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Abstract. Let g be a simple complex finite dimensional Lie algebra and let U+
q (g) be

the positive part of the quantum enveloping algebra of g. If g is of type A2, the group
of algebra automorphisms of U+

q (g) is a semidirect product (k×)2 o Autdiagr (g); any
algebra automorphism is an automorphism of braided Hopf algebra, and preserves the
standard grading [2]. This intriguing smallness of the group of algebra automorphisms
raises questions about the extent of these phenomena. We discuss some of them in
the present paper. We introduce the notion of “algebra with few automorphisms” and
establish some consequences. We prove some exploratory results concerning the group
of algebra automorphisms for the type B2. We study Hopf algebra automorphisms of
Nichols algebras and their bosonizations and compute in particular the group of Hopf
algebra automorphisms of U+

q (g).
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Introduction

Let g be a finite dimensional complex simple Lie algebra and g = n− ⊕ h⊕ n+ be
a triangular decomposition of g related to a Cartan subalgebra h. The structure
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of the group AutAlgUq(g) of algebra automorphisms of the quantum enveloping
algebra Uq(g) seems to be known only in the elementary case where g is of type A1

(see [1] or [2]). The automorphism group AutAlgǓq(b+) of the augmented form of
the quantum enveloping algebra of the Borel subalgebra b+ = h⊕ n+ is described
for any g in [11]. The groups of Hopf algebra automorphisms of Uq(g) and Ǔq(b+)
are determined in [10] and [11] respectively. We are concerned in this paper with
the group of automorphisms of the quantum enveloping algebra U+

q (g) = Uq(n+)
of the nilpotent part.

Let (V, c) be a braided vector space, see 1.1.1 below, and let B(V ) be the cor-
responding Nichols algebra. We prove that the group AutHopf B(V ) of braided
Hopf algebra automorphisms of B(V ) coincides with the group GL(V, c) of auto-
morphisms of braided vector space of (V, c). Thus we have

AutHopf B(V ) ⊂ AutGrAlg B(V ) ⊂ AutAlg B(V ),

where AutGrAlg means the group of algebra automorphisms homogeneous of degree
0, in this case with respect to the standard grading of B(V ), and AutAlg is the
group of all algebra automorphisms.

The class of Nichols algebras includes symmetric algebras, free algebras, Grass-
mann algebras; thus there is no hope to have a round description of the group
AutAlg B(V ). In particular the computation of this group is a well-known classi-
cal open problem in the case of the symmetric algebras.

Let k be the ground field and let (V, c) be a braided vector space of diagonal
type, n = dim V . Under some technical assumptions, the group GL(V, c) reduces
in this case to the semidirect product of the canonical action of the torus (k×)n

by the subgroup Autdiagr (c) of the symmetric group Sn preserving the matrix of
the braiding.

A fundamental characterization due to Lusztig and Rosso (in different but
equivalent formulations), says that U+

q (g) = B(h) with a diagonal braiding c

with matrix (qdiaij ) built up from q and the Cartan matrix of g; say n = dim h.
Furthermore, Autdiagr c is in the case the group Autdiagr (g) of automorphisms
of the Dynkin diagram of g. Therefore,

AutHopf U+
q (g) ' (k×)n oAutdiagr (g).

The group AutAlgU
+
q (g) was not determined yet, to the best of our knowledge.

However, if g of type A2, then AutAlgU
+
q (g) ' (k×)2 o Autdiagr (g) [2] (see also

[8]). Thus, AutHopf B(V ) = AutGrAlg B(V ) = AutAlg B(V ) in this case. This
intriguing result motivates several questions:

Problem 1. Is it true that AutAlgU
+
q (g) ' (k×)n oAutdiagr (g)?

We conjecture that the answer is positive for any g. But even if the answer were
negative, we would still ask: is it true that AutAlgU

+
q (g) is an algebraic group?
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Problem 2. Determine the braided vector spaces (V, c) such that

AutHopf B(V ) = AutGrAlg B(V ) = AutAlg B(V ).

Graded algebras A with the property AutGrAlg A = AutAlg A do not seem to
abound. Thus, we dare to pose:

Problem 3. Classify graded algebras A with the property AutGrAlg A = AutAlg A.

In this paper we contribute mainly to the first Problem. Let us review the
contents of the article. The first section is about Hopf algebra automorphisms of
Nichols algebras and their bosonizations. We obtain from some general consid-
erations the computation of the group AutHopf Uq(b+) ' (k×)n o Autdiagr (g),
recovering a result from [11].

In Section two, we briefly recall the case of type A2. We introduce the notion
of “algebras with few automorphisms”; we classify gradings of these algebras and
apply to U+

q (sl3).

Section three is an exploration of the case where g is of type B2. Since there are
no nontrivial diagram automorphism in this case, the question is then to determine
if AutAlg U+

q (g) is isomorphic or not to (k×)2.

A basic idea to approach the group AutAlg U+
q (g) is to study its actions on

natural sets. In the paper [2], the study of the actions on the sets of central and
normal elements was crucial. This method fails here because the center of U+

q (g)
is a polynomial algebra k[z, z′] in two variables (which are homogeneous elements
of degree 3 and 4 respectively for the canonical grading) and any normal element
of U+

q (g) is automatically central.

The next natural sets where our group acts are the various spectra; the investi-
gation of these actions is the matter of this section. We begin by the ideals (z) and
(z′); these are completely prime of height one and the factor domain U+

q (g)/(z) is
isomorphic to the quantum Heisenberg algebra U+

q (sl3). Using the results of Sec-
tion two, this allows to separate up to isomorphism the factor domains U+

q (g)/(z)
and U+

q (g)/(z′). We then show, first, that automorphisms of U+
q (g) cannot ex-

change the ideals (z) and (z′); and second, that the subgroup of AutAlg U+
q (g) of

automorphisms preserving the ideal (z) reduces to the torus (k×)2. To progress
further in this direction, we need better knowledge on the prime ideals of height
one. Although the stratification of the prime spectrum is known [12], the full clas-
sification of the prime ideals is still open. We discuss the stratification for type B2

in Subsection 3.4.

Added in proof. After acceptance of this paper, S. Launois gave a positive
answer to Problem 1 for type B2 using our Proposition 3.3. Thus our conjecture
is true in this case. See [15]. Also, Problem 1 is solved for type A3 in [16].
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Convention

We denote by N the set of non-negative integers {0, 1, 2, 3, . . . }.
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1 Braided Hopf algebra automorphisms

In Subsections 1.3 and 1.2 the field k is arbitrary; in 1.3, k has characteristic 0
and contains an element q not algebraic over Q.

1.1 Braided vector spaces

1.1.1 Braided vector spaces. A braided vector space is a pair (V, c) where V
is a vector space V over k and c : V ⊗ V → V ⊗ V is a linear isomorphism that is
a solution of the braid equation (c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).

A braided vector space (V, c) is rigid if V is finite dimensional and the map
c[ : V ∗ ⊗ V → V ⊗ V ∗ is invertible, where

c[ = (evV ⊗ idV⊗V ∗)(idV ∗ ⊗c⊗ idV ∗)(idV ∗⊗V ⊗ coevV ).

Here evV : V ∗ ⊗ V → k is the usual evaluation map, and coevV : k → V ⊗ V ∗ is
the coevaluation (the transpose of the trace).

1.1.2 Automorphisms of a braided vector space of diagonal type. Let
(V, c) be a braided vector space. The braiding c : V ⊗ V → V ⊗ V is said to
be diagonal if there exists a basis x1, . . . , xn of V and a matrix (qij)1≤i,j≤n with
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entries in k× such that c(xi ⊗ xj) = qijxj ⊗ xi for any 1 ≤ i, j ≤ n. In particular,
V is rigid and has finite dimension n ≥ 1.

Remark 1.1. If the braiding is diagonal, then the matrix (qij)1≤i,j≤n does not
depend on the basis x1, . . . , xn, up to permutation of the index set {1, . . . , n}, see
[5, Lemma 1.2].

Let (V, c) be a braided vector space. A linear automorphism g ∈ GL(V ) is said
to be a braided vector space automorphism of (V, c) if g⊗ g commutes with c. We
denote by GL(V, c) the corresponding subgroup of GL(V ).

Suppose that c is of diagonal type for some basis x1, . . . , xn of V and some
matrix (qij)1≤i,j≤n. We consider the following subgroup of the symmetric group
Sn:

Autdiagr (c) := {σ ∈ Sn : qij = qσ(i),σ(j), 1 ≤ i, j ≤ n}.

