *On the classification of finite-dimensional pointed Hopf algebras*, Ann. Math. 171 (2010), No. 1, 375-417.

[AV] N. A., C. Vay. Finite dimensional Hopf algebras over the dual group algebra of the symmetric group in three letters. Commun. Algebra 39 (2011), 4507–4517.

[A1] I. Angiono. A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems. arXiv 1008.4144v1. 29 pages. Submitted.

[A2] I. Angiono. On Nichols algebras of diagonal type. To appear in J. Reine Angew. Math.

[FG] F. Fantino, G. A. García. On pointed Hopf algebras over dihedral groups.Pacific J. Math, Vol. 252 (2011), 69–91.

[FK] S. Fomin, A. N. Kirillov, *Quadratic algebras, Dunkl elements, and Schubert calculus*, Progr. Math. 172, Birkhauser, (1999), 146–182.

[FP] S. Fomin, C. Procesi. *Fibered quadratic Hopf algebras related to Schubert calculus.* J. Algebra 230, 174-183 (2000).

[GG] G. A. García, A. García Iglesias. *Finite dimensional pointed Hopf algebras* over S_4 . Israel J. Math. 183 (2011), 417–444.

[FGV] S. Freyre, M. Graña, L. Vendramin. *On Nichols algebras over PGL(2,q)* and *PSL(2,q)*. J. Algebra Appl., Vol. 9, No. 2 (2010) 195-208.

[H] I. Heckenberger, *Classification of arithmetic root systems*, Adv. Math. 220 (2009), 59–124.

[MS] A. H.-J. Schneider. *Pointed indecomposable Hopf algebras over Coxeter groups*, Contemp. Math. 267, 215–236 (2000).