On the structure of Hopf algebras

Nicolás Andruskiewitsch

Universidad de Córdoba, Argentina
XXI Escola de Álgebra

Brasilia, July 29, 2010.
I. Introduction. \mathbb{k} algebraically closed field.
A algebra: product $\mu: A \otimes A \rightarrow A$, unit $u: \mathbb{k} \rightarrow A$

Associative:

Unitary:

C coalgebra: coproduct $\Delta: C \rightarrow C \otimes C$, counit $\varepsilon: C \rightarrow \mathbb{k}$

Co-associative:

Hopf algebra: $(H, \mu, u, \Delta, \varepsilon)$

- (H, μ, u) algebra
- (H, Δ, ε) coalgebra
- Δ, ε algebra maps
- There exists $\mathcal{S}: H \rightarrow H$ (the antipode) such that

Example:

- Γ finite group
- $H=\mathcal{O}(\Gamma)=$ algebra of functions $\Gamma \rightarrow \mathbb{k}$
- $\Delta: H \rightarrow H \otimes H \simeq \mathcal{O}(\Gamma \times \Gamma), \Delta(f)(x, y)=f(x . y)$.
- $\varepsilon: H \rightarrow \mathbb{k}, \varepsilon(f)=f(e)$.
- $\mathcal{S}: H \rightarrow H, \mathcal{S}(f)(x)=f\left(x^{-1}\right)$.

Remark: ($H, \mu, u, \Delta, \varepsilon$) finite-dimensional Hopf algebra $\Longrightarrow\left(H^{*}, \Delta^{t}, \varepsilon^{t}, \mu^{t}, u^{t}\right)$ Hopf algebra

Example: $H=\mathcal{O}(\Gamma)$; for $x \in \Gamma, E_{x} \in H^{*}, E_{x}(f)=f(x)$. Then

$$
E_{x} E_{y}=E_{x y}, \quad \mathcal{S}\left(E_{x}\right)=E_{x^{-1}}
$$

Hence $H^{*}=\mathbb{k} \Gamma$, group algebra of Γ.
Remark: $(H, \mu, u, \Delta, \varepsilon)$ Hopf algebra with $\operatorname{dim} H=\infty$, H^{*} NOT a Hopf algebra,
but contains a largest Hopf algebra with operations transpose to those of H.

Example:

- Γ affine algebraic group
- $H=\mathcal{O}(\Gamma)=$ algebra of regular (polynomial) functions $\Gamma \rightarrow \mathbb{k}$ is a Hopf algebra with analogous operations.
- $H^{*} \supset \mathbb{k} \Gamma$
- $H^{*} \supset \mathcal{U}:=$ algebra of distributions with support at e; this is a Hopf algebra
- If char $\mathbb{k}=0$, then $\mathcal{U} \simeq U(\mathfrak{g}), \mathfrak{g}=$ Lie algebra of Γ
- If \mathfrak{g} is any Lie algebra, then the enveloping algebra $U(\mathfrak{g})$ is a Hopf algebra with $\Delta(x)=x \otimes 1+1 \otimes x, x \in \mathfrak{g}$.

Short history:

- Since the dictionary Lie groups m Lie algebras fails when char >0, Dieudonne studied in the early 50 's the hyperalgebra \mathcal{U}. Pierre Cartier introduced the abstract notion of hyperalgebra (cocommutative Hopf algebra) in 1955.
- Armand Borel considered algebras with a coproduct in 1952, extending previous work of Hopf. He coined the expression Hopf algebra.
- George I. Kac introduced an analogous notion in the context of von Neumann algebras.
- The first appearance of the definition (that I am aware of) as it is known today is in a paper by Kostant (1965).

First invariants of a Hopf algebra H :
$G(H)=\{x \in H-0: \Delta(x)=x \otimes x\}$, group of grouplikes.
$\operatorname{Prim}(H)=\{x \in H: \Delta(x)=x \otimes 1+1 \otimes x\}$, Lie algebra of primitive elements.
$\tau: V \otimes W \rightarrow W \otimes W, \tau(v \otimes w)=w \otimes v$ the flip.
H is commutative if $\mu \tau=\mu . H$ is cocommutative if $\tau \Delta=\Delta$.

Group algebras, enveloping algebras, hyperalgebras are cocommutative.

Theorem. (Cartier-Kostant, early 60's). char $\mathbb{k}=0$.
Any cocommutative Hopf algebra is of the form $U(\mathfrak{g}) \# \mathbb{k} \Gamma$.

$$
H=\mathbb{k}[X], \Delta(X)=X \otimes 1+1 \otimes X \text {. Then }
$$

$$
\Delta\left(X^{n}\right)=\sum_{0 \leq j \leq n}\binom{n}{j} X^{j} \otimes X^{n-j}
$$

If char $\mathbb{k}=p>0$, then $\Delta\left(X^{p}\right)=X^{p} \otimes 1+1 \otimes X^{p}$.

