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Abstract. Let g be a simple complex finite dimensional Lie algebra and let U;r (g) be
the positive part of the quantum enveloping algebra of g. If g is of type Az, the group
of algebra automorphisms of U/ (g) is a semidirect product (k*)? x Autdiagr (g); any
algebra automorphism is an automorphism of braided Hopf algebra, and preserves the
standard grading [2]. This intriguing smallness of the group of algebra automorphisms
raises questions about the extent of these phenomena. We discuss some of them in
the present paper. We introduce the notion of “algebra with few automorphisms” and
establish some consequences. We prove some exploratory results concerning the group
of algebra automorphisms for the type Bz. We study Hopf algebra automorphisms of
Nichols algebras and their bosonizations and compute in particular the group of Hopf
algebra automorphisms of U, (g).

2000 Mathematics Subject Classification: Primary: 17B37; Secondary: 16W20,16W30.

Keywords: automorphisms of non-commutative algebras, quantized enveloping algebras,
Nichols algebras.

Introduction

Let g be a finite dimensional complex simple Lie algebra and g =n~ ® h ®nt be
a triangular decomposition of g related to a Cartan subalgebra h. The structure
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of the group Aut a1,U,(g) of algebra automorphisms of the quantum enveloping
algebra U, (g) seems to be known only in the elementary case where g is of type A;
(see [1] or [2]). The automorphism group Aut a1,U,(b") of the augmented form of
the quantum enveloping algebra of the Borel subalgebra b™ = h @ nt is described
for any g in [11]. The groups of Hopf algebra automorphisms of U,(g) and U, (b")
are determined in [10] and [11] respectively. We are concerned in this paper with
the group of automorphisms of the quantum enveloping algebra Uq+ (g) = Uy(nt)
of the nilpotent part.

Let (V,¢) be a braided vector space, see 1.1.1 below, and let B(V') be the cor-
responding Nichols algebra. We prove that the group Aut mops B(V) of braided
Hopf algebra automorphisms of B(V') coincides with the group GL(V, ¢) of auto-
morphisms of braided vector space of (V,¢). Thus we have

Aut opr B(V) C Aut graig B(V) C Aut a1, B(V),

where Aut gralg means the group of algebra automorphisms homogeneous of degree
0, in this case with respect to the standard grading of B(V'), and Aut aj, is the
group of all algebra automorphisms.

The class of Nichols algebras includes symmetric algebras, free algebras, Grass-
mann algebras; thus there is no hope to have a round description of the group
Aut a1z B(V). In particular the computation of this group is a well-known classi-
cal open problem in the case of the symmetric algebras.

Let k be the ground field and let (Vc) be a braided vector space of diagonal
type, n = dim V. Under some technical assumptions, the group GL(V, ¢) reduces
in this case to the semidirect product of the canonical action of the torus (k*)™
by the subgroup Autdiagr (¢) of the symmetric group S,, preserving the matrix of
the braiding.

A fundamental characterization due to Lusztig and Rosso (in different but
equivalent formulations), says that U;"(g) = B(h) with a diagonal braiding c
with matrix (¢%%%) built up from ¢ and the Cartan matrix of g; say n = dimb.
Furthermore, Autdiagrc is in the case the group Autdiagr (g) of automorphisms
of the Dynkin diagram of g. Therefore,

Aut nopt Uy (g) = (k)" x Autdiagr (g).

The group Aut A, U;‘ (g) was not determined yet, to the best of our knowledge.
However, if g of type Ay, then Aut o1,U[ (g) ~ (k*)? x Autdiagr (g) [2] (see also
[8]). Thus, Aut topr B(V) = Aut grale B(V) = Aut a1 B(V) in this case. This
intriguing result motivates several questions:

Problem 1. Is it true that Aut iU (g) ~ (k*)™ x Autdiagr (g) ?

We conjecture that the answer is positive for any g. But even if the answer were
negative, we would still ask: is it true that Aut AlgU(;r (g) is an algebraic group?
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Problem 2. Determine the braided vector spaces (V,¢) such that
Aut Hopf %(V) = Aut GrAlg %(V) = Aut Alg %(V)

Graded algebras A with the property Aut graig A = Aut a1z A do not seem to
abound. Thus, we dare to pose:

Problem 3. Classify graded algebras A with the property Aut gralg A = Aut a1 A.

In this paper we contribute mainly to the first Problem. Let us review the
contents of the article. The first section is about Hopf algebra automorphisms of
Nichols algebras and their bosonizations. We obtain from some general consid-
erations the computation of the group Aut popr Uy(b1) ~ (k*)™ x Autdiagr (g),
recovering a result from [11].

In Section two, we briefly recall the case of type As. We introduce the notion
of “algebras with few automorphisms”; we classify gradings of these algebras and
apply to U (sls).

Section three is an exploration of the case where g is of type Bs. Since there are
no nontrivial diagram automorphism in this case, the question is then to determine
if Aut a1, U, (g) is isomorphic or not to (k™).

A basic idea to approach the group Aut aj, U, ;’ (g) is to study its actions on
natural sets. In the paper [2], the study of the actions on the sets of central and
normal elements was crucial. This method fails here because the center of Uq+ (9)
is a polynomial algebra k[z, 2] in two variables (which are homogeneous elements
of degree 3 and 4 respectively for the canonical grading) and any normal element
of U (g) is automatically central.

The next natural sets where our group acts are the various spectra; the investi-
gation of these actions is the matter of this section. We begin by the ideals (z) and
(2); these are completely prime of height one and the factor domain U (g)/(z) is
isomorphic to the quantum Heisenberg algebra Uq+ (sl3). Using the results of Sec-
tion two, this allows to separate up to isomorphism the factor domains U (g)/(2)
and UJ (g)/(2'). We then show, first, that automorphisms of U; (g) cannot ex-
change the ideals (2) and (z’); and second, that the subgroup of Aut a1z U,f (g) of
automorphisms preserving the ideal (z) reduces to the torus (k*)2. To progress
further in this direction, we need better knowledge on the prime ideals of height
one. Although the stratification of the prime spectrum is known [12], the full clas-
sification of the prime ideals is still open. We discuss the stratification for type Bs
in Subsection 3.4.

Added in proof. After acceptance of this paper, S. Launois gave a positive
answer to Problem 1 for type By using our Proposition 3.3. Thus our conjecture
is true in this case. See [15]. Also, Problem 1 is solved for type As in [16].
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Convention

We denote by N the set of non-negative integers {0,1,2,3,... }.
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1 Braided Hopf algebra automorphisms

In Subsections 1.3 and 1.2 the field k is arbitrary; in 1.3, k has characteristic 0
and contains an element ¢ not algebraic over Q.

1.1 Braided vector spaces

1.1.1 Braided vector spaces. A braided vector space is a pair (V,¢) where V
is a vector space V over k and ¢: V®V — V ® V is a linear isomorphism that is
a solution of the braid equation (¢ ® id)(id ®c¢)(c ® id) = (id ®c¢)(c ® id)(id ®c).

A braided vector space (V,c¢) is rigid if V is finite dimensional and the map
¢ :V*®V — V®V*is invertible, where
&= (evv ® idV®V*)(idv* Xec R idv*)(idv*(@‘/ ® COGVV).

Here evy : V* ® V — k is the usual evaluation map, and coevy : k — V@ V* is
the coevaluation (the transpose of the trace).

1.1.2 Automorphisms of a braided vector space of diagonal type. Let
(V,¢) be a braided vector space. The braiding ¢ : V@V — V @ V is said to
be diagonal if there exists a basis x1,...,z, of V and a matrix (¢;;)1<i, j<n With
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entries in k* such that ¢(z; ® x;) = ¢;;2; @ ; for any 1 <4, j < n. In particular,
V is rigid and has finite dimension n > 1.

