de Córdob

From Hopf algebras to tensor categories
Nicolás Andruskiewitsch
Pan-American Advanced Studies Institute (PASI)
Commutative Algebra and Its Interactions with Algebraic Geometry, Representation Theory, and Physics

Guanajuato, May 22, 2012.
I. Introduction. \mathbb{k} algebraically closed field.
A algebra: product $\mu: A \otimes A \rightarrow A$, unit $u: \mathbb{k} \rightarrow A$

Associative:

Unitary:

C coalgebra: coproduct $\Delta: C \rightarrow C \otimes C$, counit $\varepsilon: C \rightarrow \mathbb{k}$

Co-associative:

Hopf algebra: $(H, \mu, u, \Delta, \varepsilon)$

- (H, μ, u) algebra
- (H, Δ, ε) coalgebra
- Δ, ε algebra maps
- There exists $\mathcal{S}: H \rightarrow H$ (the antipode) such that

Example:

- Γ finite group
- $H=\mathcal{O}(\Gamma)=$ algebra of functions $\Gamma \rightarrow \mathbb{k}$
- $\Delta: H \rightarrow H \otimes H \simeq \mathcal{O}(\Gamma \times \Gamma), \Delta(f)(x, y)=f(x . y)$.
- $\varepsilon: H \rightarrow \mathbb{k}, \varepsilon(f)=f(e)$.
- $\mathcal{S}: H \rightarrow H, \mathcal{S}(f)(x)=f\left(x^{-1}\right)$.

Remark: ($H, \mu, u, \Delta, \varepsilon$) finite-dimensional Hopf algebra $\Longrightarrow\left(H^{*}, \Delta^{t}, \varepsilon^{t}, \mu^{t}, u^{t}\right)$ Hopf algebra

Example: $H=\mathcal{O}(\Gamma)$; for $x \in \Gamma, E_{x} \in H^{*}, E_{x}(f)=f(x)$. Then

$$
E_{x} E_{y}=E_{x y}, \quad \mathcal{S}\left(E_{x}\right)=E_{x^{-1}}
$$

Hence $H^{*}=\mathbb{k} \Gamma$, group algebra of Γ.
Remark: $(H, \mu, u, \Delta, \varepsilon)$ Hopf algebra with $\operatorname{dim} H=\infty$, H^{*} NOT a Hopf algebra,
but contains a largest Hopf algebra with operations transpose to those of H.

Example:

- Γ affine algebraic group
- $H=\mathcal{O}(\Gamma)=$ algebra of regular (polynomial) functions $\Gamma \rightarrow \mathbb{k}$ is a Hopf algebra with analogous operations.
- $H^{*} \supset \mathbb{k} \Gamma$
- $H^{*} \supset \mathcal{U}:=$ algebra of distributions with support at e; this is a Hopf algebra
- If char $\mathbb{k}=0$, then $\mathcal{U} \simeq U(\mathfrak{g}), \mathfrak{g}=$ Lie algebra of Γ
- If \mathfrak{g} is any Lie algebra, then the enveloping algebra $U(\mathfrak{g})$ is a Hopf algebra with $\Delta(x)=x \otimes 1+1 \otimes x, x \in \mathfrak{g}$.

Short history: See also [AF].

- Since the dictionary Lie groups un Lie algebras fails when char >0, Dieudonné studied in the early 50 's the hyperalgebra
\mathcal{U}. Pierre Cartier introduced the abstract notion of hyperalgebra (cocommutative Hopf algebra) in 1955.
- A. Borel considered algebras with a coproduct (1952) extending previous work of Hopf. He coined the expression Hopf algebra.
- Very influential paper by Milnor and Moore.
- George I. Kac introduced an analogous notion in the context of von Neumann algebras.
- The first appearance of the definition (that I am aware of) as it is known today is in a paper by Kostant (1965).

