

Co-Frobenius Hopf algebras

Nicolás Andruskiewitsch

IV Congreso Latinoamericano de Matemáticos

Sesión de Álgebra

Córdoba, 9 de agosto de 2012

I. Motivation.

Let G be a locally compact group. Then G bears a (left) Haar measure μ , which is left-invariant in the sense that

$$\int_G f(yx)d_{\mu}x = \int_G f(x)d_{\mu}x, \qquad \forall f \text{ measurable.}$$

Also μ is unique up to a scalar, but it is not always a right Haar measure. Indeed, the modular function $\Delta : G \to \mathbb{R}^+$ satisfies

$$\int_G f(xy)d_{\mu}x = \Delta^{-1}(y)\int_G f(x)d_{\mu}x, \qquad \forall f \text{ measurable};$$

so that μ is right and left Haar $\iff \Delta \equiv 1 \iff G$ is unimodular.

Now let K be a compact Lie group; K is the set of real points of an algebraic complex group G. Then the algebra $\mathcal{O}(G)$ of rational functions on G is contained in $L^1(K)$ so we may consider the restriction

$$\int : \mathcal{O}(G) \to \mathbb{C}.$$

The algebra decomposes as $\mathcal{O}(G) = \bigoplus_{\rho \in \operatorname{Irrep} K} V_{\rho} \otimes V_{\rho}^*$; then \int coincides with the projection onto the summand corresponding to the trivial representation; hence K is unimodular. Recall

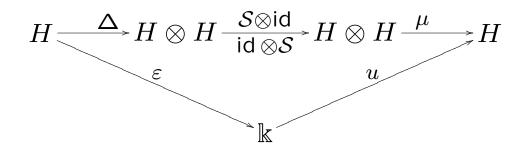
• Every finite-dimensional continuous representation K is completely reducible (semisimple).

• $\int (1) \neq 0.$

Also $\mathcal{O}(G)$ is a **Hopf algebra**.

Hopf algebra over an arbitrary field \Bbbk : $(H, \mu, u, \Delta, \varepsilon)$

- (H, μ, u) algebra
- (H, Δ, ε) coalgebra
- Δ, ε algebra maps
- There exists $\mathcal{S}: H \to H$ (the antipode) such that



Example:

- Γ finite group, $H = \mathcal{O}(\Gamma) =$ algebra of functions $\Gamma \to \Bbbk$
- $\Delta : H \to H \otimes H \simeq \mathcal{O}(\Gamma \times \Gamma), \ \Delta(f)(x,y) = f(x,y).$
- $\varepsilon : H \to \Bbbk$, $\varepsilon(f) = f(e)$. $\mathcal{S} : H \to H$, $\mathcal{S}(f)(x) = f(x^{-1})$.
- $H^* = \Bbbk \Gamma =$ group alg. of $\Gamma = \langle$ evaluations $e_g, g \in \Gamma \rangle$
- $\int : H \to \mathbb{k}, \ \int = \sum_{g \in \Gamma} e_g \implies \langle f, f \rangle = \langle f, L_h f \rangle, \forall h \in G, f \in H.$
- $\operatorname{Rep}_{\Bbbk} \Gamma$ is semisimple \iff $\operatorname{Rep}_{\Bbbk} \Gamma$ is semisimple $\iff \langle \int, 1 \rangle \neq 0 \iff \operatorname{char}_{\Bbbk \nmid} |\Gamma|$

Definition. (Hochschild, 1965; G. I. Kac, 1961; Larson-Sweedler, 1969). Let H be a Hopf algebra over \Bbbk . Then a (left) integral on H is a linear map $\int : H \to \Bbbk$ such that $(id \otimes \int) \Delta(f) = \int (f) 1$ for all $f \in H$.

Let $I_{\ell}(H)$, resp. $I_r(H)$, be the vector space of left, resp. right, integrals on H.

Theorem. (Sullivan, 1971). dim $I_{\ell}(H) = \dim I_r(H) \leq 1$.

Definition. *H* is co-Frobenius when dim $I_{\ell}(H) = 1$.

But $I_{\ell}(H) \neq I_r(H)$ in general; $\exists a \in G(H)$ (the modular grouplike) that permutes them. So, $I_{\ell}(H) = I_r(H) \iff a = 1 \iff H$ is unimodular. **Theorem.** (Larson-Sweedler, 1969; G. I. Kac-Palyutkin, 1961). A finite-dimensional Hopf algebra is co-Frobenius. Thus there are co-Frobenius but not cosemisimple Hopf algebras.

It follows that every finite-dimensional Hopf algebra is Frobenius.