Remark 1.1. If the braiding is diagonal, then the matrix (¢;;)1<; j<n does not
depend on the basis z1, ..., z,, up to permutation of the index set {1,...,n}, see
[5, Lemma 1.2].

Let (V, ¢) be a braided vector space. A linear automorphism g € GL(V) is said
to be a braided vector space automorphism of (V,c) if g ® g commutes with ¢. We
denote by GL(V, ¢) the corresponding subgroup of GL(V).

Suppose that c¢ is of diagonal type for some basis z1,...,z, of V and some
matrix (gij)1<i,j<n. We consider the following subgroup of the symmetric group
Sn:

Autdiagr (c) := {0 € Sp : ¢ij = Qo(i),0(j), 1 < 4,5 < n}.

Any o in Autdiagr (¢) induces naturally an automorphism g, € GL(V,¢) by
9o () = x4(;) for 1 < j <n. Any g € GL(V,c) of this type is called a diagram
automorphism of (V,c). Moreover it is clear that the torus (k*)™ acts on V' by
braided vector space automorphisms. The following lemma gives necessary condi-
tions for the group GL(V,¢) to be generated by these two particular subgroups.

Lemma 1.2. Let (V,c) be a braided vector space of diagonal type, with respect to
a basis x1,...,x, of V and a matriz (gij)1<i j<n with entries in k*. Assume that
at least one of the following conditions is satisfied:

(i) For any i # j, there exists h such that qin, # qjn.-

(i) For any i # j, there exists h such that gn; # qn;-

(iii) For any i # j, the matriz (g 42 is not of the form (§4).

Then we have

GL(V,c) ~ (k*)™ x Autdiagr (c).

Proof. Let g € GL(V'); denote g(x;) = >, Asi®s, 1 <4 < n. Then

(9@ g)(clzi @a;) = (9@ 9)(ai(x; @ x)) = Y Gihrjheir @,

1<r,s<n

c(g®g)(z; @ xj) = C( Z Arjs,i Ts ®xr) = Z QsrArjNs,i Tr @ Ts.

1<r,s<n 1<4,j<n
Therefore g € GL(V, ¢) is and only if
QijArjAsi = QsrArjXs,i, forall 1 <i,j,rs<n. (1.1)

Suppose g € GL(V,¢). Since g is invertible, there exists o € S,, such that
Ao(h),n 7 0 for any 1 < h < n. Then we deduce from (1.1) that g;j = ¢, (),0(;) for
all1 <i,5 <n.
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Assume first that (i) is satisfied, and choose i, s € {1,...,n} such that As; # 0.
Apply (1.1) with any j and r = o(j). We obtain g, ,(jy = ¢ij = ¢o(i),0(;), for any
1 <j < n;then s = o(i). This implies that g(x;) = Ay (),iT0@) for any 1 <i <n,
and proves the result.

Assume now that (ii) is satisfied, and choose j,r € {1,...,n} such that A, ; # 0.
Apply (1.1) with any 7 and s = o(i). We obtain ¢,(;),» = Gij = ¢o(i),0(j), for any
1 <i < n;then r = o(j) and we conclude as in the previous case.

Finally assume that we have (iii) and take ¢ = j in (1.1). If As; # O then
Qi = Qo(i),s = Qs,0(i) = o(i),o(i); therefore s = o(i) and we conclude as above. [

1.1.3 Braided Hopf algebras. A non-categorical version of the concept of
braided Hopf algebra was studied in [21]. A braided Hopf algebra is a collection
(R, m, A, c) such that

(R, ¢) is a braided vector space,

(R,m) is an associative algebra with unit 1,

(R, A) is a coassociative coalgebra with counit ¢,

m, A, 1, e commute with ¢ in the sense of [21],
Aom=me@m)(id®c®id)(A ® A),

the identity has an inverse for the convolution product in End R (this inverse
is called the antipode and denoted by S).

Here, recall that the convolution product of f,g € End R is given by f xg =
m(f @ g)A.

A homomorphism of braided Hopf algebras is a linear map preserving m, A, c.

Lemma 1.3. Let R be a braided Hopf algebra and let T : R — R be a linear
isomorphism that is an algebra and coalgebra map. Then T is a morphism of
braided Hopf algebras.

Proof. Let us define T.f := TfT~!, f € End R. Then

T(f*g)=Tm(f @A) T =m(T@T)(f@g) (T @T~)A = (T.f) * (T.g);

hence T.§ = S, or TS = ST. But it was shown in [20] that the braiding of a
braided Hopf algebra can be expressed in terms of the product, coproduct and
antipode. Thus T preserves also the braiding c. O

The group of braided Hopf algebra automorphisms of R is denoted by Aut fops R.
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1.1.4 Yetter-Drinfeld modules. Yetter-Drinfeld modules give rise to braided
vector spaces and play a fundamental role in problems related to the classification
of Hopf algebras.

Let us recall that a Yetter-Drinfeld module V' over a Hopf algebra H with
bijective antipode S is both a left H-module and left H-comodule, such that the
action H ® V-5V and the coaction 6 : V — H ® V satisfy the compatibility
condition: 0(h.v) = hayv(—1)Sh() @ h(2).v(o) for all h € H,v € V. We denote by
HYD the category of Yetter-Drinfeld modules over H, where morphisms respect
both the action and the coaction of H.

The usual tensor product defines a structure of monoidal category on g YD. Itis
braided, with braiding cy,w : VW — W&V defined by c(v@w) = v(_1).w@v(g),
for VV\W € ZYD v € V, w € W. Then (V,cyy) is a braided vector space, for
any V € HYD. It is known that any rigid braided vector space can be realized
as a Yetter-Drinfeld module over a (non-unique) Hopf algebra, essentially by the
FRT-construction; see [21] for references and details.

As in any braided monoidal category, there is the notion of Hopf algebras in
HYD. Hopf algebras in £YD are braided Hopf algebras by forgetting the action
and the coaction. Conversely, let R be any braided Hopf algebra whose underlying
braided vector space is rigid. Then there exists a (non-unique) Hopf algebra H
such that R can be realized as a Hopf algebra in £YD [21].

1.1.5 Bosonizations of a Hopf algebra in gy’D. We recall the bosonization
procedure, or Radford biproduct, found by Radford and explained in terms of
braided categories by Majid.

Let H be a Hopf algebra with bijective antipode. Let R be a Hopf algebra
in ZYD. The bosonization of R by H is the (usual) Hopf algebra A = R#H,
with underlying vector space R ® H, whose multiplication and comultiplication
are given by:

(r#h)(s#f) = r(hay.s)#ha f  and  A(r#h) = rW#(r@) )by © (1) o) #h)-

The maps 7w : A — H,r#h+— ¢e(r)h and ¢ : H — A, h — 14#h are Hopf algebra
homomorphisms and R ={a € A: (id®7)A(a) =a®1}.

Conversely, let A, H be Hopf algebras with bijective antipode and let « :
A — H and ¢ : H — A be Hopf algebra homomorphisms such that 7t = idgy.
Then R = {a € A : (id®n)A(a) = a ® 1} is a Hopf algebra in YD and the
multiplication induces an isomorphism of Hopf algebras R#H ~ A.
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1.1.6 Nichols algebras. We recall the definition of Nichols algebra, see [4] for
details and references.
Let V € ZYD. A graded Hopf algebra R = @D,.>o R(n) in HYD is called a
Nichols algebra of V if k ~ R(0) and V ~ R(1) in YD, and if:
R(1) = P(R), the space of primitive elements of R, (1.2)
R is generated as an algebra by R(1). (1.3)
The Nichols algebra of V' exists and is unique up to isomorphism; it is denoted
by B(V) = @,,5B"(V). The associated braided Hopf algebra (forgetting the

action and the coaction) depends only on the braided vector space (V, ¢). We shall
identify V' with the subspace of homogeneous elements of degree one in B(V).