Any σ in Autdiagr (c) induces naturally an automorphism gσ ∈ GL(V, c) by
gσ(xj) = xσ(j) for 1 ≤ j ≤ n. Any g ∈ GL(V, c) of this type is called a diagram
automorphism of (V, c). Moreover it is clear that the torus (k×)n acts on V by
braided vector space automorphisms. The following lemma gives necessary condi-
tions for the group GL(V, c) to be generated by these two particular subgroups.

Lemma 1.2. Let (V, c) be a braided vector space of diagonal type, with respect to
a basis x1, . . . , xn of V and a matrix (qij)1≤i,j≤n with entries in k×. Assume that
at least one of the following conditions is satisfied:

(i) For any i 6= j, there exists h such that qih 6= qjh.
(ii) For any i 6= j, there exists h such that qhi 6= qhj.
(iii) For any i 6= j, the matrix

( qii qij
qji qjj

)
is not of the form ( q q

q q ).
Then we have

GL(V, c) ' (k×)n oAutdiagr (c).

Proof. Let g ∈ GL(V ); denote g(xi) =
∑

s λs,ixs, 1 ≤ i ≤ n. Then

(g ⊗ g)(c(xi ⊗ xj)) = (g ⊗ g)(qij(xj ⊗ xi)) =
∑

1≤r,s≤n

qijλr,jλs,i xr ⊗ xs,

c(g ⊗ g)(xi ⊗ xj) = c
( ∑

1≤r,s≤n

λr,jλs,i xs ⊗ xr

)
=

∑

1≤i,j≤n

qsrλr,jλs,i xr ⊗ xs.

Therefore g ∈ GL(V, c) is and only if

qijλr,jλs,i = qsrλr,jλs,i, for all 1 ≤ i, j, r, s ≤ n. (1.1)

Suppose g ∈ GL(V, c). Since g is invertible, there exists σ ∈ Sn such that
λσ(h),h 6= 0 for any 1 ≤ h ≤ n. Then we deduce from (1.1) that qij = qσ(i),σ(j) for
all 1 ≤ i, j ≤ n.
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Assume first that (i) is satisfied, and choose i, s ∈ {1, . . . , n} such that λs,i 6= 0.
Apply (1.1) with any j and r = σ(j). We obtain qs,σ(j) = qij = qσ(i),σ(j), for any
1 ≤ j ≤ n; then s = σ(i). This implies that g(xi) = λσ(i),ixσ(i) for any 1 ≤ i ≤ n,
and proves the result.

Assume now that (ii) is satisfied, and choose j, r ∈ {1, . . . , n} such that λr,j 6= 0.
Apply (1.1) with any i and s = σ(i). We obtain qσ(i),r = qij = qσ(i),σ(j), for any
1 ≤ i ≤ n; then r = σ(j) and we conclude as in the previous case.

Finally assume that we have (iii) and take i = j in (1.1). If λs,i 6= 0 then
qii = qσ(i),s = qs,σ(i) = qσ(i),σ(i); therefore s = σ(i) and we conclude as above.

1.1.3 Braided Hopf algebras. A non-categorical version of the concept of
braided Hopf algebra was studied in [21]. A braided Hopf algebra is a collection
(R,m, ∆, c) such that

• (R, c) is a braided vector space,

• (R,m) is an associative algebra with unit 1,

• (R, ∆) is a coassociative coalgebra with counit ε,

• m,∆, 1, ε commute with c in the sense of [21],

• ∆ ◦m = (m⊗m)(id⊗c⊗ id)(∆⊗∆),

• the identity has an inverse for the convolution product in End R (this inverse
is called the antipode and denoted by S).

Here, recall that the convolution product of f, g ∈ End R is given by f ∗ g =
m(f ⊗ g)∆.

A homomorphism of braided Hopf algebras is a linear map preserving m,∆, c.

Lemma 1.3. Let R be a braided Hopf algebra and let T : R → R be a linear
isomorphism that is an algebra and coalgebra map. Then T is a morphism of
braided Hopf algebras.

Proof. Let us define T.f := TfT−1, f ∈ End R. Then

T.(f ∗ g) = T (m(f ⊗ g)∆) T−1 = m(T ⊗ T )(f ⊗ g)(T−1 ⊗ T−1)∆ = (T.f) ∗ (T.g);

hence T.S = S, or TS = ST . But it was shown in [20] that the braiding of a
braided Hopf algebra can be expressed in terms of the product, coproduct and
antipode. Thus T preserves also the braiding c.

The group of braided Hopf algebra automorphisms of R is denoted by AutHopf R.
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1.1.4 Yetter-Drinfeld modules. Yetter-Drinfeld modules give rise to braided
vector spaces and play a fundamental rôle in problems related to the classification
of Hopf algebras.

Let us recall that a Yetter-Drinfeld module V over a Hopf algebra H with
bijective antipode S is both a left H-module and left H-comodule, such that the
action H ⊗ V →̇V and the coaction δ : V → H ⊗ V satisfy the compatibility
condition: δ(h.v) = h(1)v(−1)Sh(3) ⊗ h(2).v(0) for all h ∈ H, v ∈ V . We denote by
H
HYD the category of Yetter-Drinfeld modules over H, where morphisms respect
both the action and the coaction of H.

The usual tensor product defines a structure of monoidal category on H
HYD. It is

braided, with braiding cV,W : V ⊗W → W⊗V defined by c(v⊗w) = v(−1).w⊗v(0),
for V,W ∈ H

HYD, v ∈ V , w ∈ W . Then (V, cV,V ) is a braided vector space, for
any V ∈ H

HYD. It is known that any rigid braided vector space can be realized
as a Yetter-Drinfeld module over a (non-unique) Hopf algebra, essentially by the
FRT-construction; see [21] for references and details.

As in any braided monoidal category, there is the notion of Hopf algebras in
H
HYD. Hopf algebras in H

HYD are braided Hopf algebras by forgetting the action
and the coaction. Conversely, let R be any braided Hopf algebra whose underlying
braided vector space is rigid. Then there exists a (non-unique) Hopf algebra H
such that R can be realized as a Hopf algebra in H

HYD [21].

1.1.5 Bosonizations of a Hopf algebra in H
HYD. We recall the bosonization

procedure, or Radford biproduct, found by Radford and explained in terms of
braided categories by Majid.

Let H be a Hopf algebra with bijective antipode. Let R be a Hopf algebra
in H

HYD. The bosonization of R by H is the (usual) Hopf algebra A = R#H,
with underlying vector space R ⊗ H, whose multiplication and comultiplication
are given by:

(r#h)(s#f) = r(h(1).s)#h(2)f and ∆(r#h) = r(1)#(r(2))(−1)h(1) ⊗ (r(2))(0)#h(2).

The maps π : A → H, r#h 7→ ε(r)h and ι : H → A, h 7→ 1#h are Hopf algebra
homomorphisms and R = {a ∈ A : (id⊗π)∆(a) = a⊗ 1}.

Conversely, let A, H be Hopf algebras with bijective antipode and let π :
A → H and ι : H → A be Hopf algebra homomorphisms such that πι = idH .
Then R = {a ∈ A : (id⊗π)∆(a) = a ⊗ 1} is a Hopf algebra in H

HYD and the
multiplication induces an isomorphism of Hopf algebras R#H ' A.
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1.1.6 Nichols algebras. We recall the definition of Nichols algebra, see [4] for
details and references.

Let V ∈ H
HYD. A graded Hopf algebra R =

⊕
n≥0 R(n) in H

HYD is called a
Nichols algebra of V if k ' R(0) and V ' R(1) in H

HYD, and if:

R(1) = P(R), the space of primitive elements of R, (1.2)
R is generated as an algebra by R(1). (1.3)

The Nichols algebra of V exists and is unique up to isomorphism; it is denoted
by B(V ) =

⊕
n≥0 Bn(V ). The associated braided Hopf algebra (forgetting the

action and the coaction) depends only on the braided vector space (V, c). We shall
identify V with the subspace of homogeneous elements of degree one in B(V ).

Let us recall the following explicit construction of B(V ). For any integer m ≥ 2,
we denote by Bm the m-braid group. A presentation of Bm is given by generators
σ1, . . . , σm−1 and relations σiσj = σjσi if |i− j| ≥ 2 an σiσi+1σi = σi+1σiσi+1 for
any 1 ≤ i ≤ m− 2. There is a natural projection π : Bm → Sm sending σi to the
transposition τi := (i, i + 1) for all i. This projection π admits a set-theoretical
section s : Sm → Bm determined by

s(τi) = σi, 1 ≤ i ≤ n− 1, s(τω) = s(τ)s(ω), if `(τω) = `(τ) + `(ω).

