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I. Introduction. k algebraically closed field.

A algebra: product µ : A⊗A → A, unit u : k→ A

Associative: A⊗A⊗A
id⊗µ

//

µ⊗id

²²

A⊗A

µ

²²

A⊗A
µ

// A

Unitary: k⊗A
u⊗id//

∼
%%JJJJJJJJJJJJJJJJJJJJJ

A⊗A

µ

²²

A⊗ kid⊗uoo

∼
y yttttttttttttttttttttt

A
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C coalgebra: coproduct ∆ : C → C ⊗ C, counit ε : C → k

Co-associative: C ⊗ C ⊗ C C ⊗ C
id⊗∆oo

C ⊗ C

∆⊗id

OO

C∆oo

∆

OO

Co-unitary: k⊗ C

∼
%%JJJJJJJJJJJJJJJJJJJJJ

C ⊗ C
ε⊗idoo id⊗ε// C ⊗ k

∼
yyttttttttttttttttttttt

C

∆

OO
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Hopf algebra: (H, µ, u,∆, ε)

• (H, µ, u) algebra

• (H,∆, ε) coalgebra

• ∆, ε algebra maps

• There exists S : H → H (the antipode) such that

H ∆ //

ε

((QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ H ⊗H
S⊗id
id⊗S

// H ⊗H
µ

// H

k

u

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
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Example:

• Γ finite group

• H = O(Γ ) = algebra of functions Γ → k

• ∆ : H → H ⊗H ' O(Γ × Γ ), ∆(f)(x, y) = f(x.y).

• ε : H → k, ε(f) = f(e).

• S : H → H, S(f)(x) = f(x−1).
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Remark: (H, µ, u,∆, ε) finite-dimensional Hopf algebra

=⇒ (H∗,∆t, εt, µt, ut) Hopf algebra

Example: H = O(Γ ); for x ∈ Γ , Ex ∈ H∗, Ex(f) = f(x). Then

ExEy = Exy, S(Ex) = Ex−1.

Hence H∗ = kΓ , group algebra of Γ .

Remark: (H, µ, u,∆, ε) Hopf algebra with dimH = ∞,

H∗ NOT a Hopf algebra,

but contains a largest Hopf algebra with operations transpose to

those of H.
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Example:

• Γ affine algebraic group

• H = O(Γ ) = algebra of regular (polynomial) functions Γ → k
is a Hopf algebra with analogous operations.

• H∗ ⊃ kΓ
• H∗ ⊃ U := algebra of distributions with support at e; this is a

Hopf algebra

• If char k = 0, then U ' U(g), g = Lie algebra of Γ

• If g is any Lie algebra, then the enveloping algebra U(g) is a

Hopf algebra with ∆(x) = x⊗ 1 + 1⊗ x, x ∈ g.
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Short history: See also [AF].
• Since the dictionary Lie groups ! Lie algebras fails when
char > 0, Dieudonné studied in the early 50’s the hyperalgebra
U. Pierre Cartier introduced the abstract notion of hyperalgebra
(cocommutative Hopf algebra) in 1955.

• A. Borel considered algebras with a coproduct (1952) extending
previous work of Hopf. He coined the expression Hopf algebra.

• Very influential paper by Milnor and Moore.

• George I. Kac introduced an analogous notion in the context
of von Neumann algebras.

• The first appearance of the definition (that I am aware of) as
it is known today is in a paper by Kostant (1965).
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First invariants of a Hopf algebra H:

G(H) = {x ∈ H − 0 : ∆(x) = x⊗ x}, group of grouplikes.

Prim(H) = {x ∈ H : ∆(x) = x⊗1+1⊗x}, Lie algebra of primitive

elements.

τ : V ⊗W → W ⊗W , τ(v ⊗ w) = w ⊗ v the flip.

H is commutative if µτ = µ. H is cocommutative if τ∆ = ∆.

Group algebras, enveloping algebras, hyperalgebras are cocom-

mutative.

Theorem. (Cartier-Kostant, early 60’s). char k = 0.

Any cocommutative Hopf algebra is of the form U(g)#kΓ.
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H = k[X], ∆(X) = X ⊗ 1 + 1⊗X. Then

∆(Xn) =
∑

0≤j≤n

(n

j

)
Xj ⊗Xn−j.

If char k = p > 0, then ∆(Xp) = Xp ⊗ 1 + 1⊗Xp.