Let us recall the following explicit construction of %B(V'). For any integer m > 2,
we denote by B,,, the m-braid group. A presentation of B,, is given by generators

01,...,0m—1 and relations o;0; = 0;0; if |i — j| > 2 an 0,0,110; = 0,410,041 for
any 1 <¢ < m — 2. There is a natural projection = : B,, — S,, sending o; to the
transposition 7; := (4,7 + 1) for all . This projection m admits a set-theoretical

section s : S,, — B,, determined by
s(r)=o04, 1<i<n-1, s(tw) = s(1)s(w), if L(rw) =L(T) + L(w).

Here ¢ denotes the length of an element of S,,, with respect to the set of generators
Ti,...,Tm—1. The map s is called the Matsumoto section. In other words, if
w =T ...T; is a reduced expression of w € Sy,, then s(w) = 0y, ...04,. Using
the section s, the following distinguished elements of the group algebra kB,, are

defined:
S = Z s(o).

oESm

By convention, we still denote by &,,, the images of these elements in End(7™(V))
= End(V®™) via the representation p,, : B,, — Aut (V®™) defined by p,,(0;) =
d®...01dRoc®Rid®...R®id, with ¢ acting on the tensor product of the copies of
V indexed by i and 7 + 1.

Let ¢ be the canonical extension of ¢ into a braiding of T(V). Let T(V) @ T(V)
be the algebra whose underlying vector space is T(V) ® T(V') with the product
“twisted" by ¢. There is a unique algebra map A : T(V) — T(V) @ T (V) such
that A(v) =v®1+1®wv, v € V. Then T(V) is a braided Hopf algebra and
B(V)=T(V)/J where J = @,,~,Ker &,, (see for instance [4], [18] or [19]).

1.2 Automorphisms of Nichols algebras and their
bosonizations

1.2.1 Hopf algebra automorphisms of a Nichols algebra. We can now com-
pute the group of Hopf algebra automorphisms of a Nichols algebra, cf. the nota-
tion introduced in 1.1.2.
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Theorem 1.4. There is a group isomorphism B : GL(V, c) — Aut pops B(V).

Proof. For any g € GL(V'), we denote by g the canonical extension of g into an
algebra automorphism of T(V). If g commutes with ¢, then § commutes with
Y m>2 ©m, and so induces an algebra automorphism B(g) of B(V) = T'(V)/J.
In order to prove that ®B(g) is also a coalgebra automorphism of B(V'), we claim
that g is a coalgebra map: ((g® g) o A)(v) = (A o g)(v), for any v € T(V).

It is clear that this assertion is true when v € V. So it is enough to prove
that § ® g is a morphism of the algebra T(V)® T (V). For that, let us consider
u,v,2,y € T(V). Let us set ¢(y @ u) = v’ @3’ in a symbolic way. By definition of
the twisted product in T(V'), we have (z ® y)(u ® v) = zv’ ® y'v, then:

(@@ 9)((z@y)(uev)) =gx)g(u) @ g(y)g(v).
Moreover, it is easy to check that the assumption g € GL(V,¢) implies g €
GL(T(V),2), 50 (§© §)(u' © ') = &(§(y) @ §(u)), and then:
(@ 9)(r®y)(g®g)(uev)=(9(z)®7g(y)(g(u) ®g(v) = gz)g(u) @ g(y")g(v).
Hence (g ® g)((z @ y)(u®v)) = (§© g)(z ®y)(g ® g)(u @ v), as claimed. By

Lemma 1.3, ®B(g) preserves ¢. Thus, we have a well-defined map 9B : GL(V,¢) —
Aut gopr B(V'), which is injective by (1.3).

Conversely, let u : B(V) — B(V) be an automorphism of braided Hopf alge-
bras. Then u(V) =V since V = P(B(V)) and the theorem follows. O

1.2.2 Automorphisms of bosonizations. Our goal is to compute the Hopf
algebra automorphisms of A = R#H when R is a Nichols algebra, under suitable
hypothesis. The exposition is inspired by [3, Section 6]. We begin by a description
of a natural class of such automorphisms, for general R.

Lemma 1.5. Let H be a Hopf algebra and let R be a Hopf algebra in BYD. Let
G:R— RandT : H — H be linear maps. Then G#T :=GRT : R#H — R#H
is a Hopf algebra map if and only if the following conditions hold:

T is a Hopf algebra automorphism of H, (1.4)
G is a Hopf algebra automorphism of R, (1.5)
G(h.s) =T(h).G(s), se€R, heH, (1.6)
oG =(T®GQG)o4. (1.7)
Proof. Left to the reader. O

A pair (G,T) as in the Lemma shall be called compatible.

Lemma 1.6. Let H be a Hopf algebra and V' a Yetter-Drinfeld module over H.
(i) Assume that H is cosemisimple, and that the following hypothesis holds:
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(H) the types of the isotypic components of V#H under the adjoint action of
H do not appear in the adjoint action of H on itself.

Then any Hopf algebra automorphism of B(V)#H is of the form G#T, with
(G, T) compatible.

(i) If in addition H is commutative, then (H) is equivalent to:
(H') the trivial representation does not appear as a subrepresentation of V.

Proof. (i). Let ® be a Hopf algebra automorphism of A = B(V)#H. It is known
that the coradical filtration of A is A, = @geyyern B (V)#H [4, 1.7]. Since @
is a coalgebra map, it preserves the coradical filtration. In particular, ®(H) = H
and ®(H @ V#H) = H® V#H. Let T : H — H be the restriction of ®;
it is an automorphism of Hopf algebras. Also, ® : H ® V#H — H ® V#H
preserves the adjoint action of H. By hypothesis (H), ®(V#H) = V#H. Since
® is an algebra map, this implies that ®(B"(V)#H) = B"(V)#H, by (1.3). Let
m : A — H be the projection with kernel @, -, B"(V)#H; clearly, &7 = 7®.
Hence ®(B(V)) = B(V), since B(V) = {v € A : (ildon)A(v) = v ® 1}. Let
G :B(V) — B(V) be the restriction of ®. Since ® is an algebra map, & = G#T.
By Lemma 1.5, the pair (G,T') is compatible.

(ii). If H is commutative, the adjoint action of H on itself is trivial, and the
isotypic components of the adjoint action of H on V#H are of the form U#H,
where U runs in the set of isotypic components of the adjoint action of H on V.
This shows that (H) is equivalent to (H') in this case. O

The hypothesis (H) is needed, as the following example shows. Let A =
k[x, g, g7 !] be the tensor product of the polynomial algebra in x and the Laurent
polynomial algebra in g. This is a Hopf algebra with = primitive and g group-like.
The Hopf algebra automorphism T : A — A, T(g) = g, T'(z) = v+ 1 — g, does not
preserve the Nichols algebra k[z].

We now consider the following particular setting. We assume that H = kI is
the group algebra of an abelian group. We also assume the existence of a basis
T1,...,T, of V such that, for some elements g1,...,9, € ', x1,...,xn € T, the
action and coaction of I' are given by

haxj = x;(h)x;,  6(z5) =g(j) ® xy, 1<j<n.

Theorem 1.7. Suppose further that
Xi # €, 1<i<n, (1.8)
(9, x:) # (95, x5), 1<i#j<n (1.9)

Then there is a bijective correspondence between Aut yope B(V)#H, and the
set of pairs (¢,1), where ¥ is a group automorphism of T' and ¢ : V — V is a
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linear isomorphism given by ¢(x;) = Ni%o(i), 1 < i <n, with \; € k* and 0 € S,,,
such that
U(9i) = 9o (i), Xi = Xo(i) OV, 1<i<n. (1.10)

Proof. Condition (1.8) guarantees that hypothesis (H') holds. Thus any Hopf
algebra automorphism of B(V)#H is of the form G#T, with (G,T) compatible,
by Lemma 1.6. But T is determined by a group automorphism 1 of I'; and G is of
the form B(¢) for some ¢ € GL(V,c) by Theorem 1.4. Now conditions (1.6) and
(1.7) imply that

vo(x) = (i o0 H(W)p(ai),  0((wi)) = P(g:) @ p(x:),  vET, 1<i<m,
and thus
o(x;) € Z ka;j, 1<i<n.