Here ` denotes the length of an element of Sm with respect to the set of generators
τ1, . . . , τm−1. The map s is called the Matsumoto section. In other words, if
ω = τi1 . . . τij is a reduced expression of ω ∈ Sm, then s(ω) = σi1 . . . σij . Using
the section s, the following distinguished elements of the group algebra kBm are
defined:

Sm :=
∑

σ∈Sm

s(σ).

By convention, we still denote by Sm the images of these elements in End(Tm(V ))
= End(V ⊗m) via the representation ρm : Bm → Aut (V ⊗m) defined by ρm(σi) =
id⊗ . . .⊗ id⊗c⊗ id⊗ . . .⊗ id, with c acting on the tensor product of the copies of
V indexed by i and i + 1.

Let c̃ be the canonical extension of c into a braiding of T (V ). Let T (V )⊗T (V )
be the algebra whose underlying vector space is T (V ) ⊗ T (V ) with the product
“twisted" by c̃. There is a unique algebra map ∆ : T (V ) → T (V )⊗T (V ) such
that ∆(v) = v ⊗ 1 + 1 ⊗ v, v ∈ V . Then T (V ) is a braided Hopf algebra and
B(V ) = T (V )/J where J =

⊕
m≥0 KerSm (see for instance [4], [18] or [19]).

1.2 Automorphisms of Nichols algebras and their
bosonizations

1.2.1 Hopf algebra automorphisms of a Nichols algebra. We can now com-
pute the group of Hopf algebra automorphisms of a Nichols algebra, cf. the nota-
tion introduced in 1.1.2.
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Theorem 1.4. There is a group isomorphism B : GL(V, c) → AutHopf B(V ).

Proof. For any g ∈ GL(V ), we denote by g̃ the canonical extension of g into an
algebra automorphism of T (V ). If g commutes with c, then g̃ commutes with∑

m≥2 Sm, and so induces an algebra automorphism B(g) of B(V ) = T (V )/J .
In order to prove that B(g) is also a coalgebra automorphism of B(V ), we claim
that g̃ is a coalgebra map: ((g̃ ⊗ g̃) ◦∆)(v) = (∆ ◦ g̃)(v), for any v ∈ T (V ).

It is clear that this assertion is true when v ∈ V . So it is enough to prove
that g̃ ⊗ g̃ is a morphism of the algebra T (V )⊗T (V ). For that, let us consider
u, v, x, y ∈ T (V ). Let us set c̃(y⊗ u) = u′ ⊗ y′ in a symbolic way. By definition of
the twisted product in T (V ), we have (x⊗ y)(u⊗ v) = xu′ ⊗ y′v, then:

(g̃ ⊗ g̃)((x⊗ y)(u⊗ v)) = g̃(x)g̃(u′)⊗ g̃(y′)g̃(v).

Moreover, it is easy to check that the assumption g ∈ GL(V, c) implies g̃ ∈
GL(T (V ), c̃), so (g̃ ⊗ g̃)(u′ ⊗ y′) = c̃(g̃(y)⊗ g̃(u)), and then:

(g̃ ⊗ g̃)(x⊗ y)(g̃ ⊗ g̃)(u⊗ v) = (g̃(x)⊗ g̃(y))(g̃(u)⊗ g̃(v)) = g̃(x)g̃(u′)⊗ g̃(y′)g̃(v).

Hence (g̃ ⊗ g̃)((x ⊗ y)(u ⊗ v)) = (g̃ ⊗ g̃)(x ⊗ y)(g̃ ⊗ g̃)(u ⊗ v), as claimed. By
Lemma 1.3, B(g) preserves c. Thus, we have a well-defined map B : GL(V, c) →
AutHopf B(V ), which is injective by (1.3).

Conversely, let u : B(V ) → B(V ) be an automorphism of braided Hopf alge-
bras. Then u(V ) = V since V = P (B(V )) and the theorem follows.

1.2.2 Automorphisms of bosonizations. Our goal is to compute the Hopf
algebra automorphisms of A = R#H when R is a Nichols algebra, under suitable
hypothesis. The exposition is inspired by [3, Section 6]. We begin by a description
of a natural class of such automorphisms, for general R.

Lemma 1.5. Let H be a Hopf algebra and let R be a Hopf algebra in H
HYD. Let

G : R → R and T : H → H be linear maps. Then G#T := G⊗T : R#H → R#H
is a Hopf algebra map if and only if the following conditions hold:

T is a Hopf algebra automorphism of H, (1.4)
G is a Hopf algebra automorphism of R, (1.5)
G(h.s) = T (h).G(s), s ∈ R, h ∈ H, (1.6)
δ ◦G = (T ⊗G) ◦ δ. (1.7)

Proof. Left to the reader.

A pair (G,T ) as in the Lemma shall be called compatible.

Lemma 1.6. Let H be a Hopf algebra and V a Yetter-Drinfeld module over H.
(i) Assume that H is cosemisimple, and that the following hypothesis holds:
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(H) the types of the isotypic components of V #H under the adjoint action of
H do not appear in the adjoint action of H on itself.

Then any Hopf algebra automorphism of B(V )#H is of the form G#T , with
(G,T ) compatible.

(ii) If in addition H is commutative, then (H) is equivalent to:

(H′) the trivial representation does not appear as a subrepresentation of V .

Proof. (i). Let Φ be a Hopf algebra automorphism of A = B(V )#H. It is known
that the coradical filtration of A is Am =

⊕
0≤n≤m Bn(V )#H [4, 1.7]. Since Φ

is a coalgebra map, it preserves the coradical filtration. In particular, Φ(H) = H
and Φ(H ⊕ V #H) = H ⊕ V #H. Let T : H → H be the restriction of Φ;
it is an automorphism of Hopf algebras. Also, Φ : H ⊕ V #H → H ⊕ V #H
preserves the adjoint action of H. By hypothesis (H), Φ(V #H) = V #H. Since
Φ is an algebra map, this implies that Φ(Bn(V )#H) = Bn(V )#H, by (1.3). Let
π : A → H be the projection with kernel

⊕
n≥1 Bn(V )#H; clearly, Φπ = πΦ.

Hence Φ(B(V )) = B(V ), since B(V ) = {v ∈ A : (id⊗π)∆(v) = v ⊗ 1}. Let
G : B(V ) → B(V ) be the restriction of Φ. Since Φ is an algebra map, Φ = G#T .
By Lemma 1.5, the pair (G,T ) is compatible.

(ii). If H is commutative, the adjoint action of H on itself is trivial, and the
isotypic components of the adjoint action of H on V #H are of the form U#H,
where U runs in the set of isotypic components of the adjoint action of H on V .
This shows that (H) is equivalent to (H′) in this case.

The hypothesis (H) is needed, as the following example shows. Let A =
k[x, g, g−1] be the tensor product of the polynomial algebra in x and the Laurent
polynomial algebra in g. This is a Hopf algebra with x primitive and g group-like.
The Hopf algebra automorphism T : A → A, T (g) = g, T (x) = x+1− g, does not
preserve the Nichols algebra k[x].

We now consider the following particular setting. We assume that H = kΓ is
the group algebra of an abelian group. We also assume the existence of a basis
x1, . . . , xn of V such that, for some elements g1, . . . , gn ∈ Γ, χ1, . . . , χn ∈ Γ̂, the
action and coaction of Γ are given by

h.xj = χj(h)xj , δ(xj) = g(j)⊗ xj , 1 ≤ j ≤ n.

Theorem 1.7. Suppose further that

χi 6= ε, 1 ≤ i ≤ n, (1.8)
(gi, χi) 6= (gj , χj), 1 ≤ i 6= j ≤ n. (1.9)

Then there is a bijective correspondence between AutHopf B(V )#H, and the
set of pairs (φ, ψ), where ψ is a group automorphism of Γ and φ : V → V is a
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linear isomorphism given by φ(xi) = λixσ(i), 1 ≤ i ≤ n, with λi ∈ k× and σ ∈ Sn,
such that

ψ(gi) = gσ(i), χi = χσ(i) ◦ ψ, 1 ≤ i ≤ n. (1.10)

Proof. Condition (1.8) guarantees that hypothesis (H′) holds. Thus any Hopf
algebra automorphism of B(V )#H is of the form G#T , with (G,T ) compatible,
by Lemma 1.6. But T is determined by a group automorphism ψ of Γ, and G is of
the form B(φ) for some φ ∈ GL(V, c) by Theorem 1.4. Now conditions (1.6) and
(1.7) imply that

γ.φ(xi) = (χi ◦ ψ−1)(γ)φ(xi), δ(φ(xi)) = ψ(gi)⊗ φ(xi), γ ∈ Γ, 1 ≤ i ≤ n,

and thus
φ(xi) ∈

∑

j : ψ(gi)=gj , χi◦ψ−1=χj

kxj , 1 ≤ i ≤ n.

