On the Nichols algebra of a semisimple Yetter-Drinfeld module

Nicolás Andruskiewitsch
Universidad de Córdoba, Argentina. CIEM-CONICET.

Sixth Workshop on Lie Theory and Geometry
Cruz Chica, November 13, 2007.
Joint work with

István Heckenberger and Hans-Jürgen Schneider

Plan of the talk.
I. Overview.
II. Braided vector spaces and Nichols algebras.
III. On the Nichols algebra of a semisimple Yetter-Drinfeld module.

I. Overview.

In the early 80's, Drinfeld and Jimbo introduced quantized enveloping algebras:
\mathfrak{g} simple Lie algebra,
Cartan matrix $\left(a_{i j}\right)_{1 \leq i, j \leq \theta}$,
$\left(d_{1}, \ldots, d_{\theta}\right), d_{i} \in\{1,2,3\}, d_{i} a_{i j}=d_{j} a_{j i}$
q not a root of 1
$U_{q}(\mathfrak{g})=\mathbb{C}\left\langle k_{1}^{ \pm 1}, \ldots, k_{\theta}^{ \pm 1}, e_{1}, \ldots, e_{\theta}, f_{1}, \ldots, f_{\theta}\right\rangle$ with relations:

$$
\begin{aligned}
& k_{i} k_{j}=k_{j} k_{i}, \quad k_{i} k_{i}^{-1}=k_{i}^{-1} k_{i}=1, \\
& k_{i} e_{j} k_{i}^{-1}=q^{d i} a_{i j} e_{j}, \\
& k_{i} f_{j} k_{i}^{-1}=q^{-d_{i} a_{i j}} f_{j}, \\
& \sum_{l=0}^{1-a_{i j}}(-1)^{l}\left[\begin{array}{c}
1-a_{i j} \\
l
\end{array}\right]_{q_{i}} e_{i}^{1-a_{i j}-l} e_{j} e_{i}^{l}=0 \quad(i \neq j), \\
& \sum_{l=0}^{1-a_{i j}}(-1)^{l}\left[\begin{array}{c}
1-a_{i j} \\
l
\end{array}\right]_{q_{i}} f_{i}^{1-a_{i j}-l} f_{j} f_{i}^{l}=0 \quad(i \neq j) \\
& e_{i} f_{j}-q^{-d_{i} a_{i j} f_{j} e_{i}=\delta_{i j}\left(1-k_{i}^{2}\right), i<j, i \nsim j}
\end{aligned}
$$

This is a Hopf algebra with $\Delta\left(k_{i}\right)=k_{i} \otimes k_{i}, \Delta\left(e_{i}\right)=k_{i} \otimes e_{i}+e_{i} \otimes 1$, $\Delta\left(f_{i}\right)=1 \otimes f_{i}+k_{i}^{-1} \otimes f_{i}$.
$U_{q}(\mathfrak{g})=\mathbb{C}\left\langle k_{1}^{ \pm 1}, \ldots, k_{\theta}^{ \pm 1}, e_{1}, \ldots, e_{\theta}, f_{1}, \ldots, f_{\theta}\right\rangle$ with relations:

$$
k_{i} k_{j}=k_{j} k_{i}, \quad k_{i} k_{i}^{-1}=k_{i}^{-1} k_{i}=1,
$$

$$
k_{i} e_{j} k_{i}^{-1}=q^{d_{i} a_{i j}} e_{j}
$$

$$
k_{i} f_{j} k_{i}^{-1}=q^{-d_{i} a_{i j} f_{j}}
$$

$$
\operatorname{ad}_{c}\left(e_{i}\right)^{1-a_{i j}}\left(e_{j}\right)=0, \quad i \neq j
$$

$$
\operatorname{ad}_{c}\left(f_{i}\right)^{1-a_{i j}}\left(f_{j}\right)=0, \quad i \neq j
$$

$$
e_{i} f_{j}-q^{-d_{i} a_{i j} f_{j} e_{i}=\delta_{i j}\left(1-k_{i}^{2}\right), i<j, i \nsim j . . . ~}
$$

Here $\operatorname{ad}_{c}\left(e_{i}\right)\left(e_{j}\right)=e_{i} e_{j}-q^{d_{i} a_{i j}} e_{j} e_{i}$.
$U_{q}^{+}(\mathfrak{g})=\mathbb{C}\left\langle e_{1}, \ldots, e_{\theta}\right\rangle$ with relations:

$$
\operatorname{ad}_{c}\left(e_{i}\right)^{1-a_{i j}}\left(e_{j}\right)=0, \quad i \neq j
$$

This is not a Hopf algebra but it is a braided Hopf algebra, or Hopf algebra in a braided tensor category

$$
\Delta\left(e_{i}\right)=1 \otimes e_{i}+e_{i} \otimes 1 .
$$

It turns out that this is braided Hopf algebra of a very special sort- a Nichols algebra.
G. Lusztig, Introduction to quantum groups, Birkhäuser, 1993.
M. Rosso, C.R.A.S. (Paris) 320 (1995). Invent. Math. 133 (1998).
P. Schauenburg, Comm. in Algebra 24 (1996), pp. 2811-2823.