J o ¥(gi)=g;, xiov~1=x;

But condition (1.9) implies that there is only one j such that ¢(g;) = gj, xiotp™' =
X;; set o(¢) = j. This defines o, and clearly (1.10) holds.

Conversely, any pair (¢,1) as above gives raise to a compatible pair (G,T)
with G = B(¢) and T determined by 1. O

1.3 Hopf algebra automorphisms of Nichols algebras of
Drinfeld-Jimbo type

1.3.1 Definition and notations (c¢f. [6], [14], [17]). We fix ¢ € k*, ¢ not
algebraic over Q. Let g be a simple finite dimensional Lie algebra of rank n
over k. Let g = n~ © b ® nT be a triangular decomposition of g related to a
Cartan subalgebra  of g. Let C' = (a;)1<i j<n the associated Cartan matrix
and (dq,...,d,) the relatively primes integers symmetrizing C'. The quantum
enveloping algebra of the nilpotent positive part nt of g, denoted by U,(n™) or
U;‘ (g), is the algebra generated over k by n generators F, ..., F, satisfying the
quantum Serre relations:

SlTaii [1-ai, J gt E TR (—E)Y =0 foralll1<i#j<n.

7

The quantum enveloping algebra of the positive Borel algebra bt = h @ nt,
denoted by U,(b%), is the algebra generated over k by Ei, ..., E,, Kt .. KF!
satisfying the quantum Serre relations, the commutation between the K;’s and the
g-commutation relations:

K E; = qd““vajKi forall 1 <i,5 <n.
It is well-known that U,(b™) is a Hopf algebra for the coproduct, counit and
antipode defined by
A(K;) = K; @ K, e(Ki)=1, S(Ki)=K;",
A(Ez) =F 1+ K, ®FE;, E(Ei) =0, S(EZ) =—-K,E;.

We denote by H the Hopf subalgebra H = k[Ki", ..., KF ~ kZ" of U,(b%).
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1.3.2 Braided Hopf algebra structure on Uq"' (g). From Corollary 33.1.5 of

[17] or Theorem 15 of [19], we have U,f (g) = B(V) for V =kE; @ ... ©kE, and c
the diagonal braiding of V' defined from the Cartan matrix C' = (a;;)1<i,j<n and
the integers (dy,...,d,) by

C(EZ ® EJ) = qdiai’j Ej ® E1
Let ¢ : H — Uy(b™) be the inclusion and let w : Uy(b%) — H be the unique
Hopf algebra map such that 7 (K;) = K;, 7(E;) = 0. Then m = idy and U} (g) =
{a € Uy(b") : (id®m)A(a) = a ® 1}. Hence
cf. Subsection (1.1.5). Here the coaction is determined by 0(E;) = ¢; ® E;, with

gi = K;, 1 < i < n. Also, the action is determined by v.E; = x;(v)E;, for
v €' =7", where x; € I is defined by x;(K;) = g% 1 <i,j<n.

1.3.3 Automorphisms of U;‘(g) and U;‘(b). With the notations of 1.1.2
for ¢i; = q%a;;, the subgroup Autdiagrc of S, is the group Autdiagr(g) of
automorphisms of the Dynkin diagram of g (see for instance [10]), which acts by
automorphisms on U, (g) and U, (b™) by:

o € Autdiagr () : E; — Eqy, K;— Ky;) forany 1 <i<n.

The n-dimensional torus on k also acts by automorphisms on U;r (g) and
U, (bT), by:

(a1,...,a0) € (k)" E; — a;F;, K;— K; forany 1 <i<n.

Now we can prove the following theorem.

Theorem 1.8. Aut opr Uf (g) =~ (k™)™ x Autdiagr (g) ~ Aut gops Ug(b7).

Proof. The first isomorphism just follows from Lemma 1.2 and Theorem 1.4.

Let I' = Z", g; and x; as above. By Theorem 1.7, any T' € Aut gops Uy (b7) is
determined by a pair (¢, 1), where ¢ is a group automorphism of Tand ¢ : V — V
is a linear isomorphism given by ¢(x;) = \ixs(;), 1 < i@ < n, with \; € k* and
o € S, such that (1.10) holds. Then

q" 0 = xi(KG) = Xt T (KG) = Xo() (Bo () = gir @00,

hence o € Autdiagr (g). Furthermore, 1 is uniquely determined by o. This implies
the second isomorphism. O

Remark 1.9. The second isomorphism in the Theorem was proved previously in
[11] as a corollary of the description of the group of all algebra automorphisms
Aut o1U,(67) (in fact for the slightly different augmented algebra U, (bT)). Effec-
tively there exist automorphisms of the algebra Uq(b+) which are not Hopf algebra
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automorphisms; in particular some combinatorial infinite subgroups of n X n ma-
trices with coefficients in Z, as well as the natural action of the 2n-dimensional
torus on the E;’s and Kj’s.

2 The case where g is of type A,

In this section the field k has characteristic 0; in Subsection 2.2, ¢ € k* is not a
root of one.

2.1 Graded algebras with few automorphisms

Here we consider graded algebras with few automorphisms. To begin with, we
recall the well-known equivalence between gradings and rational actions, see [6, p.
150 ff.] and references therein.

Let H be an algebraic group. A representation p : H — AutV of H on a
vector space V' is rational if V' is union of finite dimensional rational H-modules.
If H = (k*)" is a torus, then there is a bijective correspondence between

e rational actions of H on V, and

o gradings V =P,z Vin-

In this correspondence, V,, is the isotypic component of type m, where Z" is
identified with the group of rational characters of H. Thus, H-submodules of V'
are rational, and they are exactly the graded subspaces of V.

Let A be an associative algebra over k. A rational action of H on A is one
induced by a rational representation p : H — Aut a15A by algebra automorphisms.
If H = (k*)" is a torus, then there is a bijective correspondence between

e rational actions of H on A, and

e algebra gradings A =@, c;r Am.

Definition 2.1. An associative algebra A has few automorphisms if the following
conditions hold.

(i) There ezists a finite dimensional Aut a1z A-invariant subspace V' such that
the restriction Aut aig A — GL(V) is injective; we identify Aut a1z A with its image
in GL(V);

(11) Aut aigA is an algebraic subgroup of GL(V);

(i11) the action of Aut a1sA on A is rational;

(iv) the connected component (Aut aigA)o of the identity of Aut aigA is iso-
morphic to a torus (k).
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Let A be an algebra with few isomorphisms. Then A has a canonical grading
induced by the rational action of (Aut aigA)o =~ (k™)":

A= P Aw).
meZ"

Let || : Z" — Z be the function [m| = >, ;.. my, if m = (m1,...,m;) € Z".
The Z-grading induced by the canonical grading via | | shall be called the standard
grading and denoted A = @,,., Ajry. Thus

A[]V[] = @ A(m), M e Z.
meZ":|m|=M

Lemma 2.2. Let A be an algebra with few automorphisms.
(i) Any algebra automorphism preserves the canonical grading, and those in
(Aut a1gA)g are homogeneous of degree 0.

(ii) Assume that the canonical grading is nonnegative: A = @, cnr A(m)- Then
any algebra automorphism is homogeneous of degree 0 with respect to the standard
grading.

Proof. (i). Let 0 € Aut p1gA, let inng : Aut AjgA — Aut A1 A be the inner automor-

phism defined by 6 and let inng : Z" — Z" be the induced group homomorphism.
Then 60 (An) = A iy (my) for any m € Z7, and this implies the claim.