But condition (1.9) implies that there is only one j such that ψ(gi) = gj , χi◦ψ−1 =
χj ; set σ(i) = j. This defines σ, and clearly (1.10) holds.

Conversely, any pair (φ, ψ) as above gives raise to a compatible pair (G,T )
with G = B(φ) and T determined by ψ.

1.3 Hopf algebra automorphisms of Nichols algebras of
Drinfeld-Jimbo type

1.3.1 Definition and notations (cf. [6], [14], [17]). We fix q ∈ k×, q not
algebraic over Q. Let g be a simple finite dimensional Lie algebra of rank n
over k. Let g = n− ⊕ h ⊕ n+ be a triangular decomposition of g related to a
Cartan subalgebra h of g. Let C = (ai,j)1≤i,j≤n the associated Cartan matrix
and (d1, . . . , dn) the relatively primes integers symmetrizing C. The quantum
enveloping algebra of the nilpotent positive part n+ of g, denoted by Uq(n+) or
U+

q (g), is the algebra generated over k by n generators E1, . . . , En satisfying the
quantum Serre relations:

∑1−ai,j

ν=0 [ 1−ai,j
ν ]

qdi
E

1−ai,j−ν
i Ej(−Ei)ν = 0 for all 1 ≤ i 6= j ≤ n.

The quantum enveloping algebra of the positive Borel algebra b+ = h ⊕ n+,
denoted by Uq(b+), is the algebra generated over k by E1, . . . , En, K±1

1 , . . . ,K±1
n

satisfying the quantum Serre relations, the commutation between the Ki’s and the
q-commutation relations:

KiEj = qdiai,j EjKi for all 1 ≤ i, j ≤ n.

It is well-known that Uq(b+) is a Hopf algebra for the coproduct, counit and
antipode defined by

∆(Ki) = Ki ⊗Ki, ε(Ki) = 1, S(Ki) = K−1
i ,

∆(Ei) = Ei ⊗ 1 + Ki ⊗ Ei, ε(Ei) = 0, S(Ei) = −KiEi.

We denote by H the Hopf subalgebra H = k[K±1
1 , . . . , K±1

n ] ' kZn of Uq(b+).
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1.3.2 Braided Hopf algebra structure on U+
q (g). From Corollary 33.1.5 of

[17] or Theorem 15 of [19], we have U+
q (g) = B(V ) for V = kE1⊕ . . .⊕kEn and c

the diagonal braiding of V defined from the Cartan matrix C = (ai,j)1≤i,j≤n and
the integers (d1, . . . , dn) by

c(Ei ⊗ Ej) = qdiai,j Ej ⊗ Ei.

Let ι : H → Uq(b+) be the inclusion and let π : Uq(b+) → H be the unique
Hopf algebra map such that π(Ki) = Ki, π(Ei) = 0. Then πι = idH and U+

q (g) =
{a ∈ Uq(b+) : (id⊗π)∆(a) = a⊗ 1}. Hence

Uq(b+) ' U+
q (g)#H,

cf. Subsection (1.1.5). Here the coaction is determined by δ(Ei) = gi ⊗ Ei, with
gi = Ki, 1 ≤ i ≤ n. Also, the action is determined by γ.Ei = χi(γ)Ei, for
γ ∈ Γ = Zn, where χi ∈ Γ̂ is defined by χi(Kj) = qdiai,j , 1 ≤ i, j ≤ n.

1.3.3 Automorphisms of U+
q (g) and U+

q (b). With the notations of 1.1.2
for qi,j = qdiai,j , the subgroup Autdiagr c of Sn is the group Autdiagr (g) of
automorphisms of the Dynkin diagram of g (see for instance [10]), which acts by
automorphisms on U+

q (g) and Uq(b+) by:

σ ∈ Autdiagr (g) : Ei 7→ Eσ(i), Ki 7→ Kσ(i) for any 1 ≤ i ≤ n.

The n-dimensional torus on k also acts by automorphisms on U+
q (g) and

Uq(b+), by:

(α1, . . . , αn) ∈ (k×)n : Ei 7→ αiEi, Ki 7→ Ki for any 1 ≤ i ≤ n.

Now we can prove the following theorem.

Theorem 1.8. AutHopf U+
q (g) ' (k×)n oAutdiagr (g) ' AutHopf Uq(b+).

Proof. The first isomorphism just follows from Lemma 1.2 and Theorem 1.4.
Let Γ = Zn, gi and χi as above. By Theorem 1.7, any T ∈ AutHopf Uq(b+) is

determined by a pair (φ, ψ), where ψ is a group automorphism of Γ and φ : V → V
is a linear isomorphism given by φ(xi) = λixσ(i), 1 ≤ i ≤ n, with λi ∈ k× and
σ ∈ Sn, such that (1.10) holds. Then

qdiai,j = χi(Kj) = χiψ
−1ψ(Kj) = χσ(i)(Kσ(j)) = qdσ(i)aσ(i),σ(j) ,

hence σ ∈ Autdiagr (g). Furthermore, ψ is uniquely determined by σ. This implies
the second isomorphism.

Remark 1.9. The second isomorphism in the Theorem was proved previously in
[11] as a corollary of the description of the group of all algebra automorphisms
AutAlgUq(b+) (in fact for the slightly different augmented algebra Ǔq(b+)). Effec-
tively there exist automorphisms of the algebra Ǔq(b+) which are not Hopf algebra
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automorphisms; in particular some combinatorial infinite subgroups of n× n ma-
trices with coefficients in Z, as well as the natural action of the 2n-dimensional
torus on the Ei’s and Kj ’s.

2 The case where g is of type A2

In this section the field k has characteristic 0; in Subsection 2.2, q ∈ k× is not a
root of one.

2.1 Graded algebras with few automorphisms

Here we consider graded algebras with few automorphisms. To begin with, we
recall the well-known equivalence between gradings and rational actions, see [6, p.
150 ff.] and references therein.

Let H be an algebraic group. A representation ρ : H → Aut kV of H on a
vector space V is rational if V is union of finite dimensional rational H-modules.

If H = (k×)r is a torus, then there is a bijective correspondence between

• rational actions of H on V , and

• gradings V =
⊕

m∈Zr Vm.

In this correspondence, Vm is the isotypic component of type m, where Zr is
identified with the group of rational characters of H. Thus, H-submodules of V
are rational, and they are exactly the graded subspaces of V .

Let A be an associative algebra over k. A rational action of H on A is one
induced by a rational representation ρ : H → AutAlgA by algebra automorphisms.
If H = (k×)r is a torus, then there is a bijective correspondence between

• rational actions of H on A, and

• algebra gradings A =
⊕

m∈Zr Am.

Definition 2.1. An associative algebra A has few automorphisms if the following
conditions hold.

(i) There exists a finite dimensional AutAlgA-invariant subspace V such that
the restriction AutAlgA → GL(V ) is injective; we identify AutAlgA with its image
in GL(V );

(ii) AutAlgA is an algebraic subgroup of GL(V );
(iii) the action of AutAlgA on A is rational;
(iv) the connected component (AutAlgA)0 of the identity of AutAlgA is iso-

morphic to a torus (k×)r.
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Let A be an algebra with few isomorphisms. Then A has a canonical grading
induced by the rational action of (AutAlgA)0 ' (k×)r:

A =
⊕

m∈Zr

A(m).

Let | | : Zr → Z be the function |m| = ∑
1≤j≤r mj , if m = (m1, . . . ,mr) ∈ Zr.

The Z-grading induced by the canonical grading via | | shall be called the standard
grading and denoted A =

⊕
M∈Z A[M ]. Thus

A[M ] =
⊕

m∈Zr:|m|=M

A(m), M ∈ Z.

Lemma 2.2. Let A be an algebra with few automorphisms.
(i) Any algebra automorphism preserves the canonical grading, and those in

(AutAlgA)0 are homogeneous of degree 0.

(ii) Assume that the canonical grading is nonnegative: A =
⊕

m∈Nr A(m). Then
any algebra automorphism is homogeneous of degree 0 with respect to the standard
grading.

Proof. (i). Let θ ∈ AutAlgA, let innθ : AutAlgA → AutAlgA be the inner automor-
phism defined by θ and let înnθ : Zr → Zr be the induced group homomorphism.
Then θ

(
A(m)

)
= A

(înnθ(m))
for any m ∈ Zr, and this implies the claim.

(ii). Under this hypothesis, the matrix of înnθ in the canonical basis has non-
negative entries. Thus θ

(
A[M ]

) ⊆ ∑
s≥0 A[M ]+s; but some power of θ belongs to

(AutAlgA)0, hence only s = 0 survives.