Thus k[X]/〈Xp〉, ∆(X) = X ⊗ 1+1⊗X is a Hopf algebra, com-

mutative and cocommutative, dim p.
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(Kulish, Reshetikhin and Sklyanin, 1981). Quantum SL(2): if

q ∈ k, q 6= 0,±1, set

Uq(sl(2)) = k〈E, F, K, K−1|KK−1 = 1 = K−1K

KE = q2EK,

KF = q−2FK,

EF − FE =
K −K−1

q − q−1
〉

∆(K) = K ⊗K,

∆(E) = E ⊗ 1 + K ⊗ E,

∆(F ) = F ⊗K−1 + 1⊗ F.

These Hopf algebras, neither commutative nor cocommutative,

are analogues of the enveloping algebra of sl(2).
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(Lusztig, 1989). If q is a root of 1 of order N odd, then

uq(sl(2)) = k〈E, F, K, K−1|same relations plus

KN = 1, EN = FN = 0〉.

These Hopf algebras, neither commutative nor cocommutative,

are analogues of the Frobenius kernel of sl(2).
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There are dual Hopf algebras, analogues of the algebra of regular

functions of SL(2).

Oq(SL(2)) = k〈
(

a b
c d

)
|ab = qba, ac = qca, bc = cb,

bd = qdb, cd = qdc, ad− da = (q − q−1)bc,

ad− qbc = 1〉.

∆

(
a b
c d

)
=

(
a b
c d

)
⊗

(
a b
c d

)
.

(Manin). If q is a root of 1 of order N odd, then

oq(sl(2)) = k〈
(

a b
c d

)
|same relations plus

aN = 1 = dN , bN = cN = 0〉.
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In 1983, Drinfeld and Jimbo introduced quantized enveloping

algebras Uq(g), for q as above and g any simple Lie algebra.

• Quantum function algebras Oq(G): Faddeev-Reshetikhin and

Takhtajan (for SL(N)) and Lusztig (any simple G).

• Finite-dimensional versions when q is a root of 1.
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Motivation: A braided vector space is a pair (V, c), where V is a
vector space and c : V ⊗ V → V ⊗ V is a linear isomorphism that
satisfies

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).

This is called the braid equation (closely related to the quantum
Yang-Baxer equation).

• Any Hopf algebra (with bijective antipode) gives a machine of
solutions of the braid equation.

• The solutions associated to Uq(g) are very important in low
dimensional topology and some areas of theoretical physics.
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Braided Hopf algebra: (R, c, µ, u,∆, ε)

• (R, c) braided vector space

• (R, µ, u) algebra, (R,∆, ε) coalgebra

• ∆, ε algebra maps, with the multiplication µ2 in R⊗R

R⊗R⊗R⊗R
id⊗c⊗id //

µ2
&&LLLLLLLLLLLLLLLLLLLLLL R⊗R⊗R⊗R

µ⊗µ
xxrrrrrrrrrrrrrrrrrrrrrr

R⊗R

• There exists S : R → R, the antipode.
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Braided Hopf algebras appear in nature:

Let π : H → K be a surjective morphism of Hopf algebras that

admits a section ι : K → H, also a morphism of Hopf algebras.

Then

R = {x ∈ H : (id⊗π)∆(x) = x⊗ 1}
is a braided Hopf algebra; it bears an action and a coaction of

K. Also

H ' R#K.

We say that H is the bosonization of R by K.
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II. On the classification of finite-dimensional Hopf algebras

k = k, char k = 0.

Let C be a coalgebra, D, E ⊂ C. Then

D ∧ E = {x ∈ C : ∆(x) ∈ D ⊗ C + C ⊗ E},

∧0D = D, ∧n+1D = (∧nD) ∧D.

More invariants of a Hopf algebra H:

• The coradical H0 = sum of all simple subcoalgebras of H.

• The coradical filtration is Hn = ∧n+1H0.
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Assume that the coradical is a Hopf subalgebra (true for uq(sl(2)),

false for oq(sl(2))).

Example: H is pointed if H0 = kG(H).

• The associated graded Hopf algebra gr H = ⊕n∈NHn/Hn−1.

It turns out that gr H ' R#H0, where

• R = ⊕n∈NRn is a graded connected algebra and it is a braided

Hopf algebra. V := R1 = infinitesimal braiding.

• The subalgebra of R generated by R1 is isomorphic to the

Nichols algebra B(V ).
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Example:

H = Uq(b) = k〈E, K, K−1|KK−1 = 1 = K−1K, KE = q2EK〉,

∆(K) = K ⊗K, ∆(E) = E ⊗ 1 + K ⊗ E.

• H0 = k〈K, K−1〉 ' kZ.