INPUT: braided vector space (W, c)	OUTPUT: Nichols algebra $\mathfrak{B}(W)$

(W, c) braided vector space: $c \in G L(W \otimes W)$
$(c \otimes \mathrm{id})(\mathrm{id} \otimes c)(c \otimes \mathrm{id})=(\mathrm{id} \otimes c)(c \otimes \mathrm{id})(\mathrm{id} \otimes c)$
Example:

$$
W=\mathbb{C} v_{1} \oplus \cdots \oplus \mathbb{C} v_{\theta}, c\left(v_{i} \otimes v_{j}\right)=q^{d_{i} a_{i j}} v_{j} \otimes v_{i} \rightsquigarrow \mathfrak{B}(W)=U_{q}^{+}(\mathfrak{g})
$$

Motivation. A.-Schneider, 1998: essential tool in the classification of pointed Hopf algebras over \mathbb{C}.
H pointed Hopf algebra with group

$$
\Gamma=\{x \in H-0: \Delta(x)=x \otimes x\}
$$

(Pointed $\equiv \mathbb{C} \Gamma$ is the largest cosemisimple subcoalgebra of H)
$\rightsquigarrow(W, c)$ braided vector space of special type (a Yetter-Drinfeld module over Γ)
\rightsquigarrow Nichols algebra $\mathfrak{B}(W)$

Problems. Given a Yetter-Drinfeld module V over Γ

- When $\operatorname{dim} \mathfrak{B}(W)<\infty$? Or, when GK-dim $\mathfrak{B}(W)<\infty$?
- If so, give a formula for $\operatorname{dim} \mathfrak{B}(W)$, or $G K-\operatorname{dim} \mathfrak{B}(W)$.
- Also, give presentation by generators and relations of $\mathfrak{B}(W)$.

Example. Assume Γ is an abelian group

A Yetter-Drinfeld module W over $\Gamma \equiv \Gamma$-graded Γ-module W

Assume W is semisimple as a Γ-module (always the case if Γ is finite). Then W is of diagonal type:

$$
W=\mathbb{C} v_{1} \oplus \cdots \oplus \mathbb{C} v_{\theta}, \quad c\left(v_{i} \otimes v_{j}\right)=q_{i j} v_{j} \otimes v_{i}
$$

Braided vector space of diagonal type.
\exists basis $v_{1}, \ldots, v_{\theta},\left(q_{i j}\right)_{1 \leq i, j \leq \theta}$ in \mathbb{C}^{\times}:

$$
c\left(v_{i} \otimes v_{j}\right)=q_{i j} v_{j} \otimes v_{i}, \quad \forall i, j
$$

Theorem. $1 \neq q_{i i}$ roots of $1 . \Rightarrow \operatorname{dim} \mathfrak{B}(W)<\infty$ classified.
I. Heckenberger, Classification of arithmetic root systems, http://arxiv.org/abs/math.QA/0605795.

Braided vector space of Cartan type. This is diagonal type plus
$\exists\left(a_{i j}\right)_{1 \leq i, j \leq \theta}$ generalized Cartan matrix

$$
q_{i j} q_{j i}=q_{i i}^{a_{i j}}
$$

Theorem. (W, c) Cartan type, $1 \neq q_{i i}$ root of 1 . $\operatorname{dim} \mathfrak{B}(W)<\infty \Longleftrightarrow\left(a_{i j}\right)$ of finite type.

There are formulas for dim and presentations by gens and rels. (including the quantum Serre relations)
N. A. \& H.-J. Schneider,Finite quantum groups and Cartan matrices, Adv. Math. 154 (2000), 1-45.
I. Heckenberger, The Weyl groupoid of a Nichols algebra of diagonal type, Invent. Math. 164, 175-188 (2006).

Braided vector space of diagonal type such that $q_{i i}$ are NOT roots of 1 .

Theorem. GK-dim $\mathfrak{B}(W)<\infty \Longleftrightarrow(W, c)$ Cartan type and $\left(a_{i j}\right)$ of finite type.
M. Rosso, Invent. Math. 133 (1998) assuming $q_{i i}>0$.
N. A. and I. Angiono, arxiv:math/0703924 using techniques of Heckenberger.

There are formulas for GK-dim and presentations by gens and rels. (essentially the quantum Serre relations!)