Starting from the canonical grading, new gradings of A can be constructed by
means of morphisms of groups Zr → Zt; we show now that no other grading arises
in this case.

Theorem 2.3. Let A be an algebra with few automorphisms and let

A =
⊕

n∈Zt

An (2.1)

be any algebra grading of A. Then there is a morphism of groups ϕ : Zr → Zt

such that
An =

⊕

m∈Zr:ϕ(m)=n

A(m), (2.2)

for all n ∈ Zt.

Proof. Let T be the torus Zt and let ρ be the representation of T induced by
the grading (2.1). Let V be the vector subspace as in Definition 2.1; since V is
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stable under AutAlgA, it is also clearly stable under T . Consider the commutative
diagram

T

ρ|V ""FF
FF

FF
FF

F
ρ // AutAlgA

res
yyrrrrrrrrrr

GL(V ).

The map ρ|V is a homomorphism of algebraic groups; then ρ is homomorphism
of algebraic groups, say by [13, Ex. 3.10, p. 21]. Since T is connected, ρ(T ) ⊆
(AutAlgA)0. Thus, the transpose of ρ induces a morphism of groups ϕ : Zr → Zt.
But then A(m) ⊂ Aϕ(m). Since

A =
∑

m∈Zr

A(m) =
∑

n∈Zt

( ∑

m∈Zr:ϕ(m)=n

A(m)

)
⊆

⊕

n∈Zt

An = A,

we get the equality (2.2).

2.2 Algebra automorphisms of U+
q (sl3)

2.2.1 Notations. We suppose here that g = sl3. Then we have n = 2, C =(
2 −1
−1 2

)
, d1 = d2 = 1, and U+

q (g) is the algebra generated over k by E1 and
E2 satisfying the relations: E2

1E2 − (q2 + q−2)E1E2E1 + E2E
2
1 = E2

2E1 − (q2 +
q−2)E2E1E2 + E1E

2
2 = 0. The algebra U+

q (sl3) is usually named the quantum
Heisenberg algebra. In the following we will denote it by H. Setting E3 = E1E2 −
q2E2E1, it is easy to check (see for instance [2]) that H is the iterated Ore extension
generated over k by the three generators E1, E2, E3 with relations:

E1E3 = q−2E3E1, E2E3 = q2E3E2, E2E1 = q−2E1E2 − q−2E3.

The center of H is the a polynomial algebra in one indeterminate Z(H) = k[Ω]
where the quantum Casimir element Ω is given by:

Ω = (1− q−4)E3E1E2 + q−4E2
3 = E3E3, with E3 = E1E2 − q−2E2E1.

Let H =
⊕
Hm,n be the canonical N2-grading of H, defined putting E1 on

degree (1, 0) and E2 on degree (0, 1). In particular E3, E3 ∈ H1,1 and Ω ∈ H2,2.

2.2.2 Automorphisms and gradings of U+
q (sl3). For all α, β ∈ k×, there

exists one automorphism ψ̃α,β of H such that ψ̃α,β(E1) = αE1 et ψ̃α,β(E2) = βE2.
We introduce G̃ := {ψ̃α,β ; α, β ∈ k×} ' (k×)2, and the diagram automorphism
ω of H defined by ω(E1) = E2 and ω(E2) = E1. Studying the action of any
algebra automorphism of H on the center and on the set of normal elements of H,
Proposition 2.3 of [2] proves that AutAlgH is the semi-direct product of G̃ by the
subgroup of order 2 generated by ω (see Proposition 4.4 of [8] for another proof).
So we have for the type A2 the following positive answer to Problem 1.
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Theorem 2.4. For g of type A2, the algebra H = U+
q (g) satisfies AutAlgH '

(k×)2 o S2.

Here is a consequence of this result which will be useful in the next section.

Corollary 2.5. Let H =
⊕
Hm,n be the canonical N2-grading of H. Let H =⊕

Tm,n be another N2-algebra grading of H. Then there exists a matrix ( p q
r s ) ∈

M(2,Z), with non-negative entries, such that

Hm,n ⊂ Tpm+qn,rm+sn, for all (m,n) ∈ N2.

Proof. This follows from Theorem 2.3, since H has few automorphisms by Theorem
2.4.

3 Partial results on the case where g is of type B2

A natural step in the study of Problem 1 would be to consider the other Lie algebras
g of rank two. We summarize in this section some partial results concerning the
case B2.

In this section, k is an algebraically closed field of characteristic zero, and
q ∈ k× a quantization parameter not a root of one.

3.1 Some ring-theoretical properties of the algebra U+

3.1.1 Notations. Let g be the complex simple Lie algebra over k of type B2.
We denote U+ = U+

q (g). We recall all notations of 1.3.1 but denote now by ei the
generators Ei; we have here n = 2, C =

(
2 −1
−2 2

)
, and (d1, d2) = (2, 1). Then the

quantum Serre relations are:
∑2

ν=0 [ 2
ν ]q2e

2−ν
i ej(−ei)ν = 0 for i = 1, j = 2, ai,j = −1, di = 2,

∑3
ν=0 [ 3

ν ]qe
3−ν
i ej(−ei)ν = 0 for i = 2, j = 1, ai,j = −2, di = 1.

We compute the quantum binomial coefficients: [ 2
0 ]q2 = [ 2

2 ]q2 = 1, [ 2
1 ]q2 =

q2 + q−2, [ 3
0 ]q = [ 3

3 ]q = 1, [ 3
1 ]q = [ 3

2 ]q = q2 + 1 + q−2. We conclude that U+ is the
algebra generated over k by two generators e1 and e2 with commutation relations:

e2
1e2 − (q2 + q−2)e1e2e1 + e2e

2
1 = 0, (S1)

e3
2e1 − (q2 + 1 + q−2)e2

2e1e2 + (q2 + 1 + q−2)e2e1e
2
2 − e1e

3
2 = 0. (S2)
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3.1.2 U+ as an iterated Ore extension. From the natural generators e1 and
e2 of U+, we introduce following [22] the q-brackets:

e3 = e1e2 − q2e2e1 and z = e2e3 − q2e3e2,

Relations (S1) and (S2) imply: e1e3 = q−2e3e1, e1z = ze1 and e2z = ze2. In
particular z is central in U+. From [22], the monomials (ziej

3e
k
1el

2)(i,j,k,l)∈N4 form
a PBW basis of U+. So U+ is the algebra generated over k by e1, e2, e3, z with
relations:

e3z = ze3,
e1z = ze1, e1e3 = q−2e3e1,
e2z = ze2, e2e3 = q2e3e2 + z, e2e1 = q−2e1e2 − q−2e3.

In other words U+ is the iterated Ore extension (cf. [6]):

U+ = k[e3, z][e1 ; σ][e2 ; τ, δ] = S[e2 ; τ, δ], with notation S = k[e3, z][e1 ; σ],

where σ is the automorphism of k[e3, z] defined by σ(z) = z, σ(e3) = q−2e3, τ is the
automorphism of k[e3, z][e1 ; σ] defined by τ(z) = z, τ(e3) = q2e3, τ(e1) = q−2e1, δ
is the τ -derivation of k[e3, z][e1 ; σ] defined by δ(z) = 0, δ(e3) = z, δ(e1) = −q−2e3,
and S is the subalgebra of U+ generated by e3, z and e1.

3.1.3 Grading of U+. We consider the canonical grading U+ =
⊕

n≥0 Un

putting the natural generators e1 and e2 in degree one (and then e3 and z are
of degree 2 and 3 respectively) defined from the basis (ziej

3e
k
1el

2)(i,j,k,l)∈N4 de U+

by: Un =
⊕

3i+2j+k+l=n kziej
3e

k
1el

2 for any n ≥ 0. We denote by I =
⊕

n≥1 Un the
ideal generated by e1, e2, e3, z.

3.1.4 A localization of U+. The subalgebra of U+ generated over k by e1 and
e3 is a quantum plane (with e3e1 = q2e1e3); we will denote it by kq2 [e3, e1]. Its
localization at the powers of e3 and e1 is the quantum torus kq2 [e±3 , e±1 ]. The
automorphism τ and the τ -derivation δ extend to kq2 [e±3 , e±1 ], and denoting by V
the algebra kq2 [e±3 , e±1 ][z][e2 ; τ, δ], we obtain the embedding:

U+ = k[e3, z][e1 ; σ][e2 ; τ, δ] = kq2 [e3, e1][z][e2 ; τ, δ] ⊂ V = kq2 [e±3 , e±1 ][z][e2 ; τ, δ],

Let us introduce in U+ the bracket: w = e2e3 − e3e2 = z + (q2 − 1)e3e2 ∈ U3.
It follows from commutation relations in 3.1.2 that: e1w = we1 + (1 − q−2)e2

3,
e2w = q2we2, et e3w = q−2we3. Then the element:

z′ = e1w − q−4we1 ∈ U4
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satisfies z′e1 = e1z
′ and z′e2 = e2z

′, and so is central in U+. A straightforward
computation shows that its development in the PBW basis of 3.1.2 is:

z′ = (1− q−4)(1− q−2)e3e1e2 + q−4(1− q−2)e2
3 + (1− q−4)ze1.

