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I. Introduction. k algebraically closed field.

A algebra: product µ : A⊗A → A, unit u : k→ A

Associative: A⊗A⊗A
id⊗µ

//

µ⊗id

²²

A⊗A

µ

²²

A⊗A
µ

// A

Unitary: k⊗A
u⊗id//

∼
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A⊗A

µ

²²

A⊗ kid⊗uoo

∼
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A
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C coalgebra: coproduct ∆ : C → C ⊗ C, counit ε : C → k

Co-associative: C ⊗ C ⊗ C C ⊗ C
id⊗∆oo

C ⊗ C

∆⊗id

OO

C∆oo

∆

OO

Co-unitary: k⊗ C

∼
%%JJJJJJJJJJJJJJJJJJJJJ

C ⊗ C
ε⊗idoo id⊗ε// C ⊗ k

∼
yyttttttttttttttttttttt

C

∆

OO
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Hopf algebra: (H, µ, u,∆, ε)

• (H, µ, u) algebra

• (H,∆, ε) coalgebra

• ∆, ε algebra maps

• There exists S : H → H (the antipode) such that

H ∆ //

ε

((QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ H ⊗H
S⊗id
id⊗S

// H ⊗H
µ

// H

k

u

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
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Example:

• Γ finite group

• H = O(Γ ) = algebra of functions Γ → k

• ∆ : H → H ⊗H ' O(Γ × Γ ), ∆(f)(x, y) = f(x.y).

• ε : H → k, ε(f) = f(e).

• S : H → H, S(f)(x) = f(x−1).
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Remark: (H, µ, u,∆, ε) finite-dimensional Hopf algebra

=⇒ (H∗,∆t, εt, µt, ut) Hopf algebra

Example: H = O(Γ ); for x ∈ Γ , Ex ∈ H∗, Ex(f) = f(x). Then

ExEy = Exy, S(Ex) = Ex−1.

Hence H∗ = kΓ , group algebra of Γ .

Remark: (H, µ, u,∆, ε) Hopf algebra with dimH = ∞,

H∗ NOT a Hopf algebra,

but contains a largest Hopf algebra with operations transpose to

those of H.
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Example:

• Γ affine algebraic group

• H = O(Γ ) = algebra of regular (polynomial) functions Γ → k
is a Hopf algebra with analogous operations.

• H∗ ⊃ kΓ
• H∗ ⊃ U := algebra of distributions with support at e; this is a

Hopf algebra

• If char k = 0, then U ' U(g), g = Lie algebra of Γ

• If g is any Lie algebra, then the enveloping algebra U(g) is a

Hopf algebra with ∆(x) = x⊗ 1 + 1⊗ x, x ∈ g.
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Short history:

• Since the dictionary Lie groups ! Lie algebras fails when
char > 0, Dieudonné studied in the early 50’s the hyperalgebra
U. Pierre Cartier introduced the abstract notion of hyperalgebra
(cocommutative Hopf algebra) in 1955.

• Armand Borel considered algebras with a coproduct in 1952,
extending previous work of Hopf. He coined the expression Hopf
algebra.

• George I. Kac introduced an analogous notion in the context
of von Neumann algebras.

• The first appearance of the definition (that I am aware of) as
it is known today is in a paper by Kostant (1965).
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First invariants of a Hopf algebra H:

G(H) = {x ∈ H − 0 : ∆(x) = x⊗ x}, group of grouplikes.

Prim(H) = {x ∈ H : ∆(x) = x⊗1+1⊗x}, Lie algebra of primitive

elements.

τ : V ⊗W → W ⊗W , τ(v ⊗ w) = w ⊗ v the flip.

H is commutative if µτ = µ. H is cocommutative if τ∆ = ∆.

Group algebras, enveloping algebras, hyperalgebras are cocom-

mutative.

Theorem. (Cartier-Kostant, early 60’s). char k = 0.

Any cocommutative Hopf algebra is of the form U(g)#kΓ.
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H = k[X], ∆(X) = X ⊗ 1 + 1⊗X. Then

∆(Xn) =
∑

0≤j≤n

(n

j

)
Xj ⊗Xn−j.

If char k = p > 0, then ∆(Xp) = Xp ⊗ 1 + 1⊗Xp.

Thus k[X]/〈Xp〉, ∆(X) = X ⊗ 1+1⊗X is a Hopf algebra, com-

mutative and cocommutative, dim p.
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(Kulish, Reshetikhin and Sklyanin, 1981). Quantum SL(2): if

q ∈ k, q 6= 0,±1, set

Uq(sl(2)) = k〈E, F, K, K−1|KK−1 = 1 = K−1K

KE = q2EK,

KF = q−2FK,

EF − FE =
K −K−1

q − q−1
〉

∆(K) = K ⊗K,

∆(E) = E ⊗ 1 + K ⊗ E,

∆(F ) = F ⊗K−1 + 1⊗ F.

These Hopf algebras, neither commutative nor cocommutative,

are analogues of the enveloping algebra of sl(2).

11



(Lusztig, 1989). If q is a root of 1 of order N odd, then

uq(sl(2)) = k〈E, F, K, K−1|same relations plus

KN = 1, EN = FN = 0〉.

These Hopf algebras, neither commutative nor cocommutative,

are analogues of the Frobenius kernel of sl(2).
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There are dual Hopf algebras, analogues of the algebra of regular

functions of SL(2).

Oq(SL(2)) = k〈
(

a b
c d

)
|ab = qba, ac = qca, bc = cb,

bd = qdb, cd = qdc, ad− da = (q − q−1)bc,

ad− qbc = 1〉.

∆

(
a b
c d

)
=

(
a b
c d

)
⊗

(
a b
c d

)
.