(ii). Under this hypothesis, the matrix of iﬁr?e in the canonical basis has non-
negative entries. Thus 6 (A[M]) C > o>0 Apm+s; but some power of 6 belongs to
(Aut AlgA)o, hence only s = 0 survives. O

Starting from the canonical grading, new gradings of A can be constructed by
means of morphisms of groups Z" — Z!; we show now that no other grading arises
in this case.

Theorem 2.3. Let A be an algebra with few automorphisms and let
A= EB A, (2.1)
nezt
be any algebra grading of A. Then there is a morphism of groups ¢ : Z" — Z!
such that
A= P Aw. (2.2)
mEL:p(m)=n
for allm € Zt.

Proof. Let T be the torus Z! and let p be the representation of 7 induced by
the grading (2.1). Let V be the vector subspace as in Definition 2.1; since V is
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stable under Aut a1z A4, it is also clearly stable under 7. Consider the commutative
diagram

T P Aut AlgA

oIV res

GL(V).

The map pjy is a homomorphism of algebraic groups; then p is homomorphism
of algebraic groups, say by [13, Ex. 3.10, p. 21]. Since 7 is connected, p(7) C
(Aut p1gA)o. Thus, the transpose of p induces a morphism of groups ¢ : Z" — Z'.

But then A(m) C A‘P(m)' Since

A=Y Am=2( X Aw)cP =4

mez” n€Zt meZr:p(m)=n nezt

we get the equality (2.2). O

2.2 Algebra automorphisms of U (sls)

2.2.1 Notations. We suppose here that g = sl3. Then we have n = 2, C' =
(%3, di =dy =1, and U/ (g) is the algebra generated over k by E; and
Ey satisfying the relations: E?Ey — (¢ + ¢ 2)E\EoEy + F2E? = E2E, — (¢* +
q ?)EyE\Ey + E1E3 = 0. The algebra U (sl3) is usually named the quantum
Heisenberg algebra. In the following we will denote it by H. Setting F3 = E1FEy —
q?Eo 1, it is easy to check (see for instance [2]) that H is the iterated Ore extension
generated over k by the three generators F, F5, F3 with relations:

E\Es = q ?E3Eq, EsEs = ¢>F5 B, EsEy = q 2B Ey — q 2E;.

The center of H is the a polynomial algebra in one indeterminate Z(H) = k[(2]
where the quantum Casimir element (2 is given by:

Q= (1 — q_4)E3E1E2 + q_4E32 = E3F3, with Fg = F1FEy — q_zEgEl.

Let H = @ H,,, be the canonical N*-grading of H, defined putting E; on
degree (1,0) and E9 on degree (0,1). In particular Es, E5 € Hy 1 and Q € Ha 5.

2.2.2 Automorphisms and gradings of U;‘(5[3). For all a, 8 € k*, there
exists one automorphism {/;aﬂ of H such that z’Z;oéﬂ(El) =akF; et {/;aﬂ (E2) = BEs.
We introduce G := {{/?aﬂ; a,B € k*} ~ (kX)2, and the diagram automorphism
w of H defined by w(E;) = E2 and w(FE3) = E;. Studying the action of any
algebra automorphism of H on the center and on the set of normal elements of H,
Proposition 2.3 of [2] proves that Aut aj,H is the semi-direct product of G by the
subgroup of order 2 generated by w (see Proposition 4.4 of [8] for another proof).
So we have for the type Ay the following positive answer to Problem 1.
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Theorem 2.4. For g of type Ao, the algebra H = Uq*(g) satisfies Aut a1gH
(kX)Q X SQ.

OR

Here is a consequence of this result which will be useful in the next section.

Corollary 2.5. Let H = @H,,, be the canonical N*-grading of H. Let H =
@D T be another N%-algebra grading of H. Then there exists a matriz (¥ 9) €
M(2,7Z), with non-negative entries, such that

2
Hon C Tpmtgn,rmtsn,  for all (m,n) € N

Proof. This follows from Theorem 2.3, since H has few automorphisms by Theorem
2.4. O

3 Partial results on the case where g is of type B

A natural step in the study of Problem 1 would be to consider the other Lie algebras
g of rank two. We summarize in this section some partial results concerning the
case Bs.

In this section, k is an algebraically closed field of characteristic zero, and
q € k* a quantization parameter not a root of one.

3.1 Some ring-theoretical properties of the algebra U™

3.1.1 Notations. Let g be the complex simple Lie algebra over k of type Bs.
We denote Ut = U;r (g). We recall all notations of 1.3.1 but denote now by e; the
generators F;; we have here n = 2, C = (32 _21), and (di,d2) = (2,1). Then the
quantum Serre relations are:

23:0 [2]q26?_V€j(—€i)V = O fOI‘ 1= 17] = 2, ai,j = —1, dz = 2,

v

ZB [3}‘16?—”6‘7_(761_)1/ =0 for i = 27] = 17ai,j = 727d2 =1.

v=0Llv
We compute the quantum binomial coefficients: [§]. = [3],. = 1, [{],. =
@ +q% 3], =13],=1 %], =[3], = ¢ + 1 +¢~* We conclude that U™ is the

algebra generated over k by two generators e; and e; with commutation relations:

e2es — (¢ + g %)ereger + exed = 0, (S1)
eser — (¢ +1+q?)ederea+ (> + 1+ g ?)esere3 — ere3 = 0. (S2)
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3.1.2 Ut as an iterated Ore extension. From the natural generators e; and
es of U™, we introduce following [22] the g-brackets:

€3 = €169 — q26261 and Z = €2€3 — q2€362,

Relations (S1) and (S2) imply: ejes = ¢ 2eseq, e12 = ze; and ez = zep. In
particular z is central in U™. From [22], the monomials (z'e}efel) ;. j knens form
a PBW basis of UT. So U™ is the algebra generated over k by eq, es, €3,z with
relations:

€3z = z€3,

_ _ 2
€1z = zéy, €13 = q ~eseéq,

_ _ 2 _ =2 -2
€22 = zeg, exe3 = g-ezex + 2, ege] = q “ejea —q “es.

In other words U™ is the iterated Ore extension (cf. [6]):
Ut =Kles, 2|[e1; o][ea; 7,6] = Slea; 7,8], with notation S = Kkles, z][e1 ; o],

where o is the automorphism of k[es, 2] defined by o(z) = z, o(e3) = ¢~ 2es, 7 is the
automorphism of ke, z][e1 ; o] defined by 7(2) = 2, 7(e3) = ¢%e3, T(e1) = ¢ %e1, 6
is the 7-derivation of k[es, 2][e1 ; o] defined by 6(2) = 0, 6(e3) = z, d(e1) = —q 2es,
and S is the subalgebra of U generated by e3, z and e;.

3.1.3 Grading of Ut. We consider the canonical grading Ut = D,>0 Un
putting the natural generators e; and ey in degree one (and then ez and z are
of degree 2 and 3 respectively) defined from the basis (z'e}efeb) i jxens de UT
by: Un = D310 kt1=n kz'eekel for any n > 0. We denote by I = ®D,.>1 Un the
ideal generated by e, e, €3, 2.

