Quantum subgroups of a simple quantum group at a root of 1

Nicolás Andruskiewitsch* and Gastón García

Universidad de Córdoba, Argentina. CIEM-CONICET.

> AMS sectional meeting

Chicago, October 5, 2007.

Let me begin by the list of finite-dimensional complex Hopf algebras I know:

- Group algebras $\mathbb{C} \Gamma$ (Γ finite)
- Their duals \mathbb{C}^{Γ}
- Their twistings $\mathbb{C} \Gamma^{J}$ and $\left(\mathbb{C}^{\Gamma}\right)_{J}, \Gamma$ finite, $J \in \mathbb{C} \Gamma \otimes \mathbb{C} \Gamma$ twist.
- \mathfrak{g} simple Lie algebra, ϵ root of 1 of order N small quantum group $u_{\epsilon}(\mathfrak{g})$ (a.k.a. Frobenius-Lusztig kernel)
- (A.-Schneider) Pointed Hopf algebras $u(\mathcal{D}, \lambda, \mu), \Gamma$ finite abelian group, \mathcal{D} Cartan datum, λ linking parameter, μ power root parameter
- Their duals...
- Their twistings.

Explicitly known for $\wedge(V) \# \mathbb{C} \Gamma$ (Etingof-Gelaki), Γ non abelian.

- Bosonizations $\mathfrak{B}(V) \# \mathbb{C} \Gamma$ of the braided vector spaces of diagonal type in Heckenberger's list.
- Bosonizations $\mathfrak{B}(V) \# \mathbb{C} \Gamma$ of the known braided vector spaces of group type with finite-dimensional Nichols algebra (MilinskiSchneider, Fomin-Kirillov, Graña, ...).
- Ditto replacing $\mathbb{C} \Gamma$ by a semisimple Hopf algebra (examples in paper by Dascalescu-Masuoka-Menini-...).
- Their liftings...
- Their subalgebras...
- Their duals...
- Their twistings.
- Drinfeld doubles (and generalizations)

Extensions of the preceding:

- Tensor product of any two known Hopf algebras.
- (G. I. Kac) If $\Sigma=F G$ is an exact factorization (Σ finite), then

$$
\mathbb{C}^{F} \hookrightarrow \mathbb{C}^{F} \bowtie \mathbb{C} G \rightarrow \mathbb{C} G
$$

- Version with cocycles $\mathbb{C}^{F} \hookrightarrow \mathbb{C}^{F} \rrbracket^{\star}{ }_{\sigma} \mathbb{C} G \rightarrow \mathbb{C} G$ (control by Kac exact sequence)
- Group-theoretical Hopf algebras (Ocneanu-Ostrik)
- Non-abelian extensions, with weak actions and cocycles (very few explicit finite-dimensional examples to my knowledge; infinitedimensional example by Majid-Soibelman, finite-dimensional version in Majid's book).
- (E. Müller) Construction of all finite-dimensional Hopf algebra quotients $\mathcal{O}_{\epsilon}\left(S L_{N}\right) \rightarrow A, \epsilon$ a root of 1 . They fit into

Here $\mathcal{O}(\Gamma)=\mathbb{C}^{\Gamma}$.

Questions.

- Exhaust the preceding.
- Are there more examples?

Goal. G a simple algebraic group, $\mathfrak{g}=$ Lie G, ϵ a root of 1 of order ℓ (odd, prime to 3 if G is of type G_{2}).

Classify all (finite-dimensional or not) Hopf algebra quotients $\mathcal{O}_{\epsilon}(G) \rightarrow A$. They fit into

Let $\mathbb{T}:=\left\{K_{\alpha_{1}}, \ldots, K_{\alpha_{n}}\right\}=G\left(\mathbf{u}_{\epsilon}(\mathfrak{g})\right)$.
If $I \subset \Pi$, then $\mathbb{T}_{I}:=\left\{K_{\alpha_{i}}: i \in I\right\}$.

Theorem. (E. Müller). The Hopf subalgebras of $\mathbf{u}_{\epsilon}(\mathfrak{g})$ are parameterized by triples (Σ, I_{+}, I_{-}), where

- $I_{+} \subseteq \Pi, I_{-} \subseteq-\Pi$
- If $I=I_{+} \cup-I_{-}$, then $\mathbb{T}_{I}<\Sigma<\mathbb{T}$.