In particular, z′ = s1e2 + s0, with s0 = q−4(1 − q−2)e2
3 + (1 − q−4)ze1 ∈

kq2 [e3, e1][z], and s1 = (1 − q−4)(q2 − 1)e1e3 non-zero in kq2 [e3, e1][z]. So we
have in V the identity e2 = s−1

1 z′ − s−1
1 s0, with s−1

1 and s−1
1 s0 in kq2 [e±3 , e±1 ][z].

Explicitly:

e2 = 1
(1−q−4)(q2−1)e

−1
3 e−1

1 z′ + 1
q4−1e−1

3 z − 1
q2−1e−1

1 e3 (1)

We conclude:
U+ ⊂ V = kq2 [e±3 , e±1 ][z, z′].

Observe that z and z′ being central in V , the only relation between the gener-
ators of V which is not a commutation is the q2-commutation e3e1 = q2e1e3.

3.1.5 Conjugation in U+. We have introduced in 3.1.2 the homogeneous ele-
ment e3 of degree two defined from natural generators e1 et e2 by e3 = e1e2−q2e2e1,
which satisfy e1e3 = q−2e3e1 and e2e3− q2e3e2 = z. Conjugating q in q−1, we can
also consider:

e3 = e1e2 − q−2e2e1 = (1− q−4)e1e2 + q−4e3,

and prove that e1e3 = q2e3e1 and e2e3− q−2e3e2 = q−4z. We obtain in particular
the relations e3e3 = (1 − q−4)q2e1e3e2 + q−4e2

3 and z′ = (1 − q−2)(e3e3 + (1 +
q−2)ze1), which will be used further in the paper.

3.1.6 Center and normalizing elements of U+. Denote by Z(U+) the center
and N(U+) the set of normalizing elements in U+.

Lemma 3.1. N(U+) = Z(U+) = k[z, z′].

Proof. The calculation of Z(U+) can be deduced from general results of [7]. The
equality N(U+) = Z(U+) for the type B2 was observed in [8], Remark 2.2 (iii).
We give here a short direct proof using the embedding U+ ⊂ V . Take f ∈ N(U+)
non-zero. From Proposition 2.1 of [8], f is q-central in U+, that is there exist
m,n ∈ Z such that fe1 = qme1f and fe2 = qne2f , and so fe3 = qm+ne3f . In V ,
the element f is a finite sum:

f =
∑

i,j∈Z fi,j(z, z′)ei
1e

j
3 with fi,j(z, z′) ∈ k[z, z′].

Since the polynomials fi,j(z, z′) are central in V , the identities fe1 = qme1f
and fe3 = qm+ne3f give by identification 2j = m and 2i = −m − n for all i, j
such that fi,j(z, z′) 6= 0. Then f = fi,j(z, z′)ei

1e
j
3, where i = −m+n

2 and j = m
2 .
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Its follows from relation (1) of 3.1.4 and from q-commutation fe2 = qne2f that
−2j + 2i = 2i = −2j − 2i = n. So i = j = n = 0, and f = f0,0(z, z′) ∈ k[z, z′].
We have proved that N(U+) ⊆ k[z, z′]. The inverse inclusions k[z, z′] ⊆ Z(U+) ⊆
N(U+) are clear.

Remark 3.2. For g of type B2, Autdiagr (g) is trivial and so the main Problem
1 must be here formulated as: do we have AutAlgU

+ ' (k×)2? The method
used in [2] for the case A2 was based on the facts that any automorphism of H
preserves the center Z(H) which is a polynomial algebra in one variable and the
non-empty set of normal but non central elements of H. It follows from Lemma
3.1 that the second argument fails for the case B2, and that the first one is much
more complicated to use in view of the structure of the automorphism group of
a commutative polynomial algebra in two variables. A natural idea to determine
the group AutAlgU

+ is to study the action of an automorphism on the prime
spectrum of U+. The structure of this spectrum remains widely unknown as far as
we know (see further final remark of 3.3) and we only present some partial results
in the following. In particular the two central generators z and z′ do not play
symmetric rôles (see Proposition 3.4) and we conjecture that any automorphism
of U+ stabilizes the prime ideal (z), which would be sufficient to solve the problem
because of Proposition 3.3.

3.2 Automorphisms stabilizing the prime ideal (z)

3.2.1 The factor algebra U+/(z). It is clear that the ideal (z) generated in
U+ by the central element z is completely prime, and the factor domain U+/(z) is
the quantum enveloping algebra H = U+

q (sl3) considered in 2.2.1. The canonical
map π : U+ → U+/(z) induces an isomorphism between U+/(z) and H defined
by π(e1) = E1 and π(e2) = E2, where E1 and E2 are the natural generators of H
introduced in 2.2.1. Observe that π(e3) = E3 and π(z′) = (1− q−2)Ω.

3.2.2 The group Aut z(U+). We introduce the subgroup Aut z(U+) of all auto-
morphisms of the algebra U+ which stabilize the ideal (z). In particular Aut z(U+)
contains the subgroup G := {ψα,β ; α, β ∈ k×} ' (k×)2 where ψα,β is the auto-
morphism defined for any α, β ∈ k× by:

ψα,β(e1) = αe1 et ψα,β(e2) = βe2.

It is clear that any θ ∈ Aut zU
+ induces an automorphism θ̃ ∈ AutH defined

by θ̃(E1) = π(θ(e1)) et θ̃(E2) = π(θ(e2)). We denote by Φ the group morphism
Φ : AutU+ → AutH ; θ 7→ θ̃. The notation is coherent since Φ(G) = G̃ for the
group G̃ ' (k×)2 introduced in 2.2.1. The next proposition proves that Φ defines
an isomorphism between Aut zU

+ and G̃.
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Proposition 3.3. The subgroup Aut z(U+) of algebra automorphisms of U+ sta-
bilizing the ideal (z) is isomorphic to (k×)2.

Proof. Step 1: we prove that, for any θ ∈ Aut zU
+, there exist λ, µ ∈ k× and

p(z) ∈ k[z] such that θ(z) = λz and θ(z′) = µz′ + p(z).

Take θ ∈ Aut zU
+. There exists u ∈ U+, u 6= 0 such that θ(z) = uz. But

θ(z) ∈ Z(U+) because z ∈ Z(U+), and then u ∈ Z(U+). Similarly θ−1(z) = vz
for some v ∈ Z(U+), v 6= 0. So z = θ(θ−1(z)) = θ(v)uz in Z(U+) = k[z, z′]
(see 3.1.6), which implies u ∈ k×. Denoting u = λ, we conclude that θ(z) = λz
with λ ∈ k×. The restriction of θ to Z(U+) is a k-automorphism of k[z, z′] such
that θ(z) = λz. By surjectivity, the z′-degree of θ(z′) is necessarily 1. Denote
θ(z′) = r(z)z′+p(z) with r(z), p(z) ∈ k[z], r(z) 6= 0. Using an analogue expression
for θ−1(z′) in the equality z′ = θ(θ−1(z′)) we obtain that r(z) = µ ∈ k×.

Step 2: we prove that ImΦ = G̃.

Let θ ∈ AutU+ and θ̃ = Φ(θ). From Theorem 2.4, there exist α, β ∈ k× and
i ∈ {0, 1} such that θ̃ = ψ̃α,βωi. Suppose that i = 1. Then ω = Φ(θ′) for θ′ =
ψα−1,β−1θ, which satisfies π(θ′(e1)) = ω(E1) = E2 and π(θ′(e2)) = ω(E2) = E1.
In other words, there exist a, b ∈ U+ such that θ′(e1) = e2+za and θ′(e2) = e1+zb.
Applying θ′ to the first Serre relation (S1) in U+, we obtain:

(e2 + za)2(e1 + bz)− (q2 + q−2)(e2 + za)(e1 + bz)(e2 + za) + (e1 + bz)(e2 + za)2 = 0.

Using the grading of 3.1.3, this identity develops into an expression s + t = 0
with s = e2

2e1 − (q2 + q−2)e2e1e2 + e1e
2
2 ∈ U3 and the rest t in

⊕
n≥5 Un. Then

s = 0. But the relations of 3.1.5 allow to compute: s = e2(e2e1 − q2e1e2) −
q−2(e2e1 − q2e1e2)e2 = −q2e2e3 + e3e2 = −q−2z 6= 0. So a contradiction. We
conclude that i = 0, and then θ̃ = ψ̃α,β ∈ G̃.