• Hn = subspace spanned by KjEm, j ∈ Z, m ≤ n.

• H ' gr H ' R#k〈K, K−1〉, where

• R = k〈E〉, c(Ei ⊗ Ej) = q2ijEj ⊗ Ei; ∆(E) = E ⊗ 1 + 1⊗ E.
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Example: H = Uq(sl(2))

• H0 = k〈K, K−1〉 ' kZ.

• Hn = subspace spanned by KjEiFn−i, j ∈ Z, i ∈ N.

• gr H = k〈X, Y, K, K−1|KK−1 = 1 = K−1K,

KX = q2XK, KY = q−2Y K, XY − qY X = 0〉.

∆(X) = X ⊗ 1 + K ⊗X, ∆(Y ) = Y ⊗ 1 + K−1 ⊗ Y.

• R = k〈X, Y 〉, c(X ⊗ Y ) = q2Y ⊗X, c(Y ⊗X) = q−2X ⊗ Y .

∆(X) = X ⊗ 1 + 1⊗X, ∆(Y ) = Y ⊗ 1 + 1⊗ Y .
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Finite-dimensional pointed Hopf algebras, Γ = G(H) abelian

• If the prime divisors of Γ are > 7, then the classification
is known [AS]. The outcome is that all are variations of the
Lusztig’s small quantum groups.

• If the prime divisors of Γ are arbitrary, then the classification
is in progress, thanks to recent results of Heckenberger and An-
giono [A1, A2, H]. Besides the variations of the Lusztig’s small
quantum groups, there are also small quantum supergroups and
a list of exceptions.
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Finite-dimensional pointed Hopf algebras, Γ = G(H) non abelian

Besides kΓ :

• Γ = S3. [AHS], with previous work with A. Milinski, M. Graña, S. Zhang.

There are two (both dim 72): A0 = B(V3)#kS3 and A1, a deformation of A0.

• Γ = S4. [GG], with previous work by [AHS] and A. Milinski, M. Graña.

There are (all of dim 243):

• B(V )#kS4, for 3 different V related to transpositions and 4-cycles.

• Two one-parameter families of deformations and a single deformation.

• Γ = Dn, n divisible by 4. [FG]. There are

• Λ(V )#kS4, for various V .

• Families of deformations.
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For many Γ the following holds: If H is a finite-dimensional

pointed Hopf algebra with G(H) ' Γ , then H ' kΓ .

• [AFGV1] An, n ≥ 5.

• [FGV] SL(2,2s),SL(4,23).

• [AFGV2]. Γ simple sporadic, except Fi22, Baby Monster and

the Monster.

Finite-dimensional copointed Hopf algebras, G(H) non abelian

• Γ = S3. [AV]. There are iinfinitely many (all dim 72): A0 = B(V3)#kS3 and

an infinite family of deformations.
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Main open problem:

n ≥ 5, On
2 = set of transpositions in Sn, Vn = v. s. with basis

x(ij), (ij) ∈ On
2. Bn := T (Vn) divided by the ideal generated by

x2
(ij),

x(ij)x(kl) + x(kl)x(ij),

x(ij)x(ik) + x(jk)x(ij) + x(jk)x(jk),

x(ik)x(ij) + x(ij)x(jk) + x(jk)x(jk)

It is known that dim Bn is

• 12 for n = 3, [MS].

• 242 for n = 4, [MS].

• 8,294,400 for n = 5, [computed by Jan-Erik Roos with Bergman].

• Unknown for n ≥ 6, even dim Bn < ∞?
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III. Tensor categories.

Monoidal categories (categorical versions of groups).

A monoidal category is a category C provided with

• A bifuntor ⊗ : C × C → C, called tensor ;

• an object 1 ∈ C, called unit;

• an associativity constraint, i. e. a natural isomorphism

aX,Y,Z : (X⊗Y )⊗Z → X⊗(Y⊗Z);

• left and right unit constraints, i. e. natural isomorphisms

lX : 1⊗X ' X, rX : X⊗1 ' X.
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(C,⊗, a, 1, l, r) should satisfy the pentagon and triangle axioms, i.

e. the commutativity of (1), (2), for any X, Y, Z, W ∈ Obj C:

((X⊗Y )⊗Z)⊗W
aX⊗Y,Z,W //

aX,Y,Z⊗ idW

²²

(X⊗Y )⊗(Z⊗W )
aX,Y,Z⊗W // X⊗(Y⊗(Z⊗W ))

(X⊗(Y⊗Z))⊗W
aX,Y⊗Z,W // X⊗((Y⊗Z)⊗W )

idX ⊗aY,Z,W

OO
(1)

(X⊗1)⊗Y
rX⊗ idY //

aX,1,Y

$$IIIIIIIIIIIIIIIIIIII
X⊗Y

X⊗(1⊗Y )

idX ⊗lY

<<yyyyyyyyyyyyyyyyyy

(2)
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Let C be a monoidal category.