First invariants of a Hopf algebra H :
$G(H)=\{x \in H-0: \Delta(x)=x \otimes x\}$, group of grouplikes.
$\operatorname{Prim}(H)=\{x \in H: \Delta(x)=x \otimes 1+1 \otimes x\}$, Lie algebra of primitive elements.
$\tau: V \otimes W \rightarrow W \otimes W, \tau(v \otimes w)=w \otimes v$ the flip.
H is commutative if $\mu \tau=\mu . H$ is cocommutative if $\tau \Delta=\Delta$.

Group algebras, enveloping algebras, hyperalgebras are cocommutative.

Theorem. (Cartier-Kostant, early 60's). char $\mathbb{k}=0$.
Any cocommutative Hopf algebra is of the form $U(\mathfrak{g}) \# \mathbb{k} \Gamma$.

$$
H=\mathbb{k}[X], \Delta(X)=X \otimes 1+1 \otimes X \text {. Then }
$$

$$
\Delta\left(X^{n}\right)=\sum_{0 \leq j \leq n}\binom{n}{j} X^{j} \otimes X^{n-j}
$$

If char $\mathbb{k}=p>0$, then $\Delta\left(X^{p}\right)=X^{p} \otimes 1+1 \otimes X^{p}$.
Thus $\mathbb{k}[X] /\left\langle X^{p}\right\rangle, \Delta(X)=X \otimes 1+1 \otimes X$ is a Hopf algebra, commutative and cocommutative, $\operatorname{dim} p$.
(Kulish, Reshetikhin and Sklyanin, 1981). Quantum $S L(2)$: if $q \in \mathbb{k}, q \neq 0, \pm 1$, set

$$
\begin{aligned}
& U_{q}(\mathfrak{s l}(2))=\mathbb{k}\left\langle E, F, K, K^{-1}\right| K K^{-1}=1=K^{-1} K \\
& K E=q^{2} E K, \\
& K F=q^{-2} F K, \\
& E F-F E\left.=\frac{K-K^{-1}}{q-q^{-1}}\right\rangle \\
& \Delta(K)=K \otimes K, \\
& \Delta(E)=E \otimes 1+K \otimes E \\
& \Delta(F)=F \otimes K^{-1}+1 \otimes F
\end{aligned}
$$

These Hopf algebras, neither commutative nor cocommutative, are analogues of the enveloping algebra of $\mathfrak{s l}(2)$.
(Lusztig, 1989). If q is a root of 1 of order N odd, then

$$
\begin{aligned}
\mathfrak{u}_{q}(\mathfrak{s l}(2)) & =\mathbb{k}\left\langle E, F, K, K^{-1}\right| \text { same relations plus } \\
K^{N} & \left.=1, \quad E^{N}=F^{N}=0\right\rangle .
\end{aligned}
$$

These Hopf algebras, neither commutative nor cocommutative, are analogues of the Frobenius kernel of $\mathfrak{s l}(2)$.

There are dual Hopf algebras, analogues of the algebra of regular functions of $S L(2)$.

$$
\begin{aligned}
\mathcal{O}_{q}(S L(2)) & =\mathbb{k}\left\langle\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right| a b=q b a, \quad a c=q c a, \quad b c=c b, \\
b d & =q d b, \quad c d=q d c, \quad a d-d a=\left(q-q^{-1}\right) b c, \\
a d & -q b c=1\rangle . \\
\Delta\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \otimes\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
\end{aligned}
$$

(Manin). If q is a root of 1 of order N odd, then

$$
\begin{aligned}
\mathfrak{o}_{q}(\mathfrak{s l}(2)) & =\mathbb{k}\left\langle\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right| \text { same relations plus } \\
a^{N} & \left.=1=d^{N}, \quad b^{N}=c^{N}=0\right\rangle .
\end{aligned}
$$

In 1983, Drinfeld and Jimbo introduced quantized enveloping algebras $U_{q}(\mathfrak{g})$, for q as above and \mathfrak{g} any simple Lie algebra.