A subgroup datum is a collection $\mathcal{D}=\left(I_{+}, I_{-}, N, \Gamma, \sigma, \delta\right)$ where

- $I_{+} \subseteq \Pi$ and $I_{-} \subseteq-\Pi$. Let
$\Psi_{ \pm}=\left\{\alpha \in \Phi: \operatorname{Supp} \alpha \subseteq I_{ \pm}\right\}$,
$\mathfrak{l}_{ \pm}=\sum_{\alpha \in \Psi_{ \pm}} \mathfrak{g}_{\alpha}$ and $\mathfrak{l}=\mathfrak{l}_{+} \oplus \mathfrak{h} \oplus \mathfrak{l}_{-} ;$
\mathfrak{l} is an algebraic Lie subalgebra of \mathfrak{g}.
Let L be the connected Lie subgroup of G with Lie $(L)=\mathfrak{l}$.
Let $s=n-\left|I_{+} \cup-I_{-}\right|$.
- N is a subgroup of $(\mathbb{Z} /(\ell))^{s}$.
- Γ is an algebraic group.
- $\sigma: \Gamma \rightarrow L$ is an injective homomorphism of algebraic groups.
- $\delta: N \rightarrow \widehat{\Gamma}$ is a group homomorphism.

If Γ is finite, we call \mathcal{D} a finite subgroup datum.

Let $\mathcal{D}=\left(I_{+}, I_{-}, N, \Gamma, \sigma, \delta\right)$ and $\mathcal{D}^{\prime}=\left(I_{+}^{\prime}, I_{-}^{\prime}, N^{\prime}, \Gamma^{\prime}, \sigma^{\prime}, \delta^{\prime}\right)$ be subgroup data. We say that $\mathcal{D} \leq \mathcal{D}^{\prime}$ iff

- $I_{+}^{\prime} \subseteq I_{+}$and $I_{-}^{\prime} \subseteq I_{-}$.

Hence $I^{\prime} \subseteq I, \mathbb{T}_{I^{\prime}} \subseteq \mathbb{T}_{I}$ and $\mathbb{T}_{I^{c}} \subseteq \mathbb{T}_{I^{\prime c}}$. As $\mathbb{T}_{I^{\prime c}}=\mathbb{T}_{I^{c}} \times \mathbb{T}_{I^{\prime c}-I^{c}}$, the restriction map $\widehat{\mathbb{T}_{I^{\prime}}} \rightarrow \widehat{\mathbb{T}_{I^{c}}}$ admits a canonical section η and

- $\eta(N) \subseteq N^{\prime}$.
- There exists a morphism of algebraic groups $\tau: \Gamma^{\prime} \rightarrow \Gamma$ such that $\sigma \tau=\sigma^{\prime}$.
- $\delta^{\prime} \eta={ }^{t} \tau \delta$.
$\mathcal{D} \simeq \mathcal{D}^{\prime}$ iff $\mathcal{D} \leq \mathcal{D}^{\prime}$ and $\mathcal{D}^{\prime} \leq \mathcal{D}$.

Theorem. There is a bijection between
(a) Hopf algebra quotients $\mathcal{O}_{\epsilon}(G) \rightarrow A$.
(b) Subgroup data up to equivalence.
N. A. \& G. A. García, http://arxiv.org/abs/0707.0070.

Properties of $A_{\mathcal{D}}$. N. A. \& G. A. García, 'Extensions of finite quantum groups by finite groups', arXiv:math/0608647v6.

- $\operatorname{dim} A_{\mathcal{D}}<\infty$ iff $|\Gamma|<\infty$
- $A_{\mathcal{D}}$ semisimple iff $|\Gamma|<\infty, I=\emptyset$
- If $A_{\mathcal{D}}$ is pointed, then $I_{+} \cap-I_{-}=\emptyset$ and Γ is a subgroup of the group of upper triangular matrices of some size. In particular, if Γ is finite, then it is abelian.
- If $\operatorname{dim} A_{\mathcal{D}}<\infty$ and $A_{\mathcal{D}}^{*}$ is pointed, then $\sigma(\Gamma) \subseteq \mathcal{T}$.
- If $A_{\mathcal{D}}$ is co-Frobenius then Γ is reductive.
- Some invariants of $A_{\mathcal{D}}$ under isomorphism; complete determination if $H=\mathbf{u}_{\epsilon}(\mathfrak{g})^{*}$.

Sketch of the proof.

Let $\mathcal{D}=\left(I_{+}, I_{-}, N, \Gamma, \sigma, \delta\right)$ be a subgroup datum. We first construct a quotient $A_{\mathcal{D}}$ of $\mathcal{O}_{\epsilon}(G)$.

First step.