Step 3: we prove that Φ is injective.

We fix an automorphism θ ∈ Aut z(U+) such that θ ∈ KerΦ. By definition of
KerΦ, there exist a, b ∈ U+ such that:

θ(e1) = e1 + za and θ(e2) = e2 + zb.

The elements e3 and e3 being defined as q-brackets of e1 and e2, we deduce:

θ(e3) = e3 + zc, where c = (e1b− q2be1) + (ae2 − q2e2a) + z(ab− q2ba)
θ(e3) = e3 + zc, where c = (e1b− q−2be1) + (ae2 − q−2e2a) + z(ab− q−2ba)

Applying θ to the relations e1e3 = q−2e3e1 (see 3.1.2) and e3 = (1−q−4)e1e2 +
q−4e3 (see 3.1.5) we obtain by identification:
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(e1c− q−2ce1) + (ae3 − q−2e3a) + z(ac− q−2ca) = 0
(1− q−4)ae2 + (1− q−4)e1b + q−4c + (1− q−4)zab = c

Consider now z = e2e3 − q2e3e2. By step one, there exists some λ ∈ k× such
that: λz = z + z(e2c− q2ce2)+ z(be3− q2e3b)+ z2(bc− q2cb). Simplifying by z, we
obtain λ− 1 = (e2c− q2ce2) + (be3 − q2e3b) + z(bc− q2cb). The right member lies
in the ideal I defined in 3.1.3 and the left member is a scalar in k = U0. Therefore
λ = 1. We conclude that:

θ(z) = z and (e2c− q2ce2) + (be3 − q2e3b) + z(bc− q2cb) = 0.

Similar calculations for the other central generator z′ = (1− q−2)(e3e3 + (1 +
q−2)ze1) (see 3.1.5), using the equality θ(z′) = µz′+p(z) from step one, give µ = 1
and p(z) = (1− q−2)zs(z) for some s(z) ∈ k[z] which satisfies:

s(z) = (1 + q−2)za + zcc + e3c + q−4ce3 + (1− q−4)ce1e2.

From 3.1.2, we can consider the degree function deg at the indeterminate e2

in the polynomial algebra U+ = S[e2 ; τ, δ]. Introduce in particular the three
positive integers d = deg θ(e1), d′ = deg θ(e2) and d′′ = deg θ(e3). Comparing
the degree of the two members of all the equalities obtained above, we obtain
by very technical considerations whose details are left to the reader that we have
necessarily d = d′′ = 0 et d′ = 1. In other words there exist a, b1, b0, c ∈ S such
that:

θ(e1) = e1 + za, θ(e2) = e2 + z(b1e2 + b0), θ(e3) = e3 + zc, θ(z) = z.

In particular the restriction θS of θ to S is an automorphism of S fixing z.
Consider the field of fractions K = k(z), the algebra T = K[e3][e1 ; σ] ⊇ S and the
extension θT of θS to T . Since T is a quantum plane over k (with e1e3 = q−2e3e1),
we can apply proposition 1.4.4 of[1] and deduce that the K-automorphism θT

satisfies θ(e1) = fe1 and θ(e3) = ge3 for some f, g ∈ k×. Because θ(e1) and
θ(e3) are in the subalgebra S = k[z][e3][e1 ; σ] of T = k(z)[e3][e1 ; σ], we have
in fact f, g non-zero in k[z]. By the same argument for the automorphism θ−1,
there exist f ′, g′ non-zero in k[z] such that θ−1(e1) = f ′e1 and θ−1(e3) = g′e3.
By composition of θ and θ−1 it follows that ff ′ = gg′ = 1, and then f, g ∈ k×.
Denoting f = α and g = γ, we obtain αe1 = e1 + za and γe3 = e3 + zc. These
equalities in S imply (α − 1)e1 ∈ zS and (γ − 1)e3 ∈ zS with α, γ ∈ k×, and
so α = γ = 1 and a = c = 0. To sum up, we have θ(e1) = e1, θ(e3) = e3 and
θ(z) = z. It is then easy to check that we have also θ(e2) = e2. We conclude that
θ = idU+ .

3.3 Non permutability of the central generators z and z′

3.3.1 The prime ideal (z′). The ideal (z′) generated in U+ by the central
element z′ is completely prime. A direct proof consists in checking by computations



26 Nicolás Andruskiewitsch and François Dumas

in the iterated Ore extension U+ and its localization V = kq2 [e±1
3 , e±1

1 ][z, z′] that
any element v ∈ V satisfying z′v ∈ U+ is necessarily an element of U+; then the
ideal (z′) = z′U+ is no more than the contraction z′V ∩ U+ of the completely
prime ideal z′V of V . The complete primeness of (z′) can also be proved by the
algorithmic method of [9], or can be deduced from the description of the H-prime
spectrum of U+ (see further 3.4) following the method of [12].

Proposition 3.4. There are no algebra automorphisms of U+ sending (z) to (z′)
or (z′) to (z).

Proof. Recall that H denotes the factor algebra U+/(z) and π the canonical map
U+ → H (see 2.2.1 and 3.2.1). Denote H′ = U+/(z′) and π′ the canonical map
U+ → H′. We have observed that the center of H is the polynomial algebra
Z(H) = k[Ω]; note that Ω equals π(z′) up to a multiplication by a non-zero scalar.
By direct calculations in H′ one can prove similarly that the center of H′ is the
polynomial algebra Z(H′) = k[π′(z)]. Consider the standard N2-grading U+ =⊕

Um,n putting e1 on degree (1, 0) and e2 on degree (0, 1). The central generator
z is homogeneous of degree (1, 2) and the N2-grading induced on H = U+/(z) is
just the N2-grading H =

⊕
Hn,m considered in 2.2.1. The central generator z′ is

homogeneous of degree (2, 2) and the N2-grading induced on H′ = U+/(z′) will be
denoted by H′ =

⊕
H′n,m.

Now suppose that there exists some algebra automorphism θ of U+ such that
θ(z′) = (z). Then θ induces an isomorphism θ̂ : H′ → H defined by θ̂π′ = πθ.
In particular H can be graded by the N2-grading H =

⊕
Tn,m defined by Tn,m =

θ̂(H′m,n). Since E3, E3 ∈ H1,1 and Ω ∈ H2,2, it follows from corollary 2.5 there exist
two integers r, s ≥ 1 such that E3, E3 ∈ Tr,s and Ω ∈ T2r,2s. Set t1 = θ̂−1(E3),
t2 = θ̂−1(E3), and t = θ̂−1(Ω) = θ̂−1(E3E3) = t1t2. By construction we have
t1, t2 ∈ H′r,s and t ∈ H′2r,2s. Because Z(H) = k[Ω] and θ̂ is an isomorphism
of algebras, t is a generator of the polynomial algebra Z(H′) = k[π′(z)]. Then
there exist λ ∈ k×, µ ∈ k such that t = λπ′(z) + µ. Since t ∈ H′2r,2s, we have
necessarily µ = 0. We obtain in H′ the equality π′(z) = λ−1t1t2 where λ ∈ k× and
t1, t2 ∈ H′r,s. Choosing u1, u2 ∈ Ur,s such that π′(u1) = λ−1t1 and π′(u2) = t2, we
deduce in U+ an equality z = u1u2 + z′u for some u ∈ U+. Back to the N-grading
U+ =

⊕
Un introduced in 3.1.3, we have clearly u1u2 ∈ U2(r+s) whereas z ∈ U3

and z′ ∈ U4. It follows that u = 0, and then z = u1u2 gives the contradiction.

Remark 3.5. Suppose that we can prove similarly that U+/I is not isomorphic
to H ' U+/(z) for any height one prime ideal I of U+, then we could deduce
that any algebra automorphism of U+ necessarily stabilizes (z) and then give by
Proposition 3.3 a positive answer to Problem 1 (see 3.2). For example, if I = (z−α)
with α ∈ k×, it is possible to separate U+/I from H up to isomorphism (by
technical considerations on the q-brackets in the both factor algebras which are
not developed here). Unfortunately the complete description of height one prime
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ideals in U+ is not known as far as we know. We restrict in the last subsection to
the graded prime ideals.

3.4 Action on the H-spectrum

3.4.1 H-spectrum of U+
q (g). In this subsection, g is an arbitrary simple finite-

dimensional Lie algebra. We consider all data and notations of 1.3.1. Denote by
H the n-dimensional torus (k×)n. The canonical Zn-grading on U+

q (g), given by
deg Ei = εi, the i-th term of the canonical basis of Zn, induces a rational ac-
tion of H on U+

q (g). The H-spectrum of U+
q (g) is the set of graded prime ideals.