Let H be a Hopf algebra (not necessarily finite-dimensional).

We denote the category of left (resp. right) *H*-comodules by ${}^{H}\mathcal{M}$ (resp. \mathcal{M}^{H}). For instance, if $H = \mathcal{O}(G)$ for *G* an algebraic group, then $\mathcal{M}^{H} \simeq \operatorname{Rep} G$ (the category of rational *G*-modules).

Definition. *H* is right, resp. left, cosemisimple when ${}^{H}\mathcal{M}$, resp. \mathcal{M}^{H} , is semisimple, i. e. any object is direct sum of simple ones.

Theorem. (Sweedler, 1969). Let H be a Hopf algebra. TFAE:

- 1. H is left cosemisimple.
- 2. *H* is co-Frobenius and for $\mu \in I_{\ell}(H) 0, \mu(1) \neq 0$.
- 3. As a left comodule via Δ , *H* is semisimple.
- 4. The trivial left comodule is injective.
- 5. All the above with right instead of left.

6.
$$\mathcal{O}(H) = \bigoplus_{\rho \in \widehat{H}_{\mathcal{M}}} V_{\rho} \otimes V_{\rho}^*$$

If this happens, then the projection to the trivial part in (6) is a left and right integral, so H is unimodular.

Examples:

- \mathfrak{g} Lie algebra, then $H = U(\mathfrak{g})$ is not co-Frobenius.
- G algebraic connected affine group, $H = \mathcal{O}(G)$. Then $H = \mathcal{O}(G)$ is co-Frobenius $\iff G$ is linearly reductive $\iff H$ is cosemisimple. But:

 \circ char k = 0: G is linearly reductive ↔ G is reductive, i.e. trivial unipotent radical.

◦ char $\Bbbk \neq 0$: G is linearly reductive \iff G is a torus.

- G algebraic simple affine group, $1 \neq \in \mathbb{k}^{\times} = \mathbb{C}^{\times}$; then $H = \mathcal{O}_q(G)$ (quantum algebra of functions on G) is co-Frobenius. But:
 - \circ If $q \notin \mathbb{G}_{\infty}$, then H is cosemisimple.

 \circ If $q \in \mathbb{G}_{\infty}$, then H is not cosemisimple.

II. Characterizations. The coradical filtration.

The category ${}^{H}\mathcal{M}$ of left comodules over a Hopf algebra H is abelian and the notions of injective, resp. projective, comodules make sense; and *a fortiori*, the notions of *injective hull* (denoted E(S) for $S \in {}^{H}\mathcal{M}$) and *projective cover* are available. However:

- 1. ${}^{H}\mathcal{M}$ has enough injectives, although the injective hull of a finite-dimensional comodule might has infinite dimension.
- 2. Projective non-zero objects in ${}^{H}\mathcal{M}$ may not exist.

Theorem. (Lin, 1977; Dāscālescu-Nāstāsescu, 2009; Donkin, 1996, 98; A.-Cuadra, 2011). Let H be a Hopf algebra. TFAE:

- 1. H is co-Frobenius.
- 2. E(S) is finite dimensional for every $S \in {}^{H}\mathcal{M}$ simple.
- 3. $E(\Bbbk)$ is finite dimensional.
- 4. ${}^{H}\mathcal{M}$ has a nonzero finite dimensional injective object.
- 5. Every $0 \neq M \in {}^{H}\mathcal{M}$ has a finite dimensional quotient $\neq 0$.
- 6. ${}^{H}\mathcal{M}$ possesses a nonzero projective object.
- 7. Every $M \in {}^{H}\mathcal{M}$ has a projective cover.
- 8. Every injective in ${}^{H}\mathcal{M}$ is projective.

Definition. (A.-Cuadra-Etingof, 2012). A tensor category is co-Frobenius when any object has an injective hull. This turns out to be a generalization of (2) above.

Let *C* be a coalgebra, $D, E \subset C$. Then $D \wedge E = \{x \in C : \Delta(x) \in D \otimes C + C \otimes E\},\$ $\wedge^0 D = D, \ \wedge^{n+1} D = (\wedge^n D) \wedge D.$

Some invariants of a Hopf algebra *H*:

- The coradical $H_0 = \text{sum of all simple subcoalgebras of } H$.
- The coradical filtration is $H_n = \wedge^{n+1} H_0$.

Then: $(H_n)_{n>0}$ is a coalgebra filtration and $\cup_{n>0} H_n = H$.

Furthermore, if H_0 Hopf subalgebra, then $(H_n)_{n\geq 0}$ is an algebra filtration and gr H is a (graded) Hopf algebra.