- Quantum function algebras $\mathcal{O}_{q}(G)$: Faddeev-Reshetikhin and Takhtajan (for $S L(N)$) and Lusztig (any simple G).
- Finite-dimensional versions when q is a root of 1 .

Motivation: A braided vector space is a pair (V, c), where V is a vector space and $c: V \otimes V \rightarrow V \otimes V$ is a linear isomorphism that satisfies

$$
(c \otimes \mathrm{id})(\mathrm{id} \otimes c)(c \otimes \mathrm{id})=(\mathrm{id} \otimes c)(c \otimes \mathrm{id})(\mathrm{id} \otimes c)
$$

This is called the braid equation (closely related to the quantum Yang-Baxer equation).

- Any Hopf algebra (with bijective antipode) gives a machine of solutions of the braid equation.
- The solutions associated to $U_{q}(\mathfrak{g})$ are very important in low dimensional topology and some areas of theoretical physics.

Braided Hopf algebra: $(R, c, \mu, u, \Delta, \varepsilon)$

- (R, c) braided vector space
- (R, μ, u) algebra, (R, Δ, ε) coalgebra
- Δ, ε algebra maps, with the multiplication μ_{2} in $R \otimes R$ $R \otimes R \otimes R \otimes R \xrightarrow{\text { id } \otimes c \otimes \mathrm{id}} R \otimes R \otimes R \otimes R$

- There exists $\mathcal{S}: R \rightarrow R$, the antipode.

Braided Hopf algebras appear in nature:

Let $\pi: H \rightarrow K$ be a surjective morphism of Hopf algebras that admits a section $\iota: K \rightarrow H$, also a morphism of Hopf algebras. Then

$$
R=\{x \in H:(\mathrm{id} \otimes \pi) \Delta(x)=x \otimes 1\}
$$

is a braided Hopf algebra; it bears an action and a coaction of K. Also

$$
H \simeq R \# K
$$

We say that H is the bosonization of R by K.
II. On the classification of finite-dimensional Hopf algebras $\mathbb{k}=\overline{\mathbb{k}}$, char $\mathbb{k}=0$.

Let C be a coalgebra, $D, E \subset C$. Then
$D \wedge E=\{x \in C: \Delta(x) \in D \otimes C+C \otimes E\}$,
$\wedge^{0} D=D, \wedge^{n+1} D=\left(\wedge^{n} D\right) \wedge D$.
More invariants of a Hopf algebra H :

- The coradical $H_{0}=$ sum of all simple subcoalgebras of H.
- The coradical filtration is $H_{n}=\wedge^{n+1} H_{0}$.

Assume that the coradical is a Hopf subalgebra (true for $\mathfrak{u}_{q}(\mathfrak{s l l}(2))$, false for $\left.\mathfrak{o}_{q}(\mathfrak{s l}(2))\right)$.

Example: H is pointed if $H_{0}=\mathbb{k} G(H)$.

- The associated graded Hopf algebra gr $H=\oplus_{n \in \mathbb{N}} H_{n} / H_{n-1}$.

It turns out that $\operatorname{gr} H \simeq R \# H_{0}$, where

- $R=\oplus_{n \in \mathbb{N}} R^{n}$ is a graded connected algebra and it is a braided Hopf algebra. $V:=R^{1}=$ infinitesimal braiding.
- The subalgebra of R generated by R^{1} is isomorphic to the Nichols algebra $\mathfrak{B}(V)$.

Example:

$H=U_{q}(\mathfrak{b})=\mathbb{k}\left\langle E, K, K^{-1} \mid K K^{-1}=1=K^{-1} K, K E=q^{2} E K\right\rangle$,
$\Delta(K)=K \otimes K, \Delta(E)=E \otimes 1+K \otimes E$.