Assume next that Γ is a finite group (not necessarily abelian)
A Yetter-Drinfeld module W over Γ is then semisimple:

$$
W=V_{1} \oplus \cdots \oplus V_{\theta},
$$

where each V_{i} is "irreducible" and

$$
c\left(V_{i} \otimes V_{j}\right)=V_{j} \otimes V_{i}
$$

Suggestion. Split the research on the Nichols algebra $\mathfrak{B}(W)$ into two parts:

- To study $\mathfrak{B}(V)$ for all V irreducible;
- consider the V_{i} 's as "fat points" of a generalized Dynkin diagram and, assuming the knowledge of the Nichols algebras $\mathfrak{B}\left(V_{i}\right)$, to describe the Nichols algebra $\mathfrak{B}(W)$ as a "gluing" of the various Nichols subalgebras $\mathfrak{B}\left(V_{i}\right)$ along the generalized Dynkin diagram.
$\mathfrak{B}(V)$ for V irreducible:
- A few known examples where $\operatorname{dim} \mathfrak{B}(V)<\infty$, computed "by hand" or with help of computers.
- A criterium to discard some V such that $\operatorname{dim} \mathfrak{B}(V)=\infty$.
- very difficult to deal with the remaining V.

In this talk I will report progress concerning the second part.
II. Braided vector spaces and Nichols algebras.
(W, c) braided vector space: $c \in G L(W \otimes W)$, $(c \otimes \mathrm{id})(\mathrm{id} \otimes c)(c \otimes \mathrm{id})=(\mathrm{id} \otimes c)(c \otimes \mathrm{id})(\mathrm{id} \otimes c)$

Definition. (Artin, 1948). The braid group in n trends is the quotient \mathbb{B}_{n} of the free group in $T_{1}, T_{2}, \ldots, T_{n-1}$ by the defining relations
(B1) $T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}$, for all i.
(B2) $T_{i} T_{j}=T_{j} T_{i}$, if $|i-j| \geq 2$.

By definition there is a surjective map of groups $\pi: \mathbb{B}_{n} \rightarrow \mathbb{S}_{n}$.

Remark. (W, c) braided vector space.

Define $c_{i} \in \operatorname{Aut}\left(W^{\otimes n}\right)$ by

$$
c_{i}=\mathrm{id}_{W \otimes(i-1)} \otimes c \otimes \mathrm{id}_{W \otimes(n-i-1)}
$$

Then c_{1}, \ldots, c_{n-1} satisfy the relations (B1), (B2).

Thus we have a representation $\rho_{n}: \mathbb{B}_{n} \rightarrow \operatorname{Aut}\left(W^{\otimes n}\right)$.

Examples. • The usual flip $\tau: W \otimes W \rightarrow W \otimes W, \tau(x \otimes y)=y \otimes x$ satisfies the braid equation.

- Let $W=W_{0} \oplus W_{1}$ be a super vector space. If $x \in W_{i},|x|=i$. The super flip $s: W \otimes W \rightarrow W \otimes W, s(x \otimes y)=(-1)^{|x||y|} y \otimes x$ satisfies the braid equation.
- Let Γ be a group, $\mathcal{C} \subseteq \Gamma$ a conjugacy class, $W=\oplus_{g \in \mathcal{C}} \mathbb{C} g$. Then $c: W \otimes W \rightarrow W \otimes W, c(g \otimes h)=g h g^{-1} \otimes g$ satisfies the braid equation.

Yetter-Drinfeld module W over a finite group Γ.

Irreducibles: \mathcal{C} a conjugacy class in Γ; fix $s \in \mathcal{C}$; let (ρ, V) irred. repr. of Γ^{s}.

$$
M(\mathcal{C}, \rho)=\operatorname{Ind}_{\Gamma^{s}}^{\Gamma}=\mathbb{C C} \otimes V
$$

Any finite-dimensional Yetter-Drinfeld module W over Γ is a direct sum of different $M\left(\mathcal{C}_{i}, \rho_{i}\right)$'s (Dijkgraaf, Pasquier, Roche).

Definition. (Nichols, 1978; Woronowicz, 1988). If (W, c) is a braided vector space, then the Nichols algebra is

$$
\mathfrak{B}(W)=\oplus_{n \in \mathbb{N}_{0}} \mathfrak{B}^{n}(W)
$$

where

$$
\mathfrak{B}^{n}(W)=T^{n}(W) / \operatorname{ker} \sum_{\sigma \in \mathbb{S}_{n}} \rho_{n}(S(\sigma))
$$

Here:
ρ_{n} is the representation of \mathbb{B}_{n} induced by c
S is the Matsumoto section (of sets), $S: \mathbb{S}_{n} \rightarrow \mathbb{B}_{n}$ preserving the length.
III. On the Nichols algebra of a semisimple Yetter-Drinfeld module. (AHS).
Γ finite group,
$V_{j}=M\left(\mathcal{C}_{j}, \rho_{j}\right), 1 \leq j \leq \theta$,
$W=\oplus_{1 \leq j \leq \theta} V_{j}$.
There is an "adjoint" action of $\mathfrak{B}(W)$ on itself.