Let $\mathbf{u}_{\epsilon}(\mathfrak{l})$ be the Hopf subalgebra of $\mathbf{u}_{\epsilon}(\mathfrak{g})$ corresponding to the triple (\mathbb{T}, I_{+}, I_{-}).

We have a commutative diagram of exact sequences of Hopf algebras

Second step. Let A and K be Hopf algebras, B a central Hopf subalgebra of A such that A is left or right faithfully flat over B and $p: B \rightarrow K$ a surjective Hopf algebra map. Then $H=A / A B^{+}$is a Hopf algebra and A fits into the exact sequence $1 \rightarrow B \xrightarrow{\iota} A \xrightarrow{\pi} H \rightarrow 1$. If we set $\mathcal{J}=\operatorname{ker} p \subseteq B$, then $(\mathcal{J})=A \mathcal{J}$ is a Hopf ideal of A and $A /(\mathcal{J})$ is the pushout:

K can be identified with a central Hopf subalgebra of $A /(\mathcal{J})$ and $A /(\mathcal{J})$ fits into the exact sequence

We have a surjective Hopf algebra map $t^{t_{\sigma}}: \mathcal{O}(L) \rightarrow \mathcal{O}(\Gamma)$. By pushout, we construct a Hopf algebra $A_{\mathfrak{l}, \sigma}$ which is part of an exact sequence of Hopf algebras and fits into the following commutative diagram

Third step. Let $H^{*} \subseteq \mathbf{u}_{\epsilon}(\mathfrak{g})$ be determined by (Σ, I_{+}, I_{-}). Since $\mathbf{u}_{\epsilon}(\mathfrak{l})$ is determined by the triple (\mathbb{T}, I_{+}, I_{-}) with $\mathbb{T} \supseteq \Sigma$, we have that $H^{*} \subseteq \mathbf{u}_{\epsilon}(\mathfrak{l}) \subseteq \mathbf{u}_{\epsilon}(\mathfrak{g})$. Let $r: \mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \rightarrow H$ and $v: \mathbf{u}_{\epsilon}(\mathfrak{l})^{*} \rightarrow H$ be the surjective Hopf algebra maps induced by the inclusions. Then

$$
\mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \xrightarrow{p} \mathbf{u}_{\epsilon}(\mathfrak{l})^{*}
$$

Now $\mathbb{T}_{I} \subseteq \Sigma \subseteq \mathbb{T}=\mathbb{T}_{I} \times \mathbb{T}_{I^{c}}$.
If we set $\Omega=\Sigma \cap \mathbb{T}_{I^{c}}$, then $\Sigma \simeq \mathbb{T}_{I} \times \Omega$.
TFAE:

- a subgroup Σ such that $\mathbb{T}_{I} \subseteq \Sigma \subseteq \mathbb{T}$
- a subgroup $\Omega \subseteq \mathbb{T}_{I^{c}}$,
- a subgroup $N \subseteq \widehat{\mathbb{T}_{I^{c}}}$.

For all $1 \leq i \leq n$ such that $\alpha_{i} \notin I_{+}$or $\alpha_{i} \notin I_{-}$we define $D_{i} \in$ $G\left(\mathbf{u}_{\epsilon}(\mathfrak{l})^{*}\right)=\operatorname{Alg}\left(\mathbf{u}_{\epsilon}(\mathfrak{l}), \mathbb{C}\right)$ on the generators of $\mathbf{u}_{\epsilon}(\mathfrak{l})$ by

$$
\begin{aligned}
D_{i}\left(E_{j}\right) & =0 & \forall j: \alpha_{j} \in I_{+}, & D_{i}\left(F_{k}\right)=0 \quad \forall k: \alpha_{k} \in I_{-}, \\
D_{i}\left(K_{\alpha_{t}}\right) & =1 & \forall t \neq i, 1 \leq t \leq n, \quad D_{i}\left(K_{\alpha_{i}}\right)=\epsilon_{i}, &
\end{aligned}
$$

where ϵ_{i} is a primitive ℓ-th root of 1 . We define for all $z=$ $\left(z_{1}, \ldots, z_{s}\right) \in \widehat{\mathbb{T}_{I^{c}}} D^{z}:=D_{i_{1}}^{z_{1}} \cdots D_{i_{s}}^{z_{s}} \in G\left(\mathbf{u}_{\epsilon}(\mathfrak{l})^{*}\right)$.
(a) D^{z} is central in $\mathbf{u}_{\epsilon}(\mathfrak{l})^{*}$, for all $z \in \widehat{\mathbb{T}_{I^{c}}}$.
(b) $H \simeq \mathbf{u}_{\epsilon}(\mathfrak{l})^{*} /\left(D^{z}-1 \mid z \in N\right)$.
(c) There exists a subgroup $\mathbf{Z}:=\left\{\partial^{z} \mid z \in \widehat{\mathbb{T}_{I^{c}}}\right\}$ of $G\left(A_{\mathfrak{l}, \sigma}\right)$ isomorphic to $\left\{D^{z} \mid z \in \widehat{\mathbb{T}_{I^{c}}}\right\}$ consisting of central elements.

