On the structure of Hopf algebras

Nicolás Andruskiewitsch

Universidad de Córdoba, Argentina

XXI Escola de Álgebra

Brasilia, July 29, 2010.

I. Introduction. \Bbbk algebraically closed field.

A algebra: product $\mu : A \otimes A \to A$, unit $u : \Bbbk \to A$

2

C coalgebra: coproduct $\Delta : C \to C \otimes C$, counit $\varepsilon : C \to \Bbbk$

Co-associative:

Hopf algebra: $(H, \mu, u, \Delta, \varepsilon)$

- (H, μ, u) algebra
- (H, Δ, ε) coalgebra
- Δ, ε algebra maps
- There exists $\mathcal{S}: H \to H$ (the antipode) such that

Example:

- Γ finite group
- $H = \mathcal{O}(\Gamma) =$ algebra of functions $\Gamma \to \Bbbk$
- $\Delta : H \to H \otimes H \simeq \mathcal{O}(\Gamma \times \Gamma), \ \Delta(f)(x,y) = f(x,y).$

•
$$\varepsilon : H \to \Bbbk$$
, $\varepsilon(f) = f(e)$.

•
$$\mathcal{S}: H \to H$$
, $\mathcal{S}(f)(x) = f(x^{-1})$.

Remark: $(H, \mu, u, \Delta, \varepsilon)$ finite-dimensional Hopf algebra $\implies (H^*, \Delta^t, \varepsilon^t, \mu^t, u^t)$ Hopf algebra

Example: $H = \mathcal{O}(\Gamma)$; for $x \in \Gamma$, $E_x \in H^*$, $E_x(f) = f(x)$. Then

$$E_x E_y = E_{xy}, \qquad \mathcal{S}(E_x) = E_{x^{-1}}.$$

Hence $H^* = \Bbbk \Gamma$, group algebra of Γ .

Remark: $(H, \mu, u, \Delta, \varepsilon)$ Hopf algebra with dim $H = \infty$, H^* NOT a Hopf algebra,

but contains a largest Hopf algebra with operations transpose to those of H.

Example:

• Γ affine algebraic group

• $H = \mathcal{O}(\Gamma) =$ algebra of regular (polynomial) functions $\Gamma \to \Bbbk$ is a Hopf algebra with analogous operations.

• $H^* \supset \Bbbk \Gamma$

• $H^* \supset \mathcal{U} :=$ algebra of distributions with support at e; this is a Hopf algebra

• If char $\Bbbk = 0$, then $\mathcal{U} \simeq U(\mathfrak{g})$, $\mathfrak{g} = Lie$ algebra of Γ

• If \mathfrak{g} is any Lie algebra, then the enveloping algebra $U(\mathfrak{g})$ is a Hopf algebra with $\Delta(x) = x \otimes 1 + 1 \otimes x$, $x \in \mathfrak{g}$.

Short history:

• Since the dictionary *Lie groups* $\leftrightarrow i$ *Lie algebras* fails when char > 0, Dieudonné studied in the early 50's the hyperalgebra \mathcal{U} . Pierre Cartier introduced the abstract notion of hyperalgebra (cocommutative Hopf algebra) in 1955.

• Armand Borel considered algebras with a coproduct in 1952, extending previous work of Hopf. He coined the expression *Hopf algebra*.

• George I. Kac introduced an analogous notion in the context of von Neumann algebras.

• The first appearance of the definition (that I am aware of) as it is known today is in a paper by Kostant (1965).

First invariants of a Hopf algebra *H*: $G(H) = \{x \in H - 0 : \Delta(x) = x \otimes x\}$, group of grouplikes.

Prim $(H) = \{x \in H : \Delta(x) = x \otimes 1 + 1 \otimes x\}$, Lie algebra of primitive elements.

 $\tau: V \otimes W \to W \otimes W$, $\tau(v \otimes w) = w \otimes v$ the *flip*. *H* is commutative if $\mu \tau = \mu$. *H* is cocommutative if $\tau \Delta = \Delta$.

Group algebras, enveloping algebras, hyperalgebras are cocommutative.

Theorem. (Cartier-Kostant, early 60's). char $\Bbbk = 0$. Any cocommutative Hopf algebra is of the form $U(\mathfrak{g})\#\Bbbk\Gamma$.

$H = \Bbbk[X], \ \Delta(X) = X \otimes 1 + 1 \otimes X.$ Then

$$\Delta(X^n) = \sum_{0 \le j \le n} {n \choose j} X^j \otimes X^{n-j}.$$

If char $\Bbbk = p > 0$, then $\Delta(X^p) = X^p \otimes 1 + 1 \otimes X^p$.