Thus $\mathbb{k}[X] /\left\langle X^{p}\right\rangle, \Delta(X)=X \otimes 1+1 \otimes X$ is a Hopf algebra, commutative and cocommutative, $\operatorname{dim} p$.
(Kulish, Reshetikhin and Sklyanin, 1981). Quantum $S L(2)$: if $q \in \mathbb{k}, q \neq 0, \pm 1$, set

$$
\begin{aligned}
& U_{q}(\mathfrak{s l}(2))=\mathbb{k}\left\langle E, F, K, K^{-1}\right| K K^{-1}=1=K^{-1} K \\
& K E=q^{2} E K, \\
& K F=q^{-2} F K, \\
& E F-F E\left.=\frac{K-K^{-1}}{q-q^{-1}}\right\rangle \\
& \Delta(K)=K \otimes K, \\
& \Delta(E)=E \otimes 1+K \otimes E \\
& \Delta(F)=F \otimes K^{-1}+1 \otimes F
\end{aligned}
$$

These Hopf algebras, neither commutative nor cocommutative, are analogues of the enveloping algebra of $\mathfrak{s l}(2)$.
(Lusztig, 1989). If q is a root of 1 of order N odd, then

$$
\begin{aligned}
\mathfrak{u}_{q}(\mathfrak{s l}(2)) & =\mathbb{k}\left\langle E, F, K, K^{-1}\right| \text { same relations plus } \\
K^{N} & \left.=1, \quad E^{N}=F^{N}=0\right\rangle .
\end{aligned}
$$

These Hopf algebras, neither commutative nor cocommutative, are analogues of the Frobenius kernel of $\mathfrak{s l}(2)$.

There are dual Hopf algebras, analogues of the algebra of regular functions of $S L(2)$.

$$
\begin{aligned}
\mathcal{O}_{q}(S L(2)) & =\mathbb{k}\left\langle\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right| a b=q b a, \quad a c=q c a, \quad b c=c b, \\
b d & =q d b, \quad c d=q d c, \quad a d-d a=\left(q-q^{-1}\right) b c, \\
a d & -q b c=1\rangle . \\
\Delta\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \otimes\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
\end{aligned}
$$

(Manin). If q is a root of 1 of order N odd, then

$$
\begin{aligned}
\mathfrak{o}_{q}(\mathfrak{s l}(2)) & =\mathbb{k}\left\langle\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right| \text { same relations plus } \\
a^{N} & \left.=1=d^{N}, \quad b^{N}=c^{N}=0\right\rangle .
\end{aligned}
$$

In 1983, Drinfeld and Jimbo introduced quantized enveloping algebras $U_{q}(\mathfrak{g})$, for q as above and \mathfrak{g} any simple Lie algebra.

- Quantum function algebras $\mathcal{O}_{q}(G)$: Faddeev-Reshetikhin and Takhtajan (for $S L(N)$) and Lusztig (any simple G).
- Finite-dimensional versions when q is a root of 1 .

Motivation: A braided vector space is a pair (V, c), where V is a vector space and $c: V \otimes V \rightarrow V \otimes V$ is a linear isomorphism that satisfies

$$
(c \otimes \mathrm{id})(\mathrm{id} \otimes c)(c \otimes \mathrm{id})=(\mathrm{id} \otimes c)(c \otimes \mathrm{id})(\mathrm{id} \otimes c)
$$

This is called the braid equation (closely related to the quantum Yang-Baxer equation).

- Any Hopf algebra (with bijective antipode) gives a machine of solutions of the braid equation.
- The solutions associated to $U_{q}(\mathfrak{g})$ are very important in low dimensional topology and some areas of theoretical physics.

Braided Hopf algebra: $(R, c, \mu, u, \Delta, \varepsilon)$

- (R, c) braided vector space
- (R, μ, u) algebra, (R, Δ, ε) coalgebra
- Δ, ε algebra maps, with the multiplication μ_{2} in $R \otimes R$ $R \otimes R \otimes R \otimes R \xrightarrow{\text { id } \otimes c \otimes \mathrm{id}} R \otimes R \otimes R \otimes R$

- There exists $\mathcal{S}: R \rightarrow R$, the antipode.

Braided Hopf algebras appear in nature:

Let $\pi: H \rightarrow K$ be a surjective morphism of Hopf algebras that admits a section $\iota: K \rightarrow H$, also a morphism of Hopf algebras. Then

$$
R=\{x \in H:(\mathrm{id} \otimes \pi) \Delta(x)=x \otimes 1\}
$$

is a braided Hopf algebra; it bears an action and a coaction of K. Also

$$
H \simeq R \# K
$$

We say that H is the bosonization of R by K.

II. On the structure of Hopf algebras.

Goal: classify finite-dimensional Hopf algebras.

We describe a method, joint with J. Cuadra, generalizing previous work joint with H.-J. Schneider.

Let C be a coalgebra, $D, E \subset C$. Then
$D \wedge E=\{x \in C: \Delta(x) \in D \otimes C+C \otimes E\}$.
$\wedge^{0} D=D, \wedge^{n+1} D=\left(\wedge^{n} D\right) \wedge D$.