- $H_{0}=\mathbb{k}\left\langle K, K^{-1}\right\rangle \simeq \mathbb{k} \mathbb{Z}$.
- $H_{n}=$ subspace spanned by $K^{j} E^{m}, j \in \mathbb{Z}, m \leq n$.
- $H \simeq \operatorname{gr} H \simeq R \# \mathbb{k}\left\langle K, K^{-1}\right\rangle$, where
- $R=\mathbb{k}\langle E\rangle, c\left(E^{i} \otimes E^{j}\right)=q^{2 i j} E^{j} \otimes E^{i} ; \Delta(E)=E \otimes 1+1 \otimes E$.

Example: $H=U_{q}(\mathfrak{s l}(2))$

- $H_{0}=\mathbb{k}\left\langle K, K^{-1}\right\rangle \simeq \mathbb{k} \mathbb{Z}$.
- $H_{n}=$ subspace spanned by $K^{j} E^{i} F^{n-i}, j \in \mathbb{Z}, i \in \mathbb{N}$.
- $\operatorname{gr} H=\mathbb{k}\left\langle X, Y, K, K^{-1}\right| K K^{-1}=1=K^{-1} K$, $\left.K X=q^{2} X K, K Y=q^{-2} Y K, X Y-q Y X=0\right\rangle$.

$$
\Delta(X)=X \otimes 1+K \otimes X, \Delta(Y)=Y \otimes 1+K^{-1} \otimes Y
$$

- $R=\mathbb{k}\langle X, Y\rangle, c(X \otimes Y)=q^{2} Y \otimes X, c(Y \otimes X)=q^{-2} X \otimes Y$.
$\Delta(X)=X \otimes 1+1 \otimes X, \Delta(Y)=Y \otimes 1+1 \otimes Y$.

Finite-dimensional pointed Hopf algebras, $\Gamma=G(H)$ abelian

- If the prime divisors of Γ are >7, then the classification is known [AS]. The outcome is that all are variations of the Lusztig's small quantum groups.
- If the prime divisors of Γ are arbitrary, then the classification is in progress, thanks to recent results of Heckenberger and Angiono [A1, A2, H]. Besides the variations of the Lusztig's small quantum groups, there are also small quantum supergroups and a list of exceptions.

Finite-dimensional pointed Hopf algebras, $\Gamma=G(H)$ non abelian

Besides $\mathbb{k} \Gamma$:

- $\Gamma=\mathbb{S}_{3}$. [AHS], with previous work with A. Milinski, M. Graña, S. Zhang. There are two (both $\operatorname{dim} 72$): $\mathcal{A}_{0}=\mathfrak{B}\left(V_{3}\right) \# \mathbb{k} \mathbb{S}_{3}$ and \mathcal{A}_{1}, a deformation of \mathcal{A}_{0}.
- $\Gamma=\mathbb{S}_{4}$. [GG], with previous work by [AHS] and A. Milinski, M. Graña. There are (all of $\operatorname{dim} 24^{3}$):
- $\mathfrak{B}(V) \# \mathbb{k} \mathbb{S}_{4}$, for 3 different V related to transpositions and 4-cycles.
- Two one-parameter families of deformations and a single deformation.
- $\Gamma=D_{n}, n$ divisible by 4. [FG]. There are
- $\wedge(V) \# \mathbb{k} \mathbb{S}_{4}$, for various V.
- Families of deformations.

For many Γ the following holds: If H is a finite-dimensional pointed Hopf algebra with $G(H) \simeq \Gamma$, then $H \simeq \mathbb{k} \Gamma$.

- [AFGV1] $\mathbb{A}_{n}, n \geq 5$.
- [FGV] $S L\left(2,2^{s}\right), S L\left(4,2^{3}\right)$.
- [AFGV2]. Γ simple sporadic, except $F i_{22}$, Baby Monster and the Monster.

Finite-dimensional copointed Hopf algebras, $G(H)$ non abelian

- $\Gamma=\mathbb{S}_{3}$. [AV]. There are iinfinitely many (all $\operatorname{dim} 72$): $\mathcal{A}_{0}=\mathfrak{B}\left(V_{3}\right) \# \mathbb{k}^{\mathbb{S}_{3}}$ and an infinite family of deformations.