Thus $\Bbbk[X]/\langle X^p \rangle$, $\Delta(X) = X \otimes 1 + 1 \otimes X$ is a Hopf algebra, commutative and cocommutative, dim p.

(Kulish, Reshetikhin and Sklyanin, 1981). Quantum SL(2): if $q \in k, q \neq 0, \pm 1$, set

$$U_{q}(\mathfrak{sl}(2)) = \mathbb{k}\langle E, F, K, K^{-1} | KK^{-1} = 1 = K^{-1}K$$
$$KE = q^{2}EK,$$
$$KF = q^{-2}FK,$$
$$EF - FE = \frac{K - K^{-1}}{q - q^{-1}}\rangle$$

$$\Delta(K) = K \otimes K,$$

$$\Delta(E) = E \otimes 1 + K \otimes E,$$

$$\Delta(F) = F \otimes K^{-1} + 1 \otimes F.$$

These Hopf algebras, neither commutative nor cocommutative, are analogues of the enveloping algebra of $\mathfrak{sl}(2)$.

(Lusztig, 1989). If q is a root of 1 of order N odd, then
$$\begin{split} \mathfrak{u}_q(\mathfrak{sl}(2)) &= \mathbb{k} \langle E, F, K, K^{-1} | \text{same relations plus} \\ K^N &= 1, \quad E^N = F^N = 0 \rangle. \end{split}$$

These Hopf algebras, neither commutative nor cocommutative, are analogues of the Frobenius kernel of $\mathfrak{sl}(2)$.

There are dual Hopf algebras, analogues of the algebra of regular functions of SL(2).

$$\mathcal{O}_q(SL(2)) = \mathbb{k} \langle \begin{pmatrix} a & b \\ c & d \end{pmatrix} | ab = qba, \quad ac = qca, \quad bc = cb,$$

$$bd = qdb, \quad cd = qdc, \quad ad - da = (q - q^{-1})bc,$$

$$ad - qbc = 1 \rangle.$$

$$\Delta \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \otimes \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

(Manin). If q is a root of 1 of order N odd, then

$$\mathfrak{o}_q(\mathfrak{sl}(2)) = \mathbb{k} \langle \begin{pmatrix} a & b \\ c & d \end{pmatrix} | \text{same relations plus}$$

 $a^N = \mathbf{1} = d^N, \quad b^N = c^N = \mathbf{0} \rangle.$

In 1983, Drinfeld and Jimbo introduced quantized enveloping algebras $U_q(\mathfrak{g})$, for q as above and \mathfrak{g} any simple Lie algebra.

- Quantum function algebras $\mathcal{O}_q(G)$: Faddeev-Reshetikhin and Takhtajan (for SL(N)) and Lusztig (any simple G).
- Finite-dimensional versions when q is a root of 1.

Motivation: A braided vector space is a pair (V, c), where V is a vector space and $c: V \otimes V \rightarrow V \otimes V$ is a linear isomorphism that satisfies

$$(c \otimes id)(id \otimes c)(c \otimes id) = (id \otimes c)(c \otimes id)(id \otimes c).$$

This is called the braid equation (closely related to the quantum Yang-Baxer equation).

• Any Hopf algebra (with bijective antipode) gives a machine of solutions of the braid equation.

• The solutions associated to $U_q(\mathfrak{g})$ are very important in low dimensional topology and some areas of theoretical physics.

Braided Hopf algebra: $(R, c, \mu, u, \Delta, \varepsilon)$

- (R,c) braided vector space
- (R, μ, u) algebra, (R, Δ, ε) coalgebra

• Δ, ε algebra maps, with the multiplication μ_2 in $R \otimes R$ $R \otimes R \otimes R \otimes R \xrightarrow{\operatorname{id} \otimes c \otimes \operatorname{id}} R \otimes R \otimes R \otimes R$ $\mu_2 \xrightarrow{\mu \otimes \mu}$ $R \otimes R$

• There exists $\mathcal{S}: R \to R$, the antipode.

Braided Hopf algebras appear in nature:

Let $\pi : H \to K$ be a surjective morphism of Hopf algebras that admits a section $\iota : K \to H$, also a morphism of Hopf algebras. Then

$$R = \{x \in H : (\mathsf{id} \otimes \pi) \Delta(x) = x \otimes 1\}$$

is a braided Hopf algebra; it bears an action and a coaction of K. Also

$$H \simeq R \# K.$$

We say that H is the bosonization of R by K.

II. On the structure of Hopf algebras.

Goal: classify finite-dimensional Hopf algebras.

We describe a method, joint with J. Cuadra, generalizing previous work joint with H.-J. Schneider.