3.1.4 A localization of UT. The subalgebra of U™ generated over k by e; and
e3 is a quantum plane (with eze; = ¢%eje3); we will denote it by kg2[es, e1]. Its
localization at the powers of ez and e; is the quantum torus kg [egi,eli]. The
automorphism 7 and the 7-derivation § extend to ke [egt, eli], and denoting by V'

the algebra k,2[ei, ef][2][e2; 7, 9], we obtain the embedding:
Ut =Kles, 2][er; o]lez; 7, 0] = kyz[es, e1][2][ea; 7,0] C V =kglex, ef][z][e2; T, ],

Let us introduce in UT the bracket: w = egez — ezea = 2z + (¢ — 1)ezeq € Us.
It follows from commutation relations in 3.1.2 that: ejw = we; + (1 — ¢~ 2)e3,

eaw = q2wes, et esw = g 2wes. Then the element:

2 =eqw — ¢ *we; € Uy
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satisfies z’e; = e12’ and 2’es = €37, and so is central in UT. A straightforward
computation shows that its development in the PBW basis of 3.1.2 is:

2 =1-qg 1 —-qg?eserea +q 1 —qg e + (1 — g )zey.

In particular, 2/ = sjes + 8o, with sg = ¢ 4(1 — ¢ 2)e3 + (1 — ¢ *)ze; €
ky2les,e1](z], and s; = (1 — ¢7*)(¢* — 1)eres non-zero in ky2[es, e1][z]. So we
have in V the identity ex = s7'2" — s7'sq, with s7! and s7'sg in kg[ex, ei][2].
Explicitly:

_ 1 1 -1 11, 1 -1
€2 = T n=n % €1 7 T 7163 Z— F_1€1 €3 (1)

We conclude:
Ut CV =kgles,ef][z, 2.

Observe that z and 2’ being central in V, the only relation between the gener-
ators of ¥V which is not a commutation is the g>-commutation ese; = ¢%e;es.

3.1.5 Conjugation in Ut. We have introduced in 3.1.2 the homogeneous ele-
ment es of degree two defined from natural generators e; et es by e3 = ejea—g2eser,

which satisfy eje3 = g 2ese; and ezes — ¢?ezes = 2. Conjugating ¢ in ¢!, we can
also consider:

e =eez — q Zezer = (1 — g Y)erea + g e,

and prove that e;e3 = ¢®eze; and ese3 — ¢ 2ezes = ¢~ *z. We obtain in particular
the relations esez = (1 — ¢ *)q%erezea + ¢ %e2 and 2/ = (1 — ¢ 2)(esez + (1 +
q~?)ze1), which will be used further in the paper.

3.1.6 Center and normalizing elements of UT. Denote by Z(U™") the center
and N(U™) the set of normalizing elements in U™ .

Lemma 3.1. N(U") =Z(U™") =k|z,2].

Proof. The calculation of Z(U™") can be deduced from general results of [7]. The
equality N(UT) = Z(U™) for the type By was observed in [8], Remark 2.2 (iii).
We give here a short direct proof using the embedding U+t C V. Take f € N(UT)
non-zero. From Proposition 2.1 of [8], f is g-central in U™, that is there exist
m,n € Z such that fe; = ¢™e1f and fes = q"esf, and so fez = ¢ "ezf. In V,
the element f is a finite sum:

f=en fui(z2)eie)  with fij(z,2)) € K[z, 2].
Since the polynomials f; ;(z,2") are central in V, the identities fe; = ¢™e1 f
and fez = ¢"1"esf give by identification 2j = m and 2i = —m — n for all i, j
such that f; j(z,2") # 0. Then f = f; ;(z,2")ele}, where i = —™F% and j = 2.
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Its follows from relation (1) of 3.1.4 and from g-commutation fes = g"eaf that
—2j4+2i=2i=-2j—2i=n. Soi=j=n=0,and f = foo(z7) € Kk[z,2].
We have proved that N(U™) C k[z, 2/]. The inverse inclusions k[z, 2| C Z(U™T) C
N(U™) are clear.

Remark 3.2. For g of type By, Autdiagr (g) is trivial and so the main Problem
1 must be here formulated as: do we have Aut o, ,U' ~ (k*)?? The method
used in [2] for the case A; was based on the facts that any automorphism of H
preserves the center Z(H) which is a polynomial algebra in one variable and the
non-empty set of normal but non central elements of H. It follows from Lemma
3.1 that the second argument fails for the case By, and that the first one is much
more complicated to use in view of the structure of the automorphism group of
a commutative polynomial algebra in two variables. A natural idea to determine
the group Aut a1,U™" is to study the action of an automorphism on the prime
spectrum of U™T. The structure of this spectrum remains widely unknown as far as
we know (see further final remark of 3.3) and we only present some partial results
in the following. In particular the two central generators z and 2z’ do not play
symmetric roles (see Proposition 3.4) and we conjecture that any automorphism
of U™ stabilizes the prime ideal (z), which would be sufficient to solve the problem
because of Proposition 3.3.

3.2 Automorphisms stabilizing the prime ideal (z)

3.2.1 The factor algebra Ut /(z). It is clear that the ideal (2) generated in
U™ by the central element z is completely prime, and the factor domain U™t /(z) is
the quantum enveloping algebra H = U, (sl3) considered in 2.2.1. The canonical
map 7 : UT — U™T/(2) induces an isomorphism between U™ /(z) and H defined
by m(e1) = F7 and 7(e2) = Eo, where E; and Es are the natural generators of H
introduced in 2.2.1. Observe that 7(e3) = E3 and 7(2') = (1 — ¢~2)Q.

3.2.2 The group Aut ,(UT). We introduce the subgroup Aut ,(U™) of all auto-
morphisms of the algebra U™ which stabilize the ideal (z). In particular Aut ,(U™)
contains the subgroup G := {¢, 5; a, 3 € k*} ~ (k*)? where 1, g is the auto-
morphism defined for any «, 5 € k* by:

Yapler) =aer et 1Py gle2) = Pea.

It is clear that any 6 € Aut U™ induces an automorphism 6 € Aut H defined
by 0(E1) = w(6(e1)) et 6(F2) = w(6(e2)). We denote by ® the group morphism
®: AutUT — AutH ; 0 — 6. The notation is coherent since ®(G) = G for the
group G~ (k*)? introduced in 2.2.1. The next proposition proves that ® defines

an isomorphism between Aut U+ and G.
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Proposition 3.3. The subgroup Aut ,(U™T) of algebra automorphisms of UT sta-
bilizing the ideal (2) is isomorphic to (k*)2.

Proof. Step 1: we prove that, for any 6 € Aut U™, there exist A\, u € k* and
p(z) € k[z] such that 0(z) = Az and 6(z") = pz’ + p(z).

Take 0 € Aut ,U*. There exists u € UT, u # 0 such that 6(z) = uz. But
0(2) € Z(UT) because z € Z(UT), and then v € Z(U"). Similarly §71(2) = vz
for some v € Z(UT), v # 0. So z = 0(071(2)) = O(v)uz in Z(UT) = K[z, 2]
(see 3.1.6), which implies u € k*. Denoting v = A, we conclude that 6(z) = Az
with A € k™. The restriction of 6 to Z(U™") is a k-automorphism of k[z, 2’] such
that 6(z) = Az. By surjectivity, the z’-degree of 6(z') is necessarily 1. Denote
0(z") = r(2)2' +p(z) with r(2), p(z) € k[z], r(z) # 0. Using an analogue expression
for 6~1(2') in the equality 2z’ = 0(6~1(2’)) we obtain that r(z) = u € k*.

Step 2: we prove that Im ® = G.

Let 6 € AutU™T and 6 = ®(6). From Theorem 2.4, there exist a, 3 € k* and
i € {0,1} such that 6 = ¢, gw'. Suppose that i = 1. Then w = ®(¢') for ¢/ =
ho-1 g-10, which satisfies 7(0'(e1)) = w(E1) = E2 and 7(6'(e2)) = w(Ez) = Ey.
In other words, there exist a,b € U™ such that 6'(e1) = ea+za and €’ (e3) = €1+ 2b.
Applying @ to the first Serre relation (S1) in U™, we obtain:

(e2 + za)?(er + b2) — (¢* + ¢~ 2)(e2 + za)(e1 + b2)(e2 + za) + (e1 + bz)(ex + za)? = 0.