Fix $i, 1 \leq i \leq \theta$.
$L_{j}:=\operatorname{ad}_{c} \mathfrak{B}\left(V_{i}\right)$-submod. gen. by $V_{j}, j \neq i$;
L_{j} is a graded subspace of $\mathfrak{B}(W)$.

Theorem 1. If $\operatorname{dim} L_{j}<\infty$, then $L_{j}^{m_{i j}}$ is also an irreducible Yetter-Drinfeld module over Γ. Here $m_{i j}=$ top degree of L_{j}.
$a_{i j}=1-m_{i j}, i \neq j ; L_{i}^{-1}=V_{i}^{*}$ and $a_{i i}=2$.
($a_{i j}$) is a generalized Cartan matrix.
Note again the quantum Serre relation: $\operatorname{ad}_{c} V_{i}^{1-a_{i j}}\left(V_{j}\right)=0$
$\mathfrak{B}(W) \supset \mathcal{K}:=$ subalgebra generated by $L_{j}, i \neq j$.

$$
W_{i}^{\prime}=\oplus_{1 \leq j \leq \theta} L_{j}^{1-a_{i j}} .
$$

Here $L_{j}^{1-a_{i j}}$ are irreducible by Theorem 1.

Theorem 2. $\mathcal{K} \# \mathfrak{B}\left({ }^{*} V_{i}\right) \simeq \mathfrak{B}\left(W_{i}^{\prime}\right), \operatorname{dim} \mathfrak{B}(W)=\operatorname{dim} \mathfrak{B}\left(W_{i}^{\prime}\right)$.

Definition. W is standard if $W \simeq W_{i}^{\prime}$ for all i

Theorem 3. W is standard, $\operatorname{dim} \mathfrak{B}(W)<\infty$
$\Longrightarrow\left(a_{i j}\right)$ is of finite type.

Application.

Let $\mathcal{A}\left(\mathbb{S}_{3}, \mathcal{O}_{2}^{3}, \lambda\right)$ be the algebra presented by generators $e_{t}, t \in$ $T:=\{(12),(23)\}$, and $a_{\sigma}, \sigma \in \mathcal{O}_{2}^{3}$; with relations

$$
\begin{align*}
& e_{t} e_{s} e_{t}=e_{s} e_{t} e_{s}, \tag{1}\\
& e_{t} a_{\sigma}=-a_{t \sigma t}^{2}=1, \quad s \neq t \in T \tag{2}\\
& a_{\sigma}^{2}=0, \tag{3}\\
& t \in T, \sigma \in \mathcal{O}_{2}^{3} ; \tag{4}\\
& a_{(12)} a_{(23)}+a_{(23)} a_{(13)}+a_{(13)} a_{(12)}=\lambda\left(1-e_{(12)}^{e}{ }_{(23)}\right) ; \tag{5}\\
& a_{(12)} a_{(13)}+a_{(13)} a_{(23)}+a_{(23)} a_{(12)}=\lambda\left(1-e_{(23)} e_{(12)}\right) .
\end{align*}
$$

Set $e_{(13)}=e_{(12)} e_{(23)} e_{(12)}$. Then $\mathcal{A}\left(\mathbb{S}_{3}, \mathcal{O}_{2}^{3}, \lambda\right)$ is a Hopf algebra of dimension 72 with comultiplication determined by

$$
\begin{equation*}
\Delta\left(a_{\sigma}\right)=a_{\sigma} \otimes 1+e_{\sigma} \otimes a_{\sigma}, \quad \Delta\left(e_{t}\right)=e_{t} \otimes e_{t}, \quad \sigma \in \mathcal{O}_{2}^{3}, t \in T \tag{6}
\end{equation*}
$$

Theorem. (AHS, using previous work with Milinski, Graña, Zhang). Let H be a finite dimensional pointed Hopf algebra with $G(H) \simeq \mathbb{S}_{3}$. Then either

- $H \simeq \mathbb{C S}_{3}$, or
- $H \simeq \mathfrak{B}\left(\mathcal{O}_{2}^{3}\right.$, sgn $) \# \mathbb{C} \mathbb{S}_{3}$, or
- $H \simeq \mathcal{A}\left(\mathbb{S}_{3}, \mathcal{O}_{2}^{3}, 1\right)$.

This is the second non-abelian group having the classification finished.

The first is \mathbb{A}_{5} - that admits no finite-dimensional pointed Hopf algebra out of the group algebra (A.-Fantino, Rev. Un. Math. Arg., http://arxiv.org/abs/math.QA/0702559).