Invariants of a Hopf algebra H :

- The coradical $H_{0}=$ sum of all simple subcoalgebras of H.
- The Hopf coradical $H_{[0]}$ is the subalgebra generated by H_{0}.
- The standard filtration is $H_{[n]}=\wedge^{n+1} H_{[0]}$.
- The associated graded Hopf algebra gr $H=\oplus_{n \in \mathbb{N}} H_{[n]} / H_{[n-1]}$.

It turns out that $\mathrm{gr} H \simeq R \# H_{[0]}$, where

- $R=\oplus_{n \in \mathbb{N}} R^{n}$ is a graded connected algebra and it is a braided Hopf algebra.

Example:

$H=U_{q}(\mathfrak{b})=\mathbb{k}\left\langle E, K, K^{-1} \mid K K^{-1}=1=K^{-1} K, K E=q^{2} E K\right\rangle$,
$\Delta(K)=K \otimes K, \Delta(E)=E \otimes 1+K \otimes E$.

- $H_{0}=\mathbb{k}\left\langle K, K^{-1}\right\rangle=H_{[0]} \simeq \mathbb{k} \mathbb{Z}$.
- $H_{n}=H_{[n]}=$ subspace spanned by $K^{j} E^{n}, j \in \mathbb{Z}$.
- $H \simeq \operatorname{gr} H \simeq R \# \mathbb{k}\left\langle K, K^{-1}\right\rangle$, where
- $R=\mathbb{k}\langle E\rangle, c\left(E^{i} \otimes E^{j}\right)=q^{2 i j} E^{j} \otimes E^{i} ; \Delta(E)=E \otimes 1+1 \otimes E$.

Example: $H=U_{q}(\mathfrak{s l}(2))$

- $H_{0}=\mathbb{k}\left\langle K, K^{-1}\right\rangle=H_{[0]} \simeq \mathbb{k} \mathbb{Z}$.
- $H_{n}=H_{[n]}=$ subspace spanned by $K^{j} E^{i} F^{n-i}, j \in \mathbb{Z}, i \in \mathbb{N}$.
- $\operatorname{gr} H=\mathbb{k}\left\langle X, Y, K, K^{-1}\right| K K^{-1}=1=K^{-1} K$, $\left.K X=q^{2} X K, K Y=q^{-2} Y K, X Y-q Y X=0\right\rangle$.

$$
\Delta(X)=X \otimes 1+K \otimes X, \Delta(Y)=Y \otimes 1+K^{-1} \otimes Y
$$

- $R=\mathbb{k}\langle E\rangle, c(X \otimes Y)=q^{2} Y \otimes X, c(Y \otimes X)=q^{-2} X \otimes Y$.
$\Delta(X)=X \otimes 1+1 \otimes X, \Delta(Y)=Y \otimes 1+1 \otimes Y$.

Theorem. (A.- Cuadra).
Any Hopf algebra with injective antipode is a deformation of the bosonization of connected graded braided Hopf algebra by a Hopf algebra generated by a cosemisimple coalgebra.

To provide significance to this result, we should address some fundamental questions.

Question I. Let C be a finite-dimensional cosemisimple coalgebra and $T: C \rightarrow C$ a bijective morphism of coalgebras. Classify all finite-dimensional Hopf algebras L generated by C such that $\mathcal{S}_{\mid C}=T$.

Question II. Given L as in the previous item, classify all finitedimensional connected graded Hopf algebra in ${ }_{L}^{L} \mathcal{Y} D$.

Question III. Given L and R as in the previous items, classify all deformations, or liftings, H, that is, such that $\mathrm{gr} H \simeq R \# L$.

About Question I:

Theorem. (Stefan).

Let H be a Hopf algebra and C an \mathcal{S}-invariant 4-dimensional simple subcoalgebra. If $1<\operatorname{ord} \mathcal{S}_{\mid C}^{2}=n<\infty$, then there are a root of unity ω and a Hopf algebra morphism $\mathcal{O}_{\sqrt{-\omega}}\left(S L_{2}(\mathbb{k})\right) \rightarrow$ H.

- Classification of finite-dimensional quotients of $\mathcal{O}_{q}\left(S L_{N}(\mathbb{k})\right)$: E. Müller.
- Classification of quotients of $\mathcal{O}_{q}(G)$: A.-G. A. García.

About Question II:

The most important examples of connected graded braided Hopf algebras are Nichols algebras:
given a braided vector space (V, c), its Nichols algebra is a braided Hopf algebra

$$
\mathfrak{B}(V)=\oplus_{n \in \mathbb{N}_{0}} \mathfrak{B}^{n}(V)
$$

- $\mathfrak{B}^{0}(V)=\mathbb{k}, \mathfrak{B}^{1}(V)=V$,
- $\operatorname{Prim}(\mathfrak{B}(V))=V$,
- V generates $\mathfrak{B}(V)$ as an algebra.