(Manin). If q is a root of 1 of order N odd, then

oq(sl(2)) = k〈
(

a b
c d

)
|same relations plus

aN = 1 = dN , bN = cN = 0〉.
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In 1983, Drinfeld and Jimbo introduced quantized enveloping

algebras Uq(g), for q as above and g any simple Lie algebra.

• Quantum function algebras Oq(G): Faddeev-Reshetikhin and

Takhtajan (for SL(N)) and Lusztig (any simple G).

• Finite-dimensional versions when q is a root of 1.
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Motivation: A braided vector space is a pair (V, c), where V is a
vector space and c : V ⊗ V → V ⊗ V is a linear isomorphism that
satisfies

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).

This is called the braid equation (closely related to the quantum
Yang-Baxer equation).

• Any Hopf algebra (with bijective antipode) gives a machine of
solutions of the braid equation.

• The solutions associated to Uq(g) are very important in low
dimensional topology and some areas of theoretical physics.
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Braided Hopf algebra: (R, c, µ, u,∆, ε)

• (R, c) braided vector space

• (R, µ, u) algebra, (R,∆, ε) coalgebra

• ∆, ε algebra maps, with the multiplication µ2 in R⊗R

R⊗R⊗R⊗R
id⊗c⊗id //

µ2
&&LLLLLLLLLLLLLLLLLLLLLL R⊗R⊗R⊗R

µ⊗µ
xxrrrrrrrrrrrrrrrrrrrrrr

R⊗R

• There exists S : R → R, the antipode.
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Braided Hopf algebras appear in nature:

Let π : H → K be a surjective morphism of Hopf algebras that

admits a section ι : K → H, also a morphism of Hopf algebras.

Then

R = {x ∈ H : (id⊗π)∆(x) = x⊗ 1}
is a braided Hopf algebra; it bears an action and a coaction of

K. Also

H ' R#K.

We say that H is the bosonization of R by K.
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II. On the structure of Hopf algebras.

Goal: classify finite-dimensional Hopf algebras.

We describe a method, joint with J. Cuadra, generalizing previ-

ous work joint with H.-J. Schneider.

Let C be a coalgebra, D, E ⊂ C. Then

D ∧ E = {x ∈ C : ∆(x) ∈ D ⊗ C + C ⊗ E}.

∧0D = D, ∧n+1D = (∧nD) ∧D.
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Invariants of a Hopf algebra H:

• The coradical H0 = sum of all simple subcoalgebras of H.

• The Hopf coradical H[0] is the subalgebra generated by H0.

• The standard filtration is H[n] = ∧n+1H[0].

• The associated graded Hopf algebra gr H = ⊕n∈NH[n]/H[n−1].

It turns out that gr H ' R#H[0], where

• R = ⊕n∈NRn is a graded connected algebra and it is a braided

Hopf algebra.
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Example:

H = Uq(b) = k〈E, K, K−1|KK−1 = 1 = K−1K, KE = q2EK〉,

∆(K) = K ⊗K, ∆(E) = E ⊗ 1 + K ⊗ E.

• H0 = k〈K, K−1〉 = H[0] ' kZ.

• Hn = H[n] = subspace spanned by KjEn, j ∈ Z.

• H ' gr H ' R#k〈K, K−1〉, where

• R = k〈E〉, c(Ei ⊗ Ej) = q2ijEj ⊗ Ei; ∆(E) = E ⊗ 1 + 1⊗ E.
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Example: H = Uq(sl(2))

• H0 = k〈K, K−1〉 = H[0] ' kZ.

• Hn = H[n] = subspace spanned by KjEiFn−i, j ∈ Z, i ∈ N.

• gr H = k〈X, Y, K, K−1|KK−1 = 1 = K−1K,

KX = q2XK, KY = q−2Y K, XY − qY X = 0〉.

∆(X) = X ⊗ 1 + K ⊗X, ∆(Y ) = Y ⊗ 1 + K−1 ⊗ Y.

• R = k〈E〉, c(X ⊗ Y ) = q2Y ⊗X, c(Y ⊗X) = q−2X ⊗ Y .

∆(X) = X ⊗ 1 + 1⊗X, ∆(Y ) = Y ⊗ 1 + 1⊗ Y .

21



Theorem. (A.– Cuadra).

Any Hopf algebra with injective antipode is a deformation of

the bosonization of connected graded braided Hopf algebra by a

Hopf algebra generated by a cosemisimple coalgebra.
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To provide significance to this result, we should address some

fundamental questions.

Question I. Let C be a finite-dimensional cosemisimple coalge-

bra and T : C → C a bijective morphism of coalgebras. Classify

all finite-dimensional Hopf algebras L generated by C such that

S|C = T .

Question II. Given L as in the previous item, classify all finite-

dimensional connected graded Hopf algebra in L
LYD.

Question III. Given L and R as in the previous items, classify

all deformations, or liftings, H, that is, such that gr H ' R#L.
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About Question I:

Theorem. (Stefan).

Let H be a Hopf algebra and C an S-invariant 4-dimensional

simple subcoalgebra. If 1 < ordS2
|C = n < ∞, then there are a

root of unity ω and a Hopf algebra morphism O√−ω(SL2(k)) →
H.

• Classification of finite-dimensional quotients of Oq(SLN(k)):
E. Müller.

• Classification of quotients of Oq(G): A.–G. A. Garćıa.
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About Question II:

The most important examples of connected graded braided Hopf

algebras are Nichols algebras:

given a braided vector space (V, c), its Nichols algebra is a braided

Hopf algebra

B(V ) = ⊕n∈N0
Bn(V ),

• B0(V ) = k, B1(V ) = V ,

• Prim(B(V )) = V ,

• V generates B(V ) as an algebra.
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