We denote it by H-SpecU+
q (g). It determines a stratification of the whole prime

spectrum SpecU+
q (g). We refer to [6, Section II] for more details on stratifica-

tions of iterated Ore extensions, and summarize here some results obtained in [12]
concerning the case of U+

q (g).

More generally, [12] determines a stratification of SpecSw for a family of alge-
bras Sw (denoted also by Rw

0 , see [12, p. 217, l. 7] for the equivalence between
the two notations), where w is an element of the Weyl group W of g. The space
of graded prime ideals of Sw is indexed by the set

W♦ωW := {(x, y) ∈ W ×W : x ≤ w ≤ y},
where ≤ is the Bruhat order (see for example [14, App. 1]). The algebra U+

q (g) is
the particular case w = e, and thus the index set of H-SpecU+

q (g) is just W . The
author introduces in [12] an ideal Q(y) for any y ∈ W (this is the ideal Q(e, y)e

with the notations of [12, p. 231 and p. 236]), and proves (see [12, 7.1.2, (ii), p.
239] that

H− SpecU+
q (g) = {Q(y)}y∈W .

By [12, 6.11, p. 236], we have Q(y) ⊂ Q(y′) if and only if y′ ≤ y. Furthermore,
[12, 5.3.3, p. 225] (with notation Y (y) = Ye(e, y)) asserts that

SpecU+
q (g) =

∐

y∈W

Y (y), (3.1)

where Y (y) denotes the set of prime ideals containing Q(y). By [12, 6.12, p. 237],
each subset Y (y) has a unique minimal element, namely Q(y), and coincides with
the H-strata of SpecU+

q (g) corresponding to the graded prime ideal Q(y), that is:

Y (y) = SpecQ(y)U
+
q (g) = {P ∈ SpecU+

q (g) : Q(y) =
⋂

h∈H
h.P}.

Applying [12, 6.13, p. 238], the closure of each Y (y) is a union of other Y (y′)’s,
namely Y (y) =

∐
y′∈W,y′≤y Y (y′), and the disjoint union (3.1) is then a stratifica-

tion of SpecU+
q (g).

3.4.2 H-spectrum of U+ for the type B2. Suppose now that g is of type B2

and keep all notations of 3.1. The Weyl group W is of order 8. Its elements can be
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described by their action on the roots {ε1, ε2} and as words on the two generators
s1 and s2 as follows:

s1 : ε1 7→ ε2, ε2 7→ ε1, s2 : ε1 7→ ε1, ε2 7→ −ε2,
s1s2 : ε1 7→ ε2, ε2 7→ −ε1, s2s1 : ε1 7→ −ε2, ε2 7→ ε1,

s1s2s1s2 = s2s1s2s1 : ε1 7→ −ε1, ε2 7→ ε2, e : ε1 7→ ε1, ε2 7→ ε2.

Using the results of [12] recalled in 3.4.1, the H-prime spectrum of U+ = U+
q (g)

has exactly 8 elements. The ideals (0), (e1), (e2) and (e1, e2) are clearly graded
prime ideals of U+. This is also the case for the ideals (e3) and (e3), the factor
algebras being in both cases domains isomorphic to a quantum plane. Finally the
prime ideals (z) and (z′) considered in 3.2 and 3.3 are also graded prime ideals of
U+. So the poset (W,≤) and the H-spectrum of U+ are:

s1s2s1s2

ttttttttttt

JJJJJJJJJJJ (0)

wwwwwwwww

GG
GG

GG
GG

G

s1s2s1

UUUUUUUUUUUUUUUUUUUU s2s1s2

iiiiiiiiiiiiiiiiiiii (z)

SSSSSSSSSSSSSSSSSSS (z′)

kkkkkkkkkkkkkkkkkkk

s1s2

UUUUUUUUUUUUUUUUUUUUUU s2s1

iiiiiiiiiiiiiiiiiiiiii (e3)

SSSSSSSSSSSSSSSSSSS (e3)

kkkkkkkkkkkkkkkkkkk

s1

JJJJJJJJJJJJ s2

tttttttttttt (e1)

GG
GG

GG
GG

G
(e2)

ww
ww

ww
ww

w

e (e1, e2)

Proposition 3.6. The subgroup of algebra automorphisms of U+ stabilizing the
H-spectrum of U+ is isomorphic to (k×)2.

Proof. Any automorphism of U+ stabilizing the H-spectrum of U+ preserves the
set of height one prime graded ideals of U+, that is {(z), (z′)}. Then the result
follows from Propositions 3.3 and 3.4.

3.4.3 Automorphisms of some subalgebras of U+ indexed by W . Take
all data and notations of 1.3.1 and consider for any w in the Weyl group W of g
and for e = ±1 the subalgebras U+(w, e) of U+

q (g) defined in [17]. For any reduced
expression w = si1si2 . . . sin of an element w ∈ W the elements

E
(c1)
i1

T ′i1,e(E
(c2)
i2

) · · ·T ′i1,eT
′
i2,e · · ·T ′in−1,e(E

(cn)
in

)

for various (c1, c2, . . . , cn) ∈ Nn form a basis of a subspace U+(w, e) of U+
q (g)

which does not depend of the reduced expression of w ([17] 40.2.1 p. 321). The
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Lusztig automorphisms T ′i,e appearing in this definition are the symmetries of
U+

q (g) related to the braid group action defined in [17] 37.1.2. From [17] 40.2.1
(d), we have: `(siw) = `(w) − 1 ⇒ EiU

+(w, e) ⊂ U+(w, e). In particular, for
w0 the element of maximal length in W , we have U+(w0, e) = U+

q (g) (see the
remark after 40.2.2 of [17]). The subspaces U+(w, e) can be identified with the
subalgebras Uq(nw) of lemma 1.5 of [8] and also appear in [14] p. 123.

Suppose now that g is of type B2, take all notations of 3.1 and denote by
Aw the subalgebra U+(w, 1) of U+, for any w ∈ W expressed as a word into the
generators s1 and s2 of 3.4.2. Using the above definition of the basis of Aw and the
properties of the automorphisms T ′j,1 (in particular [17] 39.2.3), straightforward
calculations allow to obtain the following description by generators of the eight
subalgebras Aw of U+:

U+ = As1s2s1s2

= As2s1s2s1

mmmmmmmmmmmmm

QQQQQQQQQQQQQ

k〈e2, w, e3〉 = As1s2s1 As2s1s2 = k〈e1, e3, w〉

k〈e2, w〉 = As1s2 As2s1 = k〈e1, e3〉

k〈e2〉 = As1

TTTTTTTTTTTTTTT
As2 = k〈e1〉

jjjjjjjjjjjjjjj

Ae = k

with the commutation relations:

left side





e2w = q2we2,
e3w = q−2we3, e3e2 = e2e3 − w,
e1w = we1 + (1− q−2)e2

3, e1e2 = q2e2e1 + e3, e1e3 = q−2e3e1.

right side





e1e3 = q2e3e1,
w e3 = q−2e3 w, we1 = e1w + (q2 − 1)e3

2,
e2e3 = e3e2 + w, e2e1 = q2e1e2 − q2e3, e2w = q−2we2

The eight algebras are iterated Ore extensions. At level one, As1 and As2 are
just commutative polynomial algebras in one variable. At level two, As1s2 and
As2s1 are isomorphic to a same quantum plane (with parameter q2) and so by
[1] their group of algebra automorphisms is isomorphic to (k×)2. The third level
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introduces some asymmetry in the diagram. One can prove by direct calculations
(which are left to the reader) similar to the proof of [2, Lemme 2.2 and Proposition
2.3] that:

(i) the center of the algebra As1s2s1 is Z = k[z] with z = (1− q2)e3e2 + w;

its set of normal elements is N =
⋃

n≥0 k[z]wn;

its automorphism group is (k×)2 acting by (α, β) : e2 7→ αe2, e3 7→ βe3, w 7→
αβw.

(ii) the center of the algebra As2s1s2 is Z ′ = k[u] with u = (1− q−4)e1w + (q2 −
1)e3

2;

its set of normal elements is N ′ =
⋃

n≥ k[u]e3
n;

its automorphism group is (k×)2 acting by (α, γ) : e1 7→ αe1, e3 7→ γe3, w 7→
α−1γ2w.

Using the fact that an isomorphism from As1s2s1to As2s1s2 must map N to
N ′ and Z to Z ′, one can prove by direct computations and identifications using
the basis of monomials into the natural generators, that the algebras As1s2s1 and
As2s1s2 are not isomorphic.
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