Main open problem:

$n \geq 5, \mathcal{O}_{2}^{n}=$ set of transpositions in $\mathbb{S}_{n}, V_{n}=\mathrm{v}$. s. with basis $x_{(i j)},(i j) \in \mathcal{O}_{2}^{n} \cdot \mathfrak{B}_{n}:=T\left(V_{n}\right)$ divided by the ideal generated by

$$
\begin{aligned}
& x_{(i j)}^{2} \\
& x_{(i j)} x_{(k l)}+x_{(k l)} x_{(i j)}, \\
& x_{(i j)} x_{(i k)}+x_{(j k)} x_{(i j)}+x_{(j k)} x_{(j k)}, \\
& x_{(i k)} x_{(i j)}+x_{(i j)} x_{(j k)}+x_{(j k)} x_{(j k)}
\end{aligned}
$$

It is known that $\operatorname{dim} \mathcal{B}_{n}$ is

- 12 for $n=3$, [MS].
- 24^{2} for $n=4$, [MS].
- 8,294,400 for $n=5$, [computed by Jan-Erik Roos with Bergman].
- Unknown for $n \geq 6$, even $\operatorname{dim} \mathcal{B}_{n}<\infty$?

III. Tensor categories.

Monoidal categories (categorical versions of groups).

A monoidal category is a category \mathcal{C} provided with

- A bifuntor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$, called tensor;
- an object $1 \in \mathcal{C}$, called unit;
- an associativity constraint, i. e. a natural isomorphism

$$
a_{X, Y, Z}:(X \otimes Y) \otimes Z \rightarrow X \otimes(Y \otimes Z) ;
$$

- left and right unit constraints, i. e. natural isomorphisms

$$
l_{X}: \mathbf{1} \otimes X \simeq X, \quad r_{X}: X \otimes \mathbf{1} \simeq X .
$$

$(\mathcal{C}, \otimes, a, 1, l, r)$ should satisfy the pentagon and triangle axioms, i. e. the commutativity of (1), (2), for any $X, Y, Z, W \in \operatorname{Obj} \mathcal{C}$:

Let \mathcal{C} be a monoidal category.

A right dual of $V \in \operatorname{Obj} \mathcal{C}$ is a collection $\left(V^{*}, e_{V}, b_{V}\right)$, where

- $V^{*} \in \operatorname{Obj} \mathcal{C}$,
- $e_{V}: V^{*} \otimes V \rightarrow \mathbf{1}$ is a morphism called evaluation,
- $b_{V}: 1 \rightarrow V \otimes V^{*}$ is a morphism called coevaluation, such that

$$
\begin{aligned}
& V \stackrel{l_{V}^{-1}}{\stackrel{l^{-1}}{\longrightarrow}} \otimes V \xrightarrow{b_{V} \otimes \mathrm{id}_{V}}\left(V \otimes V^{*}\right) \otimes V \xrightarrow{a_{V, V^{*}, V}} V \otimes\left(V^{*} \otimes V\right) \xrightarrow{\mathrm{id}_{V}} \xrightarrow{\mathrm{id}_{V} \otimes e_{V}} V \otimes \mathbf{1} \stackrel{r_{V}}{\longrightarrow} V, \\
& V^{*} \stackrel{r_{V^{*}}^{-1}}{\longrightarrow} V^{*} \otimes \mathbf{1} \xrightarrow{\mathrm{id}_{V^{*}} \otimes b_{V}} V^{*} \otimes\left(V \otimes V^{*}\right) \xrightarrow{a_{V^{*}, V^{*}}}\left(V^{*} \otimes V\right) \otimes V^{*} \xrightarrow{e_{V} \otimes \mathrm{id}_{V^{*}}} \mathbf{1} \otimes V^{*} \xrightarrow{l_{V^{*}}} V^{*} .
\end{aligned}
$$

A left dual of $V \in \operatorname{Obj} \mathcal{C}$ is a collection $\left({ }^{*} V, e_{V}^{\prime}, b_{V}^{\prime}\right)$, where