Finally, $A_{\mathcal{D}}$ is given by the quotient $A_{\mathfrak{l}, \sigma} / J_{\delta}$ where J_{δ} is the twosided ideal generated by the set $\left\{\partial^{z}-\delta(z) \mid z \in N\right\}$ and the following diagram of exact sequences of Hopf algebras is commutative

Fourth step. Let U be any Hopf algebra and consider the category $\mathcal{Q U O} \mathcal{T}(U)$, whose objects are surjective Hopf algebra maps $q: U \rightarrow A$. If $q: U \rightarrow A$ and $q^{\prime}: U \rightarrow A^{\prime}$ are such maps, then an arrow $q \xrightarrow{\alpha} q^{\prime}$ in $\mathcal{Q U O \mathcal { T }}(U)$ is a Hopf algebra map $\alpha: A \rightarrow A^{\prime}$ such that $\alpha q=q^{\prime}$. A quotient of U is just an isomorphism class of objects in $\mathcal{Q U O \mathcal { O }}(U)$; let $[q]$ denote the class of the map q. There is a partial order in the set of quotients of U, given by $[q] \leq\left[q^{\prime}\right]$ iff there exists an arrow $q \xrightarrow{\alpha} q^{\prime}$ in $\mathcal{Q U O T}(U)$. Notice that $[q] \leq\left[q^{\prime}\right]$ and $\left[q^{\prime}\right] \leq[q]$ implies $[q]=\left[q^{\prime}\right]$.

Lemma. Let \mathcal{D} and \mathcal{D}^{\prime} be subgroup data. Then
(a) $\left[A_{\mathcal{D}}\right] \leq\left[A_{\mathcal{D}^{\prime}}\right]$ iff $\mathcal{D} \leq \mathcal{D}^{\prime}$.
(b) $\left[A_{\mathcal{D}}\right]=\left[A_{\mathcal{D}^{\prime}}\right]$ iff $\mathcal{D} \simeq \mathcal{D}^{\prime}$.

Fifth step. Let $q: \mathcal{O}_{\epsilon}(G) \rightarrow A$ be a surjective Hopf algebra map. We show that it is isomorphic to $q_{\mathcal{D}}: \mathcal{O}_{\epsilon}(G) \rightarrow A_{\mathcal{D}}$ for some subgroup datum \mathcal{D}.

The Hopf subalgebra $K=q(\mathcal{O}(G))$ is central in A and whence A is an H-extension of K, where $H:=A / A K^{+}$.

There exists an algebraic group Γ and an injective map of algebraic groups $\sigma: \Gamma \rightarrow G$ such that $K \simeq \mathcal{O}(\Gamma)$.

Since $q\left(\mathcal{O}_{\epsilon}(G) \mathcal{O}(G)^{+}\right)=A K^{+}$, we have $\mathcal{O}_{\epsilon}(G) \mathcal{O}(G)^{+} \subseteq \operatorname{ker} \hat{\pi} q$, where $\hat{\pi}: A \rightarrow H$ is the canonical projection. Since $\mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \simeq$ $\mathcal{O}_{\epsilon}(G) /\left[\mathcal{O}_{\epsilon}(G) \mathcal{O}(G)^{+}\right]$, there exists a surjective map $r: \mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \rightarrow$ $H ; H^{*}$ is determined by a triple (Σ, I_{+}, I_{-}). In particular, we have the following commutative diagram

Lema. $\sigma(\Gamma) \subseteq L, A$ is a quotient of $A_{\mathfrak{l}, \sigma}$ given by pushout.

Finally, there exists a group homomorphism $\delta: N \rightarrow \widehat{\Gamma}$ such that $J_{\delta}=\left(\partial^{z}-\delta(z) \mid z \in N\right)$ is a Hopf ideal of $A_{\mathrm{l}, \sigma}$ and $A \simeq A_{\mathcal{D}}=$ $A_{\mathfrak{l}, \sigma} / J_{\delta}$.