Let C be a coalgebra, $D, E \subset C$. Then

 $D \wedge E = \{x \in C : \Delta(x) \in D \otimes C + C \otimes E\}.$

 $\wedge^{0}D = D, \ \wedge^{n+1}D = (\wedge^{n}D) \wedge D.$

Invariants of a Hopf algebra *H*:

- The coradical $H_0 =$ sum of all simple subcoalgebras of H.
- The Hopf coradical $H_{[0]}$ is the subalgebra generated by H_0 .
- The standard filtration is $H_{[n]} = \wedge^{n+1} H_{[0]}$.
- The associated graded Hopf algebra gr $H = \bigoplus_{n \in \mathbb{N}} H_{[n]} / H_{[n-1]}$.

It turns out that $\operatorname{gr} H \simeq R \# H_{[0]}$, where

• $R = \bigoplus_{n \in \mathbb{N}} R^n$ is a graded connected algebra and it is a braided Hopf algebra.

Example: $H = U_q(\mathfrak{b}) = \mathbb{k} \langle E, K, K^{-1} | KK^{-1} = 1 = K^{-1}K, KE = q^2 EK \rangle,$

$$\Delta(K) = K \otimes K, \ \Delta(E) = E \otimes 1 + K \otimes E.$$

•
$$H_0 = \mathbb{k} \langle K, K^{-1} \rangle = H_{[0]} \simeq \mathbb{k} \mathbb{Z}.$$

- $H_n = H_{[n]} =$ subspace spanned by $K^j E^n$, $j \in \mathbb{Z}$.
- $H \simeq \operatorname{gr} H \simeq R \# \Bbbk \langle K, K^{-1} \rangle$, where
- $R = \Bbbk \langle E \rangle$, $c(E^i \otimes E^j) = q^{2ij}E^j \otimes E^i$; $\Delta(E) = E \otimes 1 + 1 \otimes E$.

Example: $H = U_q(\mathfrak{sl}(2))$

•
$$H_0 = \mathbb{k} \langle K, K^{-1} \rangle = H_{[0]} \simeq \mathbb{k} \mathbb{Z}.$$

• $H_n = H_{[n]} =$ subspace spanned by $K^j E^i F^{n-i}$, $j \in \mathbb{Z}$, $i \in \mathbb{N}$.

• gr
$$H = \Bbbk \langle X, Y, K, K^{-1} | KK^{-1} = 1 = K^{-1}K,$$

 $KX = q^2 XK, KY = q^{-2}YK, XY - qYX = 0 \rangle.$
 $\Delta(X) = X \otimes 1 + K \otimes X, \Delta(Y) = Y \otimes 1 + K^{-1} \otimes Y.$

• $R = \Bbbk \langle E \rangle$, $c(X \otimes Y) = q^2 Y \otimes X$, $c(Y \otimes X) = q^{-2} X \otimes Y$.

 $\Delta(X) = X \otimes 1 + 1 \otimes X, \ \Delta(Y) = Y \otimes 1 + 1 \otimes Y.$

Theorem. (A.– Cuadra).

Any Hopf algebra with injective antipode is a <u>deformation</u> of the bosonization of <u>connected graded braided Hopf algebra</u> by a Hopf algebra generated by a cosemisimple coalgebra. To provide significance to this result, we should address some fundamental questions.

Question I. Let *C* be a finite-dimensional cosemisimple coalgebra and $T: C \to C$ a bijective morphism of coalgebras. Classify all finite-dimensional Hopf algebras *L* generated by *C* such that $S_{|C} = T$.

Question II. Given L as in the previous item, classify all finitedimensional connected graded Hopf algebra in ${}^{L}_{L}\mathcal{Y}D$.

Question III. Given L and R as in the previous items, classify all deformations, or liftings, H, that is, such that $gr H \simeq R \# L$.

About Question I:

Theorem. (Stefan).

Let H be a Hopf algebra and C an S-invariant 4-dimensional simple subcoalgebra. If $1 < \operatorname{ord} S^2_{|C} = n < \infty$, then there are a root of unity ω and a Hopf algebra morphism $\mathcal{O}_{\sqrt{-\omega}}(SL_2(\Bbbk)) \to H$.

• Classification of finite-dimensional quotients of $\mathcal{O}_q(SL_N(\Bbbk))$: E. Müller.

• Classification of quotients of $\mathcal{O}_q(G)$: A.-G. A. García.

About Question II:

The most important examples of connected graded braided Hopf algebras are Nichols algebras:

given a braided vector space (V, c), its Nichols algebra is a braided Hopf algebra

$$\mathfrak{B}(V) = \oplus_{n \in \mathbb{N}_0} \mathfrak{B}^n(V),$$

•
$$\mathfrak{B}^0(V) = \Bbbk, \ \mathfrak{B}^1(V) = V,$$

- $\mathsf{Prim}(\mathfrak{B}(V)) = V$,
- V generates $\mathfrak{B}(V)$ as an algebra.