A right dual of V ∈ Obj C is a collection (V ∗, eV , bV ), where

• V ∗ ∈ Obj C,
• eV : V ∗⊗V → 1 is a morphism called evaluation,

• bV : 1 → V⊗V ∗ is a morphism called coevaluation, such that

V

idV

33
l−1
V // 1⊗V

bV⊗ idV // (V⊗V ∗)⊗V
aV,V ∗,V // V⊗(V ∗⊗V )

idV ⊗eV // V⊗1
rV // V ,

V ∗

id∗V

22
r−1

V ∗// V ∗⊗1
idV ∗ ⊗bV // V ∗⊗(V⊗V ∗)

a−1
V ∗,V,V ∗ // (V ∗⊗V )⊗V ∗ eV⊗ idV ∗ // 1⊗V ∗ lV ∗ // V ∗.
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A left dual of V ∈ Obj C is a collection (∗V, e′V , b′V ), where

• ∗V ∈ Obj C,
• e′V : ∗V⊗V → 1, b′V : 1 → V⊗∗V are morphisms such that

V

idV

33
r−1

V // V⊗1
idV ⊗b′V // V⊗(∗V⊗V )

a−1
V,∗V,V // (V⊗∗V )⊗V )

e′V⊗ idV // 1⊗V
lV // V ,

∗V

id∗V

22
l−1
∗V // 1⊗∗V b′V⊗ id∗V // (∗V⊗V )⊗∗V a∗V,V,V ∗ // ∗V⊗(V⊗∗V )

id∗V ⊗e′V // ∗V⊗1
r∗V // ∗V.

A monoidal category is rigid if every object admits a right and a

left dual.
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Examples:

• C discrete category (only arrows are the identities)

monoidal ! monoid rigid monoidal ! group

• Veck = category of vector spaces over k, ⊗ = ⊗k

V ∈ Veck has duals (V ∗ = Hom(V, k) = ∗V ) ⇐⇒ dimV < ∞ Ã
veck = category of fin. dim. vector spaces is rigid

• R a k-algebra, BimodR = category of R-bimodules, ⊗ = ⊗R

• G a group, RepG, ⊗ = ⊗k; repG = fin. dim. reps. is rigid

V, W ∈ RepG, v ∈ V, w ∈ W, g ∈ G: g · (v⊗w) = g · v⊗g · w.
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• g a Lie algebra, Repg, ⊗ = ⊗k; repg = fin. dim. reps. is rigid

V, W ∈ Repg, v ∈ V, w ∈ W, X ∈ g: X · (v⊗w) = X · v⊗w + v⊗X ·w.

• H a Hopf algebra with bijective antipode S, RepH, ⊗ = ⊗k;
repH = fin. dim. reps. is rigid

• V, W ∈ RepH, v ∈ V, w ∈ W, X ∈ H: set ∆(X) =
∑

i Xi⊗Xi, then

X · (v⊗w) = X · v⊗w + v⊗X · w.

• 1 := k ∈ RepH: if X ∈ H, then X · 1 = ε(X)1.

• V ∈ repH Ã V ∗ = Hom(V, k) = ∗V as v. sp. but with different

actions: v ∈ V, X ∈ H, α ∈ V∗ = Hom(V, k), β ∈ ∗V = Hom(V, k)

〈X · α, v〉 = 〈α,S(X) · v〉, 〈X · β, v〉 = 〈β,S−1(X) · v〉.
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Tensor categories

A tensor category is a monoidal category C such that

• C is abelian (good kernels and cokernels);

• C is k-linear (Hom(V, W ) is a k-v. sp., composition is bilinear);

• the tensor product ⊗ : C × C → C is k-bilinear;

• the unit 1 ∈ C is simple and HomC(1, 1) ' k;

Example: H a Hopf algebra with bijective antipode S

Ã RepH is a tensor category
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Another construction: (H, ω) a spherical Hopf algebra.

=⇒ RepH has a factor tensor category Rep H that is semisimple
but not RepK for any K.

Problem: compute finite tensor subcategories of Rep H.

Example: If q is a root of 1 and H = uq(g), then the category of
tilting modules is a finite tensor subcategory of Rep H (Andersen-
Padarowski).
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