Using the grading of 3.1.3, this identity develops into an expression s +t =0
with s = e3e; — (¢% + ¢~ ?)eaeren + e1e3 € Us and the rest ¢ in D,,~5 Un. Then
s = 0. But the relations of 3.1.5 allow to compute: s = 62(62617— d*eres) —
g 2%(eze1 — q?er1ez)es = —qege3 + 3¢9 = —q 2z # 0. So a contradiction. We
conclude that i = 0, and then 6 = Ja,g ed.

Step 3: we prove that @ is injective.

We fix an automorphism 6 € Aut . (U™) such that § € Ker ®. By definition of
Ker ®, there exist a,b € UT such that:

O(e1) =e1+za and O(es) = es + 2b.
The elements ez and e3 being defined as g-brackets of e; and ez, we deduce:

O(e3) = e3 + zc, where ¢ = (e1b — ¢*beq) + (aez — ¢*eza) + z(ab — ¢?ba)
0(e3) = e3 + 2¢, where ¢ = (e1b — ¢ 2beq) + (aex — ¢ 2e2a) + 2(ab — ¢~ 2ba)

Applying 6 to the relations eje3 = ¢ ?eze; (see 3.1.2) and &3 = (1 —q *)ejea +
q *e3 (see 3.1.5) we obtain by identification:



On the automorphisms of U; (g) 25

(exc — g 2%cer) + (aes — g %eza) + z(ac — ¢ 2ca) =0

(1—-qgHaex + (1 —q¢gHetb+qg*c+(1—qg*zab=c¢

Consider now z = eses3 — q%eses. By step one, there exists some A € kX such
that: Az = 2+ z(eac — gcea) + z(bes — q?e3b) + 2% (bc — g*cb). Simplifying by z, we
obtain A — 1 = (ezc — ¢*cea) + (bes — g%e3b) + z(bc — g*cb). The right member lies
in the ideal I defined in 3.1.3 and the left member is a scalar in k = Uy. Therefore
A = 1. We conclude that:

0(z) =z and (eac — q*ce2) + (bes — g*e3b) + z(be — g*cb) = 0.

Similar calculations for the other central generator 2’ = (1 — ¢~ 2)(esez + (1 +
q~?)ze1) (see 3.1.5), using the equality 0(z') = pz’+p(z) from step one, give u = 1
and p(z) = (1 — ¢=2)zs(z) for some s(z) € k[z] which satisfies:

5(2) = (1 4+ ¢ 2)za + zcc + e3¢ + ¢ *cez + (1 — g *)ceres.

From 3.1.2, we can consider the degree function deg at the indeterminate e
in the polynomial algebra Ut = S[ey; 7,6]. Introduce in particular the three
positive integers d = degf(ey), d = degb(ez) and d” = degf(e3). Comparing
the degree of the two members of all the equalities obtained above, we obtain
by very technical considerations whose details are left to the reader that we have
necessarily d = d’ = 0 et d = 1. In other words there exist a, by, bg,c € S such
that:

O(er) =e1 +za, 6O(ex) =ea+ z(brea +by), O(ez) =ez+zc, 0(z)=z.

In particular the restriction g of 6 to S is an automorphism of S fixing z.
Consider the field of fractions K = k(z), the algebra T = Kles|[e1 ; o] 2 S and the
extension 7 of fg to T'. Since T is a quantum plane over k (with ejes = ¢ %ezeq),
we can apply proposition 1.4.4 of[1] and deduce that the K-automorphism 6r
satisfies O(e;) = fe; and O(es) = ges for some f,g € k*. Because 6(e;) and
O(es) are in the subalgebra S = k[z][es][e1; o] of T = k(z)[es][e1; o], we have
in fact f,g non-zero in k[z]. By the same argument for the automorphism 6!,
there exist f’, g’ non-zero in k|[z] such that 0=1(e;) = f’e; and 67 1(e3) = ges.
By composition of § and §~! it follows that ff’ = g¢’ = 1, and then f,g € k*.
Denoting f = o and g = -y, we obtain ae; = e; + za and ves = ez + zc. These
equalities in S imply (o — 1)e; € 25 and (y — 1)es € 25 with a,vy € k*, and
soa =7 =1and a =c=0. To sum up, we have 0(e1) = ey, 0(e3) = e3 and
0(z) = z. Tt is then easy to check that we have also f(es3) = e3. We conclude that
0 =idy+. O

3.3 Non permutability of the central generators z and 2’

3.3.1 The prime ideal (z’). The ideal (') generated in UT by the central
element 2’ is completely prime. A direct proof consists in checking by computations
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in the iterated Ore extension Ut and its localization V = k,2[e3 ", ef'][2, 2] that
any element v € V satisfying 2’v € U™ is necessarily an element of U™; then the
ideal (') = 2’U™ is no more than the contraction 2’V N U™ of the completely
prime ideal 2’V of V. The complete primeness of (z’) can also be proved by the
algorithmic method of [9], or can be deduced from the description of the H-prime
spectrum of UT (see further 3.4) following the method of [12].

Proposition 3.4. There are no algebra automorphisms of Ut sending (z) to (2')
or (') to (2).

Proof. Recall that H denotes the factor algebra U /(z) and 7 the canonical map
Ut — H (see 2.2.1 and 3.2.1). Denote H' = U*/(2') and 7’ the canonical map
UT — H’. We have observed that the center of H is the polynomial algebra
Z(H) = k[Q]; note that © equals m(z") up to a multiplication by a non-zero scalar.
By direct calculations in H’ one can prove similarly that the center of H' is the
polynomial algebra Z(H') = k[r’(z)]. Consider the standard N2-grading Ut =
D U, putting e on degree (1,0) and ez on degree (0,1). The central generator
z is homogeneous of degree (1,2) and the N2-grading induced on H = U+ /(2) is
just the N%-grading H = @ H,, ,,, considered in 2.2.1. The central generator 2’ is
homogeneous of degree (2,2) and the N2-grading induced on H' = U /(z’) will be
denoted by H' = @ Hj, ,,,.

Now suppose that there exists some algebra automorphism ¢ of U + such that
6(z') = (z). Then 6 induces an isomorphism 6 : H' — H defined by 07’ = =0.
In particular H can be graded by the N2-grading H = @D T, defined by T;, ., =
HA(]HI’ ). Since B3, B3 € H, ; and 2 € Hj », it follows from corollary 2.5 there exist

m,n

two integers 7, s > 1 such that Es3, F3 € T, and Q € To,9,. Set ¢t = 5*1(153),
ty = 0-1(E;), and t = 0-1(Q) = 0~ (E3E3) = tito. By construction we have
ti,te € Hj  and t € Hj, ,,. Because Z(H) = k[Q] and f is an isomorphism
of algebras, t is a generator of the polynomial algebra Z(H') = k[n'(z)]. Then
there exist A € k™, € k such that t = AM'(z) + p. Since t € H, 5., we have
necessarily = 0. We obtain in H' the equality 7’/(z) = A ~!t1t, where A € k* and
ty1,ty € Hj . Choosing u1,ug € U, s such that 7'(u;) = A7ty and 7' (ug) = ta, we
deduce in Ut an equality z = uyus + z’u for some u € UT. Back to the N-grading
Ut = @ U, introduced in 3.1.3, we have clearly ujuy € Us(r+s) whereas z € Us
and 2z’ € Uy. It follows that u = 0, and then z = ujus gives the contradiction. [

Remark 3.5. Suppose that we can prove similarly that U™ /I is not isomorphic
to H ~ U%/(z) for any height one prime ideal I of U™, then we could deduce
that any algebra automorphism of U™ necessarily stabilizes (z) and then give by
Proposition 3.3 a positive answer to Problem 1 (see 3.2). For example, if I = (z—a)
with o € k*, it is possible to separate Ut /I from H up to isomorphism (by
technical considerations on the g-brackets in the both factor algebras which are
not developed here). Unfortunately the complete description of height one prime
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ideals in U™ is not known as far as we know. We restrict in the last subsection to
the graded prime ideals.