- ${ }^{*} V \in \operatorname{Obj} \mathcal{C}$,
- $e_{V}^{\prime}:{ }^{*} V \otimes V \rightarrow \mathbf{1}, b_{V}^{\prime}: \mathbf{1} \rightarrow V \otimes^{*} V$ are morphisms such that

$$
\begin{aligned}
& \left.V \stackrel{r_{V}^{-1}}{r_{V}^{-1}} V \otimes 1 \xrightarrow{\mathrm{id}_{V} \otimes b_{V}^{\prime}} V \otimes\left({ }^{*} V \otimes V\right) \xrightarrow{\mathrm{id}_{V}}\left(V \otimes{ }^{\sigma_{V, V, V}^{-1}} V\right) \otimes V\right) \xrightarrow{e_{v}^{\prime} \otimes \mathrm{id}_{V}} \mathbf{1 \otimes V} \xrightarrow{l_{V}} V,
\end{aligned}
$$

A monoidal category is rigid if every object admits a right and a left dual.

Examples:

- \mathcal{C} discrete category (only arrows are the identities) monoidal $\leadsto \rightarrow$ monoid rigid monoidal $\rightsquigarrow \rightarrow$ group
- $\mathrm{Vec}_{\mathbb{k}}=$ category of vector spaces over $\mathbb{k}, \otimes=\otimes_{\mathbb{k}}$
$V \in \operatorname{Vec}_{\mathfrak{k}}$ has duals $\left(V^{*}=\operatorname{Hom}(V, \mathbb{k})={ }^{*} V\right) \Longleftrightarrow \operatorname{dim} V<\infty \rightsquigarrow$ $\mathrm{vec}_{\mathrm{k}}=$ category of fin. dim. vector spaces is rigid
- R a \mathbb{k}-algebra, $\operatorname{Bimod}_{R}=$ category of R-bimodules, $\otimes=\otimes_{R}$
- G a group, $\operatorname{Rep}_{G}, \otimes=\otimes_{\mathbb{k}} ; \operatorname{rep}_{G}=$ fin. dim. reps. is rigid $V, W \in \operatorname{Rep}_{G}, v \in V, w \in W, g \in G: g \cdot(v \otimes w)=g \cdot v \otimes g \cdot w$.
- \mathfrak{g} a Lie algebra, $\operatorname{Rep}_{\mathfrak{g}}, \otimes=\otimes_{\mathbb{k}} ; \operatorname{rep}_{\mathfrak{g}}=$ fin. dim. reps. is rigid $V, W \in \operatorname{Rep}_{\mathfrak{g}}, v \in V, w \in W, X \in \mathfrak{g}: X \cdot(v \otimes w)=X \cdot v \otimes w+v \otimes X \cdot w$.
- H a Hopf algebra with bijective antipode $\mathcal{S}, \operatorname{Rep}_{H}, \otimes=\otimes_{\mathbb{k}}$; $\operatorname{rep}_{H}=$ fin. dim. reps. is rigid
- $V, W \in \operatorname{Rep}_{H}, v \in V, w \in W, X \in H$: set $\Delta(X)=\sum_{i} X_{i} \otimes X^{i}$, then

$$
X \cdot(v \otimes w)=X \cdot v \otimes w+v \otimes X \cdot w
$$

- $1:=\mathbb{k} \in \operatorname{Rep}_{H}:$ if $X \in H$, then $X \cdot 1=\varepsilon(X) 1$.
- $V \in \operatorname{rep}_{H} \rightsquigarrow V^{*}=\operatorname{Hom}(V, \mathbb{k})={ }^{*} V$ as v. sp. but with different actions: $v \in V, X \in H, \alpha \in \mathbf{V}^{*}=\operatorname{Hom}(V, \mathbb{k}), \beta \in{ }^{*} \mathbf{V}=\operatorname{Hom}(V, \mathbb{k})$

$$
\langle X \cdot \alpha, v\rangle=\langle\alpha, \mathcal{S}(X) \cdot v\rangle, \quad\langle X \cdot \beta, v\rangle=\left\langle\beta, \mathcal{S}^{-1}(X) \cdot v\right\rangle
$$