Theorem. Let H be a Hopf algebra. Consider the statements:

1. H is co-Frobenius.

2. The coradical filtration is finite, i. e. $\exists n : H_n = H$.

Then (a) (Radford, 1977). If H_0 is a Hopf subalgebra, then (1) implies (2).

(b) (A.-Dāscālescu, 2003). (2) implies (1) always.

Conjecture. (A.-Dāscālescu, 2003). (2) \iff (1) always.

A new proof of (Radford, 1977) was given in (A.-D., 2003). Assume that H_0 is a Hopf subalgebra. Then $\operatorname{gr} H \simeq R \# H_0$, where $R = \bigoplus_{n \ge 0} R^n$ is a Hopf algebra in $\frac{H_0}{H_0} \mathcal{YD}$.

Theorem. (A.-Dāscālescu, 2003). TFAE

- 1. H is co-Frobenius.
- 2. gr H is co-Frobenius.
- 3. dim $R < \infty$.
- 4. The coradical filtration is finite.

Theorem. (A.-Cuadra-Etingof, 2012). If H is co-Frobenius, then its coradical filtration is finite. As a consequence the above conjecture is true.

Sketch of the proof. First step (Cuadra, 2006).

Let $\{S_i\}_{i \in I}$ be a full set of representatives of simple right Hcomodules. Then $H \simeq \bigoplus_{i \in I} E(S_i)^{n_i}$, with $n_i \in \mathbb{N}$ for all $i \in I$. Since H is co-Frobenius, $E(S_i)$ is finite dimensional for all $i \in I$ and hence it has finite Loewy length. Since the Loewy series commutes with direct sums, we have:

H has finite coradical filtration iff $\{\ell \ell (E(S_i))\}_{i \in I}$ is bounded.

Observe that $\ell\ell(E(S_i)) \leq \ell(E(S_i)) \leq \dim E(S_i)$, where $\ell(E(S_i)) =$ composition length of $E(S_i)$.

Second step. Let $S \in \mathcal{M}^H$ be simple and d the largest dimension of a composition factor of $E(\Bbbk)$. Then $\ell(E(S)) \leq d \dim E(\Bbbk)$.

The above result can be extended to tensor categories:

Theorem. (A.-Cuadra-Etingof, 2012). If a tensor category is co-Frobenius and has subexponential growth, then the Loewy lengths of all simple objects are bounded.

III. More examples and structure.

Extensions.

• $A \hookrightarrow B$ inclusion of Hopf algebras; B co-Frobenius $\implies A$ co-Frobenius.

Theorem. Let $\mathcal{C} : \Bbbk \to A \to B \to C \to \Bbbk$ be an exact sequence of Hopf algebras.

(Beattie–Dāscālescu–Grünenfelder–Nāstāsescu, 1996). If C is cleft and A, C are co-Frobenius, then B is co-Frobenius. Indeed $\int^A \otimes \int^C$ is a nonzero integral for B where $\int^A \in I_\ell(A)$, $\int^C \in I_\ell(C)$.

(A.-Cuadra, 2011). Assume B faithfully coflat as a C-comodule. Then, B is co-Frobenius if and only if A and C are co-Frobenius.

(A.-Cuadra-Etingof, 2012) give a construction of a Hopf algebra $\mathcal{D} = \mathcal{D}(m, \omega, (q_i)_{i \in I}, \alpha)$ that fits into an exact sequence

$$\Bbbk \to H \to \mathcal{D} \to \Bbbk \mathbb{Z}^s \to \Bbbk$$

with H finite-dimensional not semisimple; hence \mathcal{D} is co-Frobenius.

Particular cases of these examples are not of finite of the Hopf socle, giving a negative answer to a question in (A.-Dāscālescu, 2003).

Theorem. (A.– Cuadra, 2011).

Every Hopf algebra H with injective antipode is a <u>deformation</u> of the bosonization of <u>connected graded braided Hopf algebra</u> Rby a <u>Hopf algebra generated by a cosemisimple coalgebra</u> $H_{[0]}$.

Actually, $H_{[0]}$ = subalgebra generated by the coradical.

Theorem. (A.- Cuadra, 2011). TFAE

- 1. H is co-Frobenius.
- 2. $H_{[0]}$ is co-Frobenius and dim $R < \infty$.

Question I. Classify all co-Frobenius Hopf algebras L generated by a cosemisimple coalgebra C, with a prescribed antipode.

Question II. Given L as in the previous item, classify all connected graded Hopf algebras R in ${}^{L}_{L}\mathcal{Y}D$ such that dim $R < \infty$.

Question III. Given L and R as in previous items, classify all deformations or liftings of R#L.