3.4 Action on the H-spectrum

3.4.1 H-spectrum of U;‘ (g). In this subsection, g is an arbitrary simple finite-
dimensional Lie algebra. We consider all data and notations of 1.3.1. Denote by
‘H the n-dimensional torus (k*)™. The canonical Z"-grading on U;‘ (g), given by
deg E; = ¢;, the i-th term of the canonical basis of Z", induces a rational ac-
tion of ‘H on Uq+ (g). The H-spectrum of U;r(g) is the set of graded prime ideals.
We denote it by H-Spec U;‘ (g). It determines a stratification of the whole prime
spectrum Spec U, (g). We refer to [6, Section II] for more details on stratifica-
tions of iterated Ore extensions, and summarize here some results obtained in [12]
concerning the case of U (g).

More generally, [12] determines a stratification of Spec S* for a family of alge-
bras S* (denoted also by RY, see [12, p. 217, 1. 7] for the equivalence between
the two notations), where w is an element of the Weyl group W of g. The space
of graded prime ideals of S™ is indexed by the set

WOW = {(z,y) e W x Wz <w <y},

where < is the Bruhat order (see for example [14, App. 1]). The algebra U;‘ (g) is
the particular case w = e, and thus the index set of H-Spec U, (g) is just W. The
author introduces in [12] an ideal Q(y) for any y € W (this is the ideal Q(e,y)e
with the notations of [12, p. 231 and p. 236]), and proves (see [12, 7.1.2, (ii), p.
239] that

H — Spec Uy () = {Q(u)}yew-

By [12, 6.11, p. 236], we have Q(y) C Q(y’) if and only if ¢’ < y. Furthermore,
[12, 5.3.3, p. 225] (with notation Y (y) = Y.(e,y)) asserts that

SpecU (a) = [ Y, (3.1)
yeWw
where Y (y) denotes the set of prime ideals containing Q(y). By [12, 6.12, p. 237],

each subset Y (y) has a unique minimal element, namely Q(y), and coincides with
the H-strata of Spec U, (g) corresponding to the graded prime ideal Q(y), that is:

Y(y) = SpecQ(y)U;r( ) ={P € SpecU/ (g) : ﬂ h.P}.
heH
Applying [12, 6.13, p. 238], the closure of each Y (y) is a union of other Y (y')’s,
namely Y(y) = [[,cw, <, Y (¥'), and the disjoint union (3.1) is then a stratifica-
tion of Spec U,f (g).

3.4.2 H-spectrum of Ut for the type B;. Suppose now that g is of type B,
and keep all notations of 3.1. The Weyl group W is of order 8. Its elements can be
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described by their action on the roots {e1,e2} and as words on the two generators
s1 and s; as follows:

S1: €1t &g, €9 €1, S21 €1t ¢€, €9 > —&2,
S182 ¢ €1+ €2, g9 — —€1, §281 1 €1 > —€2, &2 &,
51828182 = §2818281 ¢ &1 —¢&1, Egt> &g, e: ¢&€1+—é¢&1, Eg9 > E9.

Using the results of [12] recalled in 3.4.1, the H-prime spectrum of Ut = U (g)
has exactly 8 elements. The ideals (0), (e1), (e2) and (e, ez) are clearly graded
prime ideals of UT. This is also the case for the ideals (e3) and (e3), the factor
algebras being in both cases domains isomorphic to a quantum plane. Finally the
prime ideals (z) and (z’) considered in 3.2 and 3.3 are also graded prime ideals of
U™. So the poset (W, <) and the H-spectrum of U™ are:

51828152 (0)

PN 7N

515251 528182 (2) (z")

S189 5251 (63)

e N 7

e (617 €2

/

Proposition 3.6. The subgroup of algebra automorphisms of UT stabilizing the
H-spectrum of Ut is isomorphic to (k*)2.

Proof. Any automorphism of U™ stabilizing the H-spectrum of U™ preserves the
set of height one prime graded ideals of U™, that is {(z), (z')}. Then the result
follows from Propositions 3.3 and 3.4. O

3.4.3 Automorphisms of some subalgebras of U1 indexed by W. Take
all data and notations of 1.3.1 and consider for any w in the Weyl group W of g
and for e = +1 the subalgebras U™ (w, e) of U,f (g) defined in [17]. For any reduced
expression w = s;, S;, ... s;, of an element w € W the elements
BT (BT T T (EC)
1 12 in

11,€ 11,67 12,€ in—1,€

for various (c1,cz,...,¢,) € N™ form a basis of a subspace Ut (w,e) of U (g)
which does not depend of the reduced expression of w ([17] 40.2.1 p. 321). The
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Lusztig automorphisms Ti”e appearing in this definition are the symmetries of
U/ (g) related to the braid group action defined in [17] 37.1.2. From [17] 40.2.1
(d), we have: {(s;w) = l(w) — 1 = E;Ut(w,e) C Ut (w,e). In particular, for
wy the element of maximal length in W, we have U™ (wo,e) = Uf(g) (see the
remark after 40.2.2 of [17]). The subspaces UT(w,e) can be identified with the
subalgebras Uy (n,,) of lemma 1.5 of [8] and also appear in [14] p. 123.

Suppose now that g is of type Bs, take all notations of 3.1 and denote by
A, the subalgebra U™ (w, 1) of UT, for any w € W expressed as a word into the
generators s, and so of 3.4.2. Using the above definition of the basis of A,, and the
properties of the automorphisms 77, (in particular [17] 39.2.3), straightforward
calculations allow to obtain the following description by generators of the eight
subalgebras A, of UT:

U+ = A81528152

= Aszs18281
/ \
k{ea,w,e3) = Ag,sps, Asys,s, = k{eq, €3, W)
k{ea,w) = A s, Asys, = ke, €3)
k{ea) = Ag, As, =k(e1)
\ /
A. =k

with the commutation relations:

W = queg,
left side esw = ¢ 2wes, e3ey = ege3 — W,
—2\ .2 2 2
eqw =wey + (1 —q %)e3, ejea = geze; +e3, e1e3 = g “ezeq.

—_— 27
€1€3 = q~észeéy,
right side < wes = ¢~ %ezw, we, = e1W + (¢* — 1)e32,
—_ — — _ 2 2—— —_ 2
eg€3 = ezez + W, €2€1 = (g €1€2 —(qres, €W = q “wez

The eight algebras are iterated Ore extensions. At level one, A, and A, are
just commutative polynomial algebras in one variable. At level two, Ay, and
As,s, are isomorphic to a same quantum plane (with parameter ¢?) and so by
[1] their group of algebra automorphisms is isomorphic to (k*)2. The third level
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introduces some asymmetry in the diagram. One can prove by direct calculations
(which are left to the reader) similar to the proof of [2, Lemme 2.2 and Proposition
2.3] that:

(i) the center of the algebra A, s, is Z = k[z] with z = (1 — ¢?)ezes + w;

its set of normal elements is N = (J,,~ k[z]w™;

its automorphism group is (k*)? acting by (o, 8) : ez — aes, e3 — Bez, w —
afw.

(ii) the center of the algebra A, s, is Z' = k[u] with u = (1 — ¢~ *)e;w + (¢ —
)es?;

its set of normal elements is N' = J,,~ klu]ez";

its automorphism group is (k*)? acting by (a,7) : e1 — aey, €3+ ez, W —

oflfyzﬁ.

Using the fact that an isomorphism from A s,s,t0 Asys,s, must map N to
N’ and Z to Z’, one can prove by direct computations and identifications using
the basis of monomials into the natural generators, that the algebras A, s,s, and
As,s,s, are not isomorphic.
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