Tensor categories

A tensor category is a monoidal category \mathcal{C} such that

- \mathcal{C} is abelian (good kernels and cokernels);
- \mathcal{C} is \mathbb{k}-linear $(\operatorname{Hom}(V, W)$ is a \mathbb{k}-v. sp., composition is bilinear);
- the tensor product $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ is \mathbb{k}-bilinear;
- the unit $1 \in \mathcal{C}$ is simple and $\operatorname{Hom}_{\mathcal{C}}(\mathbf{1}, \mathbf{1}) \simeq \mathbb{k}$;

Example: H a Hopf algebra with bijective antipode \mathcal{S}
$\rightsquigarrow \operatorname{Rep} H$ is a tensor category

Another construction: (H, ω) a spherical Hopf algebra.
\Longrightarrow Rep H has a factor tensor category $\underline{R e p} H$ that is semisimple but not Rep K for any K.

Problem: compute finite tensor subcategories of $\underline{R e p} H$.
Example: If q is a root of 1 and $H=\mathfrak{u}_{q}(g)$, then the category of tilting modules is a finite tensor subcategory of $\underline{R e p} H$ (AndersenPadarowski).

References:

[AC] N. A., J. Cuadra, On the structure of (co-Frobenius) Hopf algebras. To appear in J. Noncommut. Geom.
[AFGV1] N. A., F. Fantino, M. Graña, L. Vendramin. Finite-dimensional pointed Hopf algebras with alternating groups are trivial. Ann. Mat. Pura Appl. 190, 225-245 (2011).
[AFGV2] N. A., F. Fantino, M. Graña, L. Vendramin. Pointed Hopf algebras over the sporadic simple groups. J. Algebra 325 (2011), pp. 305-320.
[AF] N. A., W. R. Ferrer Santos. The beginnings of the theory of Hopf algebras. Acta Appl Math 108 (2009), 317.
[AHS] N. A., I. Heckenberger, H.-J. Schneider. The Nichols algebra of a semisimple Yetter-Drinfeld module. Amer. J. Math., 132 (2010), 1493-1547.
[AS] N. A., H.-J. Schneider, On the classification of finite-dimensional pointed Hopf algebras, Ann. Math. 171 (2010), No. 1, 375-417.
[AV] N. A., C. Vay. Finite dimensional Hopf algebras over the dual group algebra of the symmetric group in three letters. Commun. Algebra 39 (2011), 4507-4517.
[A1] I. Angiono. A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems. arXiv 1008.4144v1. 29 pages. Submitted.
[A2] I. Angiono. On Nichols algebras of diagonal type. To appear in J. Reine Angew. Math.
[FG] F. Fantino, G. A. García. On pointed Hopf algebras over dihedral groups. Pacific J. Math, Vol. 252 (2011), 69-91.
[FK] S. Fomin, A. N. Kirillov, Quadratic algebras, Dunkl elements, and Schubert calculus, Progr. Math. 172, Birkhauser, (1999), 146-182.
[FP] S. Fomin, C. Procesi. Fibered quadratic Hopf algebras related to Schubert calculus. J. Algebra 230, 174-183 (2000).
[GG] G. A. García, A. García Iglesias. Finite dimensional pointed Hopf algebras over S_{4}. Israel J. Math. 183 (2011), 417-444.
[FGV] S. Freyre, M. Graña, L. Vendramin. On Nichols algebras over PGL(2,q) and PSL(2,q). J. Algebra Appl., Vol. 9, No. 2 (2010) 195-208.
[H] I. Heckenberger, Classification of arithmetic root systems, Adv. Math. 220 (2009), 59-124.
[MS] A. H.-J. Schneider. Pointed indecomposable Hopf algebras over Coxeter groups, Contemp. Math. 267, 215-236 (2000).

